
Archive Backup System
for OpenVMS

Guide to Operations
Order Number: AA-QHD1K-TE

Software Version Archive Backup System for
OpenVMS Version 3.1

Required Operating System OpenVMS Version 6.2, 7.1, and 7.2

Required Software Media and Device Management
Services for OpenVMS
Version 3.1

 DECnet (Phase IV) or DECnet-Plus(Phase V)

TCP/IP Services for OpenVMS
Compaq Computer Corporation
Houston, Texas

October 2000

Possession, use, or copying of the software described in this documentation is authorized only pursuant to a valid
written license from COMPAQ, an authorized sublicenser, or the identified licenser.

While COMPAQ believes the information included in this publication is correct as of the date of publication, it is
subject to change without notice.

Compaq Computer Corporation makes no representations that the interconnection of its products in the manner
described in this document will not infringe existing or future patent rights, nor do the descriptions contained in this
document imply the granting of licenses to make, use, or sell equipment or software in accordance with the
description.

Copyright 2000 Compaq Computer Corporation.
All rights reserved.
Printed in the United States of America.

TM DEC, DIGITAL, MSCP, OpenVMS, StorageWorks, TK, VAX VMSCluster and the DIGITAL Logos are reg-
istered in the United States Patent and Trademark Office.

Compaq and the Compaq Logo are registered in the United States Patent and Trademark Office.

DECconnect, HSZ, StorageWorks, VMS, and OpenVMS are trademarks of Compaq Computer
Corporation.

AIX is registered trademark of International Business Machines Corporation.

FTP Software is a trademark of FTP SOFTWARE, INC.

HP is a registered trademark of Hewlett-Packard Company.

NT is a trademark of Microsoft Corporation.

Oracle, Oracle Rdb, and Oracle RMU are all registered trademarks of Oracle Corporation.

PostScript is a registered trademark of Adobe Systems, Inc.

RDF is a trademark of Touch Technologies, Inc.

SGI is a registered trademark of Chemical Bank.

Solaris is a registered trademark of Sun Microsystems, Inc.

StorageTek is a registered trademark of Storage Technology Corporation.

SunOS is a trademark of Sun Microsystems, Inc. Version 2.1.

UNIX is a registered trademark in the United States and other countries, licensed exclusively through X/Open
Company Ltd.

Windows and Windows NT are both trademarks of Microsoft Corporation.

All other trademarks and registered trademarks are the property of their respective holders.

Contents

. .

. . 3-7

.
Preface . xvii

1 What Is Archive Backup System for OpenVMS?

1.1 ABS Operational Environment . 1-2
1.2 ABS Policy Objects . 1-4
1.2.1 Save Request . 1-4
1.2.2 Restore Request . 1-4
1.2.3 Storage Policy . 1-5
1.2.4 Environment Policy . 1-6
1.3 ABS Catalogs . 1-6
1.4 Archive File System . 1-7
1.5 Backup Agent . 1-7
1.6 Hierarchical System Management for OpenVMS Support . 1-8
1.7 ABS Supports Stacker Configured Devices . 1-8
1.8 ABS Provides Fast Tape Positioning . 1-8
1.9 Scheduler Interface Options . 1-9
1.10ABS Interfaces . 1-10

2 ABS Client-Server Technology

2.1 ABS OpenVMS Client-Server Configuration . 2-1
2.2 ABS UNIX or NT Client Configuration . 2-2

3 Customizing Your ABS Policy

3.1 Deciding What Data to Save . 3-2
3.2 Deciding When to Save Data . 3-3
3.3 Deciding Where to Save Data . 3-4
3.3.1 MDMS Archive Type . 3-4
3.3.2 Files–11 Archive Type . 3-5
3.3.3 Customizing the Storage Policies Provided by ABS . . 3-5
3.4 Deciding How to Move Data . 3-6
3.4.1 Customizing the Environment Policies Provided By ABS .
3.4.2 Changing the Policy Engine Location . 3-8

4 Data Safety

4.1 Central Security Domain . 4-1
4.2 Backup Management Domains . 4-3
4.2.1 Centralized Backup Management Domain . 4-4
4.2.2 Distributed Backup Management Domain . 4-5
4.2.3 Combined Backup Management Domain . 4-6

5 Backup Strategies
iii

5.1 How ABS Implements Its System Backup Strategy . 5-1
5.1.1 System Backup Process . 5-1
5.2 How ABS Implements Its User Backup Strategy . 5-2
5.2.1 User Process Context . 5-2
5.2.2 User Profile Process . 5-2
5.2.3 User Backup Process . 5-3
5.3 Differences Between System and User Backup Operations . 5-4
5.4 Configuring ABS for OpenVMS Client Backup Operations . 5-5
5.4.1 Creating ABS Policy Objects For OpenVMS Client System Backup
Operations 5-5
5.4.2 Creating Save Requests for OpenVMS Client System Backup Operations . 5-6
5.4.3 Creating ABS Policy Objects for OpenVMS Client User Backup Operations 5-7
5.4.4 Creating Save Requests for OpenVMS Client User Backup Operations . 5-9
5.5 Configuring ABS for NT and UNIX Client Backup Operations . 5-9
5.5.1 Creating ABS Policy Objects For NT and UNIX Client System Backup
Operations 5-9
5.5.2 Creating Save Requests for NT and UNIX Client System Backup Operations 5-11
5.6 Oracle Rdb Databases and Storage Areas Backup Operations . 5-12
5.6.1 Saving Individual Storage Areas . 5-12
5.6.2 Catalog Entries . 5-13
5.6.2.1 Oracle Rdb Database Catalog Entries: . 5-13
5.6.2.2 Oracle Rdb Storage Area Catalog Entries: . 5-13
5.6.3 Searching for Storage Areas in the Catalog . 5-14
5.6.4 Restoring Storage Areas and Databases . 5-14
5.7 Cataloging Copied Backup Savesets . 5-15

6 Displaying ABS Graphical User Interface

6.1 Displaying ABS GUI On an OpenVMS System . 6-1
6.2 Displaying ABS GUI on an NT System . 6-2
6.3 Standard X Window for Motif Buttons . 6-3

7 Creating Storage Policies

7.1 Using ABS Policy Worksheets . 7-1
7.2 Requirements . 7-2
7.3 Creating an ABS Storage Policy . 7-2
7.4 Storage Policy Name . 7-2
7.5 Save Data To . 7-3
7.5.1 Tape Options . 7-3
7.5.1.1 Media Type . 7-3
7.5.1.2 Pool . 7-3
7.5.1.3 Drives . 7-4
7.5.1.4 Location . 7-4
7.5.1.5 Criteria Under Which ABS Creates Volume Sets . 7-4
7.5.1.6 Clear Volume Set List From Storage Policy . 7-5
7.6 Retain Data For . 7-5
7.7 Catalog and Execution Node . 7-6
7.7.1 Selecting ABS Catalog . 7-6
7.7.2 Selecting the Node of Execution . 7-6
7.8 Number of Streams . 7-6
7.9 Storage Policy Access Control . 7-7
7.10Submitting the Storage Policy . 7-7
iv

8 Creating Environment Policies

8.1 Using ABS Policy Worksheets . 8-1
8.2 Requirements . 8-1
8.3 Creating an ABS Environment Policy . 8-2
8.4 Environment Policy Name . 8-2
8.5 Save and Restore Environment Options . 8-2
8.5.1 Who to Notify . 8-2
8.5.1.1 How to Notify and Who to Notify . 8-2
8.5.1.2 When to Notify . 8-3
8.5.1.3 Type of Notification . 8-3
8.5.2 Data Verification . 8-3
8.5.3 Listing . 8-4
8.5.4 Pre- and Post- Processing Commands . 8-4
8.5.5 Original File . 8-5
8.5.6 Retry Options . 8-5
8.5.7 User Profile . 8-5
8.5.8 Open Files . 8-6
8.5.9 Tape Drives . 8-6
8.5.10 Compression . 8-6
8.5.11 Links Option . 8-7
8.5.12 Span Filesystems . 8-7
8.6 Environment Policy Access Control . 8-7
8.7 Submitting the Environment Policy . 8-8

9 Creating Save Requests

9.1 Save Request Name . 9-1
9.2 What Data To Save . 9-1
9.2.1 Save Request Restrictions . 9-3
9.2.2 Pre- and Post- Processing Commands . 9-4
9.2.3 Selection Criteria . 9-6
9.2.4 Agent Qualifier . 9-6
9.3 When to Save Data . 9-6
9.3.1 Immediately Executing the Save Request . 9-6
9.3.2 Repetitive Scheduling of Save Request . 9-6
9.4 Where and How . 9-9
9.5 Save Request Access Control . 9-10
9.6 Submitting the Save Request . 9-10

10 Creating Restore Requests

10.1Restore Request Name . 10-1
10.2What Data To Restore . 10-1
10.2.1 Restore Request Restrictions . 10-3
10.2.2 Pre and Post- Processing Commands . 10-4
10.2.3 Selection Criteria . 10-6
10.2.4 Agent Qualifiers . 10-6
10.3When . 10-6
10.4Where and How . 10-6
10.5Restore To . 10-7
10.6Restore Request Access Controls . 10-8
10.7Submitting the Restore Request . 10-8

11 Scheduling Requests
 v

11.1Setting the Scheduler Interface Option . 11-1
11.2Changing between Scheduler Interface Option . 11-1
11.3Scheduler Interface Option INT_QUEUE_MANAGER . 11-2
11.4Scheduler Interface Option EXT_QUEUE_MANAGER . 11-2
11.5Scheduler Interface Option EXT_SCHEDULER . 11-3
11.6Scheduler Interface Option DECSCHEDULER . 11-3
11.7Scheduler Interface Option NONE . 11-4
11.8Scheduler Interface Internals . 11-4

12 Modifying and Deleting ABS Policies and Requests

12.1Select Request or Policy . 12-2

13 Looking Up Saved Data

13.1Data to Lookup . 13-1
13.1.1 File Type . 13-1
13.1.2 Entering the Correct Lookup Syntax . 13-1
13.1.3 Node of Original Data . 13-2
13.1.4 Storage or Catalog Name . 13-3
13.1.5 Archived Dates to Search . 13-3
13.2Submitting the Lookup Operation . 13-3

14 Monitoring Job Status

15 Creating ABS Catalogs

15.1Creating An ABS Catalog . 15-1
15.1.1 Creating a BRIEF type catalog . 15-2
15.1.2 Creating a FULL_RESTORE type catalog . 15-2
15.1.3 Creating An SLS Type Catalog . 15-3
15.1.4 Creating a Catalog using Staging Operation . 15-4
15.2Showing a Catalog . 15-4
15.3Modifying a Catalog . 15-5
15.4Deleting a Catalog . 15-5
15.5Improving Catalog Performance . 15-5
15.5.1 Converting ABS Catalogs . 15-5
15.5.2 Moving Target Catalogs to a Different Disk . 15-5
15.5.3 Moving Staging Catalog Entries . 15-6
15.6Sizes of Catalog Files . 15-6
15.6.1 Technical Details . 15-7
15.7What size is the ABS catalog? . 15-7

16 What is MDMS?

16.1MDMS Objects . 16-1
16.2MDMS Interfaces . 16-2

17 MDMS Configuration

17.1The MDMS Management Domain . 17-1
17.1.1 The MDMS Database . 17-2
17.1.1.1 Database Performance . 17-3
17.1.1.2 Database Safety . 17-3
17.1.1.3 Moving the MDMS Database . 17-4
vi

. 17-8
 . 17-

17-11
. 17-11

 17-

17-
17-13

. 1

 17-14
17-14

17-17
 . 17-17
. 17
 17-18
 . 17

. . 18-1
 . 18-1
. 18-2
17.1.2 The MDMS Process . 17-5
17.1.2.1 Server Availability . 17-5
17.1.2.2 The MDMS Account . 17-5
17.1.3 The MDMS Start Up File . 17-6
17.1.3.1 MDMS$DATABASE_SERVERS - Identifies Domain Database Servers 17-7
17.1.3.2 MDMS$LOGFILE_LOCATION . 17-7
17.1.3.3 MDMS Shut Down and Start Up . 17-7
17.1.4 Managing an MDMS Node . 17-8
17.1.4.1 Defining a Node’s Network Connection .
17.1.4.2 Defining How the Node Functions in the Domain .8
17.1.4.3 Enabling Interprocess Communication . 17-9
17.1.4.4 Describing the Node . 17-9
17.1.4.5 Communicating with Operators . 17-9
17.1.5 Managing Groups of MDMS Nodes . 17-9
17.1.6 Managing the MDMS Domain . 17-10
17.1.6.1 Domain Configuration Parameters . 17-10
17.1.6.2 Domain Options for Controlling Rights to Use MDMS .
17.1.6.3 Domain Default Volume Management Parameters .
17.1.7 MDMS Domain Configuration Issues . 17-12
17.1.7.1 Adding a Node to an Existing Configuration .17-12
17.1.7.2 Removing a node from an existing configuration .12
17.2Configuring MDMS Drives, Jukeboxes and Locations . 17-13
17.2.1 Configuring MDMS Drives . 17-13
17.2.1.1 How to Describe an MDMS Drive . 17-13
17.2.1.2 How to Control Access to an MDMS Drive . 13
17.2.1.3 How to Configure an MDMS Drive for Operations .
17.2.1.4 Determining Drive State . 17-14
17.2.1.5 Adding and Removing Managed Drives . 7-14
17.2.2 Configuring MDMS Jukeboxes . 17-14
17.2.2.1 How to Describe an MDMS Jukebox .17-14
17.2.2.2 How to Control Access to an MDMS Jukebox .
17.2.2.3 How to Configure an MDMS Jukebox for Operations.
17.2.2.4 Attribute for DCSC Jukeboxes . 17-15
17.2.2.5 Attributes for MRD Jukeboxes . 17-15
17.2.2.6 Determining Jukebox State . 17-15
17.2.2.7 Magazines and Jukebox Topology . 17-15
17.2.3 Summary of Drive and Jukebox Issues . 17-17
17.2.3.1 Enabling MDMS to Automatically Respond to Drive and Jukebox Requests
17.2.3.2 Creating a Remote Drive and Jukebox Connection .
17.2.3.3 How to Add a Drive to a Managed Jukebox . -18
17.2.3.4 Temporarily Taking a Managed Device From Service .
17.2.3.5 Changing the Names of Managed Devices .-18
17.2.4 Locations for Volume Storage . 17-19
17.3Sample MDMS Configurations . 17-20

18 Basic MDMS Operations

18.1MDMS User Interfaces . 18-1
18.1.1 Command Line Interface . 18-1
18.1.1.1 Command Structure . 18-1
18.1.1.2 Process Symbols and Logical Names for DCL Programming .
18.1.1.3 Creating, Changing, and Deleting Object Records With the CLI .
18.1.1.4 Add and Remove Attribute List Values With the CLI .
18.1.1.5 Operational CLI Commands . 18-2
 vii

. 19-9
 . 19-9
 . 19-9
. 19-10
18.1.1.6 Asynchronous Requests . 18-3
18.1.2 Graphic User Interface . 18-3
18.1.2.1 Object Oriented Tasks . 18-3
18.1.2.2 Combined Tasks . 18-4
18.2Access Rights for MDMS Operations . 18-5
18.2.1 Description of MDMS Rights . 18-5
18.2.1.1 Low Level Rights . 18-5
18.2.1.2 High Level Rights . 18-5
18.2.2 Granting MDMS Rights . 18-6
18.3Creating, Modifying, and Deleting Object Records . 18-8
18.3.1 Creating Object Records . 18-8
18.3.1.1 Naming Objects . 18-8
18.3.1.2 Differences Between the CLI and GUI for Naming Object Records . 18-8
18.3.2 Inheritance on Creation . 18-9
18.3.3 Referring to Non-Existent Objects . 18-9
18.3.4 Rights for Creating Objects . 18-9
18.3.5 Modifying Object Records . 18-9
18.3.6 Protected Attributes . 18-9
18.3.7 Rights for Modifying Objects . 18-10
18.3.8 Deleting Object Records . 18-10
18.3.9 Reviewing Managed Objects for References to Deleted Objects . 18-10
18.3.10 Reviewing DCL Command Procedures for References to Deleted Objects 18-11
18.3.11 Rights for Deleting Objects . 18-13

19 Connecting and Managing Remote Devices

19.1The RDF Installation . 19-1
19.2Configuring RDF . 19-1
19.3Using RDF with MDMS . 19-2
19.3.1 Starting Up and Shutting Down RDF Software . 19-2
19.3.2 The RDSHOW Procedure . 19-2
19.3.3 Command Overview . 19-2
19.3.4 Showing Your Allocated Remote Devices . 19-2
19.3.5 Showing Available Remote Devices on the Server Node . 19-2
19.3.6 Showing All Remote Devices Allocated on the RDF Client Node . 19-3
19.4Monitoring and Tuning Network Performance . 19-3
19.4.1 DECnet Phase IV . 19-3
19.4.2 DECnet-Plus (Phase V) . 19-4
19.4.3 Changing Network Parameters . 19-4
19.4.4 Changing Network Parameters for DECnet (Phase IV) . 19-4
19.4.5 Changing Network Parameters for DECnet-Plus(Phase V) . 19-5
19.4.6 Resource Considerations . 19-6
19.4.7 Controlling RDF’s Effect on the Network . 19-7
19.4.8 Surviving Network Failures . 19-8
19.5Controlling Access to RDF Resources . 19-9
19.5.1 Allow Specific RDF Clients Access to All Remote Devices .
19.5.2 Allow Specific RDF Clients Access to a Specific Remote Device .
19.5.3 Deny Specific RDF Clients Access to All Remote Devices .
19.5.4 Deny Specific RDF Clients Access to a Specific Remote Device .
19.6RDserver Inactivity Timer . 19-10
19.7RDF Error Messages . 19-10

20 MDMS Management Operations
viii

20.1Managing Volumes . 20-1
20.1.1 Volume Life Cycle . 20-1
20.1.2 Volume States by Manual and Automatic Operations . 20-2
20.1.2.1 Creating Volume Object Records . 20-2
20.1.2.2 Initializing a Volume . 20-3
20.1.2.3 Allocating a Volume . 20-3
20.1.2.4 Holding a Volume . 20-4
20.1.2.5 Freeing a Volume . 20-4
20.1.2.6 Making a Volume Unavailable . 20-4
20.1.3 Matching Volumes with Drives . 20-4
20.1.4 Magazines for Volumes . 20-4
20.1.5 Symbols for Volume Attributes . 20-5
20.2Managing Operations . 20-5
20.2.1 Setting Up Operator Communication . 20-6
20.2.1.1 Set OPCOM Classes by Node . 20-6
20.2.1.2 Identify Operator Terminals . 20-6
20.2.1.3 Enable Terminals for Communication . 20-6
20.2.2 Activities Requiring Operator Support . 20-6
20.3Serving Clients of Managed Media . 20-7
20.3.1 Maintaining a Supply of Volumes . 20-7
20.3.1.1 Preparing Managed Volumes . 20-7
20.3.2 Servicing a Stand Alone Drive . 20-9
20.3.3 Servicing Jukeboxes . 20-9
20.3.3.1 Inventory Operations . 20-9
20.3.4 Managing Volume Pools . 20-10
20.3.4.1 Volume Pool Authorization . 20-11
20.3.4.2 Adding Volumes to a Volume Pool . 20-11
20.3.4.3 Removing Volumes from a Volume Pool . 20-11
20.3.4.4 Changing User Access to a Volume Pool . 20-12
20.3.4.5 Deleting Volume Pools . 20-12
20.3.5 Taking Volumes Out of Service . 20-12
20.3.5.1 Temporary Volume Removal . 20-12
20.3.5.2 Permanent Volume Removal . 20-12
20.4Rotating Volumes from Site to Site . 20-13
20.4.1 Required Preparations for Volume Rotation . 20-13
20.4.2 Sequence of Volume Rotation Events . 20-13
20.5Scheduled Activities . 20-15
20.5.1 Logical Controlling Scheduled Activities . 20-15
20.5.2 Job Names of Scheduled Activities . 20-15
20.5.3 Log Files for Scheduled Activities . 20-16
20.5.4 Notify Users When Volumes are Deallocated . 20-16

21 MDMS High Level Tasks

21.1Creating Jukeboxes, Drives, and Volumes . 21-1
21.2Deleting Jukeboxes, Drives, and Volumes . 21-4
21.3Rotating Volumes Between Sites . 21-5
21.4Servicing Jukeboxes Used for Backup Operations . 21-7

A Preparing For Disaster Recovery

A.1 Efficiently Configuring Your System . A-1
A.2 Preparing for Disaster Recovery . A-2
A.3 Recovering ABS From A Disaster Situation . A-4
 ix

A.4 Recovering ABS Client Nodes . A-6

B ABS Time Formats

B.1 Start Time Format . B-1
B.2 Explicit Interval . B-2

C ABS Cleanup Utilities

C.1 Database Cleanup Utility . C-1
C.1.1 Starting Up the Database Cleanup Utility . C-1
C.1.2 Changing the Database Cleanup Utility Default Behavior . C-1
C.1.3 Database Cleanup Utility Log File . C-2
C.1.4 Shutting Down the Database Cleanup Utility . C-2
C.2 Catalog Cleanup Utility . C-2
C.2.1 Starting Up the Catalog Cleanup Utility . C-2
C.2.2 Changing the Catalog Cleanup Utility Default Behavior . C-2
C.2.3 Catalog Cleanup Utility Log File . C-3
C.2.4 Shutting Down the Catalog Cleanup Utility . C-3
C.2.4.1 Restarting the Catalog Cleanup Utility . C-4
C.2.5 ABS Catalog Cleanup Utility Process . C-4

D Log–n Backup Schedules

E ABS Worksheets

E.1 Storage Policy Worksheet . E-1
E.2 Environment Policy Worksheet . E-2
E.3 Save Request Worksheet . E-3

F Troubleshooting

F.1 Logical Names Provide Additional Tracing . F-1
F.2 Troubleshooting Assistance for NT Clients . F-1
F.3 Verifying NT and UNIX Client Quotas . F-2
F.4 Considerations for Saving Large Disks on UNIX and NT Clients . F-2
F.5 Using The Same Volume Set For Multiple Types of ABS Clients . F-4
F.6 ABS Log Files . F-4
F.7 New Logical Name Added To Increase Stack Size On Alpha Systems . F-5
F.8 Additional Error Messages . F-5
F.9 Upgrading ABS . F-5
F.10Logical To Assist with Server Connection Problems . F-5
F.11AUDIT Flags in ABS$POLICY_CONFIG.DAT . F-5
F.12Troubleshooting MDMS Related Problems . F-5
F.13Information Required When Reporting Problems . F-6

G ABS Error Messages

H MDMS Error Messages

I SLS and ABS Comparisons

J SLS To ABS Conversion

J.1 SLS To ABS Conversion .J-1
x

J.2 Why Convert from SLS to ABS? .J-1
J.2.1 Consolidated Policy Management .J-2
J.2.2 More Intuitive Policy Organization .J-2
J.2.3 Better Logging and Diagnostic Capabilities .J-2
J.2.4 UNIX and NT Clients .J-2
J.2.5 Automatic Full and Incremental Operations .J-2
J.2.6 More versatile User requested Operations .J-3
J.2.7 Disk Storage Classes .J-3
J.3 SLS and ABS System Backup Policy Overview .J-3
J.3.1 SLS Policy with ABS Equivalents .J-3
J.3.1.1 System Backup Policy Configuration .J-3
J.3.1.2 Defining Your System Backup Policy .J-4
J.3.1.3 Restoring Data .J-4
J.3.1.4 Media Management .J-5
J.3.2 ABS Overview with SLS Equivalents .J-5
J.3.2.1 Policy Configuration .J-5
J.3.2.2 Storage Class .J-6
J.3.2.3 Execution Environment .J-7
J.3.2.4 Save Request .J-9
J.3.2.5 Restore Request .J-10
J.3.2.6 Catalog .J-11
J.4 SLS and ABS Operation Overview .J-11
J.4.1 Scheduling .J-11
J.4.1.1 SBK Symbols for Scheduling .J-11
J.4.1.2 ABS Scheduler Interface Options .J-12
J.4.2 Types of Operations .J-12
J.4.2.1 System Backups .J-13
J.4.2.2 Full and Incremental Operations .J-15
J.4.2.3 Selective Operations .J-15
J.4.2.4 User Requested Operations .J-16
J.4.3 Media and Device Management .J-17
J.4.3.1 New Media Manager .J-17
J.4.3.2 Volume Set Management .J-18
J.4.3.3 Consistency of Volume and Drive Management .J-18
J.4.4 Cataloging .J-19
J.4.4.1 SLS History Sets .J-19
J.4.4.2 ABS Catalogs .J-19
J.4.4.3 Restoring data with ABS from SLS History Sets .J-19
J.5 Conversion Process .J-20
J.5.1 Steps for Conversion .J-20
J.5.1.1 Convert the MDMS Database .J-20
J.5.1.2 Determine your use of SLS .J-20
J.5.1.3 Converting SLS System Backups to ABS .J-21
J.5.1.4 Converting User Backup policy .J-26
J.5.1.5 Monitor ABS Activity .J-26
J.5.1.6 Restoring from SLS History Sets .J-27
J.6 Conversion Utility Reference .J-27
J.6.1 Command Syntax .J-27
J.6.2 Output Command File naming and contents .J-27
J.7 SBK Symbols in ABS Terminology .J-28
J.8 ABS Policy Attributes in SBK Terminology .J-30

K Differences Between MDMS Version 2 and MDMS Version 3
 xi

K.1 Comparing STORAGE and MDMS Commands . K-1
K.2 MDMS V2 Forms Interface Options . K-2
K.3 TAPESTART.COM Command Procedure . K-4

L Sample Configuration of MDMS

L.1 Configuration Order . L-1
L.1.1 Configuration Step 1 Example - Defining Locations . L-2
L.1.2 Configuration Step 2 Example - Defining Media Type . L-2
L.1.3 Configuration Step 3 Example - Defining Domain Attributes . L-2
L.1.4 Configuration Step 4 Example - Defining MDMS Database Nodes . L-3
L.1.5 Configuration Step 5 Example - Defining a Client Node . L-5
L.1.6 Configuration Step 6 Example - Creating a Jukebox . L-5
L.1.7 Configuration Step 7 Example - Defining a Drive . L-5
L.1.8 Configuration Step 8 Example - Defining Pools . L-7
L.1.9 Configuration Step 9 Example - Defining Volumes using the /VISION qualifier L-7

M Converting SLS/MDMS V2.X to MDMS V3

M.1 Operational Differences Between SLS/MDMS V2 & MDMS V3 .M-11
M.1.1 Architecture .M-11
M.1.2 MDMS Interfaces .M-12
M.1.3 Rights and Privileges .M-13
M.1.4 The MDMS Domain .M-13
M.1.5 Drives .M-14
M.1.6 Jukeboxes .M-15
M.1.7 Locations .M-16
M.1.8 Media Types .M-16
M.1.9 Magazines .M-17
M.1.10 Nodes .M-17
M.1.11 Groups .M-18
M.1.12 Pools .M-18
M.1.13 Volumes .M-18
M.1.14 Remote Devices .M-110
M.2 Converting SLS/MDMS V2.X Symbols and Database .M-110
M.2.1 Executing the Conversion Command Procedure .M-111
M.2.2 Resolving Conflicts During the Conversion .M-111
M.3 Things to Look for After the Conversion .M-114
M.4 Using SLS/MDMS V2.x Clients With the MDMS V3 Database .M-118
M.4.1 Limited Support for SLS/MDMS V2 during Rolling Upgrade .M-118
M.4.2 Upgrading the Domain to MDMS V3 .M-118
M.4.3 Reverting to SLS/MDMS V2 .M-119
M.4.4 Restrictions .M-120
M.5 Convert from MDMS Version 3 to a V2.X Volume Database .M-120

N Using ABS to Backup Oracle
Databases

N.1 Example Oracle Database . N-1
N.2 Backing up a Closed Database . N-2
N.2.1 Creating ABS Environment and Storage Policies for a Closed Database Backup N-2
N.2.2 Creating ABS Save Requests for a Closed Database Backup . N-4
N.3 Backing Up an Open Database . N-5
N.3.1 Creating ABS Environment and Storage Policies for an Open Database Backup N-6
N.3.2 Creating ABS Save Requests for an Open Database Backup . N-11
xii

 . 2-3

. .
 . . 3

. . . 5-4
 . 5-6

 . . . 5-7
 . . 5-8
. . . 5-9
 5-10
 5-11

 . . 6-
. . 6-2
. . 6-2

.

 . .
. . .
 .
 . .
. . 10
 . . 10
 . .
. . 12-1
.
 . 13-1

 .

. . 16-
 .
. .
 . . 17-4

 17-6
 17-7
 .

 .
Tables

Table 2–1 Differences Between ABS OpenVMS and UNIX or NT Clients .
Table 3–1 Deciding What Data To Save . 3-3
Table 3–2 Archive Type . 3-4
Table 3–3 Customizing ABS Provided Storage Policies . . 3-6
Table 3–4 Customizing ABS Provided Environment Policies .-7
Table 5–1 System Backup Process . 5-1
Table 5–2 User Backup Process . 5-3
Table 5–3 Major Differences Between System and User Backup Operations .
Table 5–4 Creating Storage and Environment Policies for OpenVMS Client System Backup Operations
Table 5–5 Creating System Backup Save or Restore Requests For OpenVMS Client
Table 5–6 Creating Storage and Environment Policies for OpenVMS Client User Backup Operations .
Table 5–7 Creating Save Requests for OpenVMS Client User Backup Operations
Table 5–8 Creating Storage and Environment Policies for NT/UNIX Client System Backup Operations
Table 5–9 Creating Storage and Environment Policies for NT/UNIX Client System Backup Operations
Table 6–1 Displaying ABS GUI on an OpenVMS System .1
Table 6–2 Displaying the GUI On an NT System Using eXcursion and DCL Commands
Table 6–3 Displaying ABS GUI Using eXcursion Menu Options .
Table 7–1 Creating an ABS Storage Policy . 7-2
Table 7–2 Selecting Tape or Disk Storage . 7-3
Table 7–3 Options to Save the Data . 7-5
Table 7–4 Enabling Access Control to the Storage Policy . 7-7
Table 8–1 Creating an ABS Environment Policy . 8-2
Table 8–2 Selecting the Notification Options . 8-3
Table 8–3 Enabling Access to an ABS Environment Policy .8-8
Table 9–1 Adding Disk or File Names To A Save Request . 9-2
Table 9–2 Correctly Entering the Disk Name or File Name .. 9-2
Table 9–3 Enabling Access To An ABS Save Request .9-10
Table 10–1 Adding Disk or File Names To A Restore Request . -1
Table 10–2 Entering The Correct Syntax For A Restore Request .-2
Table 10–3 Enabling Access Control To A Restore Request .10-8
Table 12–1 Requirements for Modifying and Deleting Policies and Requests .
Table 12–2 Modifying or Deleting an ABS Policy or Request . 12-2
Table 13–1 Entering The Correct Syntax For A Lookup Operation .
Table 13–2 Finding Saved Data By Date . 13-3
Table 15–1 Creating an ABS Catalog For SLS Restores . 15-4
Table 15–2 Moving Target Catalogs to a Different Disk . 15-6
Table 16–1 MDMS Object Records and What they Manage . 1
Table 17–1 MDMS Database Files and Their Contents . 17-2
Table 17–2 How to Back Up the MDMS Database Files . 17-3
Table 17–3 Processing MDMS Database Files for an Image Backup .
Table 17–4 How to Move the MDMS Database . 17-5
Table 17–5 MDMS$SYSTARTUP.COM Logical Assignments .
Table 17–6 Network Node Names for MDMS$DATABASE_NODES .
Table 17–7 Default Volume Management Parameters .17-11
Table 17–8 Adding a Node to an Existing Configuration . 17-12
Table 17–9 Actions for Configuring Remote Drives . 17-18
Table 17–10 Changing the Names of Managed Devices . 17-18
Table 18–1 Operational CLI Commands . 18-2
Table 18–2 Operational Actions With the GUI . 18-4
Table 18–3 Reviewing and Setting MDMS Rights . 18-6
Table 18–4 Low Level Rights . 18-10
xiii

 . 18-10
. 18-11

. 20-9
20-10

.
. . C

 . . F-

 . .

 . . .

.

 . . .
. . .J-32
. . . .J-33
 . . K-1
. . K-2
 . K-4
Table 18–5 Reviewing Managed Objects for References to Deleted Objects .
Table 18–6 Reviewing DCL Commands for References to Deleted Objects .
Table 19–1 How to Change Network Parameters . 19-5
Table 20–1 MDMS Volume State Transitions . 20-2
Table 20–2 Setting Up Operator Communication . 20-6
Table 20–3 Operator Management Features . 20-6
Table 20–4 Configuring MDMS to Service a Stand Alone Drive .
Table 20–5 How to Create Volume Object Records with INVENTORY .
Table 20–6 Sequence of Volume Rotation Events . 20-14
Table 21–1 Creating Devices and Volumes . 21-2
Table 21–2 Deleting Devices and Volumes . 21-4
Table 21–3 Rotating Volumes Between Sites . 21-6
Table 21–4 Servicing Jukeboxes . 21-8
Table A–1 Disaster Recovery Tasks . A-2
Table A–2 Recovering ABS . A-4
Table B–1 Start Time Formats . B-1
Table C–1 Shutting Down the Database Cleanup Utility . C-2
Table C–2 Defining the Catalog Cleanup Utility Logical Names . -3
Table E–1 Storage Policy Worksheet . E-1
Table E–2 Environment Policy Worksheet . E-2
Table E–3 Save Request Worksheet . E-3
Table F–1 Assigning a System Variable for NT Troubleshooting .2
Table F–2 Modifying the Blocking Factor . F-3
Table F–3 ABS Log Files . F-4
Table I–1 Comparing SLS and ABS Backup Attributes . I-1
Table J–1 DCL Symbols and ABS Equivalent .J-3
Table J–2 Storage Class Parameter and SBK File Equivalent .J-6
Table J–3 ABS and SBK Equivalent .J-7
Table J–4 Save Request and SBK Equivalent .J-9
Table J–5 Restore Request Parameter Information J-10
Table J–6 ABS Parameter and SLS Equivalent .J-11
Table J–7 Storage Class Parameter .J-23
Table J–8 Execution Environment Parameter .J-24
Table J–9 SBK Symbols in ABS Terminology .J-28
Table J–10 ABS Storage Classes and SLS SBK Equivalent .J-31
Table J–11 ABS Execution Environment Parameter and SLS SBK Equivalent
Table J–12 ABS Save Request Parameter and SLS SBK Equivalent .
Table K–1 Comparing MDMS Version 2 and Version 3 Commands .
Table K–2 Comparing MDMS V2 Forms and MDMS V3 Features .
Table K–3 Comparison of TAPESTART.COM to MDMS Version 3 Features. .
Table M–1 Volume Attributes .M-18
Table M–2 Symbols in TAPESTART.COM .M-112
Table M–3 Things to Look for After the Conversion .M-114
xiv

.

. . . 4
 . . 4-4
 . . 4-5
. . . 4-7

 . 1

Figures

Figure 1–1 ABS Operational Environment . 1-3
Figure 1–2 ABS Save or Restore Request . 1-5
Figure 1–3 ABS Catalogs . 1-7
Figure 2–1 ABS OpenVMS Client-Server Configuration. 2-1
Figure 2–2 ABS UNIX or NT Client Configuration . 2-3
Figure 3–1 ABS Policy . 3-2
Figure 3–2 Storage Policy/Archive Type Association . 3-5
Figure 4–1 Central Security Domain on an OpenVMS Cluster . -2
Figure 4–2 Centralized Backup Management Domain On An OpenVMS Cluster.
Figure 4–3 Distributed Backup Management Domain on an OpenVMS Cluster .
Figure 4–4 Combined Backup Management Domains on an OpenVMS Cluster
Figure 6–1 ABS Main Window. 6-2
Figure 12–1 Modify or Delete Requests And Policies Window .2-2
Figure 17–1 The MDMS Domain . 17-2
Figure 17–2 Figure 10– 2 Groups in the MDMS Domain. .17-10
Figure 17–3 Jukebox Topology . 17-16
Figure 17–4 Magazines . 17-17
Figure 17–5 Volume Locations . 17-19
Figure 17–6 Named Locations. 17-20
Figure 20–1 Volume States . 20-1
Figure 20–2 Magazines . 20-5
Figure 20–3 Pools and Volumes . 20-11
Figure 21–1 Configuring Volumes and Drives . 21-1
Figure 21–2 Volume Rotation . 21-6
Figure 21–3 Magazine Placement . 21-7
Figure A–1 Special Save Request . A-4
Figure D–1 Log–n Backup Schedules . D-1
xv

Preface

Intended Audience

This document is intended for storage administrators who are experienced OpenVMS system
managers. This document should be used in conjunction with the Introduction to OpenVMS Sys-
tem Management manual.

Conventions

The following conventions are used in this document:

Convention Description

{} In format command descriptions, braces indicate required elements.

[] In format command descriptions, square brackets indicate optional elements of the
command syntax. You can omit these elements if you wish to use the default
responses.

boldface type Boldface type in text indicates the first instance of a term defined in the Glossary or
defined in text.

italic type Italic type emphasizes important information, indicates variables, indicates com-
plete titles of manuals, and indicates parameters for system information.

Starting
test ...

This type font denotes system response, user input, and examples.

Ctrl/x Hold down the key labels Ctrl (Control) and the specified key simultaneously (such
as Ctrl/Z).

PF1 x The key sequence PF1 x instructs you to press and release the PF1 key, and then
press and release another key (indicated here by x).

n A lowercase italic n denotes the generic use of a number. For example, 19nn indi-
cates a four-digit number in which the last two digits are unknown.

x A lowercase x denotes the generic use of a letter. For example, xxx indicates any
combination of three alphabetic characters.
 xvii

Related Products

The following related products may be mentioned in this document:

Associated Documents

The following documents are part of Archive Backup System for OpenVMS documentation set:

• Archive Backup System for OpenVMS Installation Guide

• Archive Backup System for OpenVMS Guide to Operations

• Archive Backup System for OpenVMS Command Reference Guide

Product Description

HSM HSM refers to Hierarchical Storage Management for OpenVMS software.

MDMS MDMS refers to Media and Device Management Services for OpenVMS software.

OpenVMS OpenVMS refers to OpenVMS operating system.

SMF SMF refers to Sequential Media Filesystem for OpenVMS software.

SLS SLS refers to Storage Library System for OpenVMS software.
xviii

Part I
ABS Operations

This part of Archive Backup System for OpenVMS Guide to Operations contains information
about Archive Backup System for OpenVMS software.

uto-
 using
s to
ore

ed by
om
that

Open-
ured
1
What Is Archive Backup System for

OpenVMS?

Archive Backup System for OpenVMS (ABS) is a software product that allows you to save and
restore data in a heterogeneous environment. ABS provides you with the ability to perform any-
thing from full system backup operations to user-requested or user-created backup operations.
ABS ensures data safety and integrity by providing a secure environment for their save and
restore operations.

All of ABS features are not available, if you only have an ABS-OMT license. The following lists
the features that are not implemented with ABS-OMT license:

• Command Line Interface (CLI)

• Support for remote tape devices using RDF

• Support for OpenVMS clients

• Creation of storage policies

• Creation of environment policies

• Save request scheduling options except for the following:

– On demand (ON_DEMAND)

– Weekly full/daily incremental (DAILY_FULL_WEEKLY)

– One time only (ONE_TIME_ONLY)

• Support of STK silos and DCSC jukeboxes

• Support for the following scheduling options:

– POLYCENTER Scheduler V2.1b (DECscheduler) (DECSCHEDULER)

– External scheduler (EXT_SCHEDULER)

– External queue manager (EXT_QUEUE_MANAGER)

ABS enables you to implement a backup policy that allows you to save the data through a
matic or repetitively scheduled save operations. It also enables you to save data randomly
a one-time-only save operation. ABS allows you to use different scheduler interface option
schedule requests. This feature allows you to customize the scheduling of the save or rest
request to your system configuration.

Save and restore operations are accomplished by using two of the policy objects recogniz
ABS, a save request and a restore request. These policy objects allow you to save data fr
online to either a offline volume or to another disk and, if necessary, allows you to restore
data to either its original location or to a different output location.

ABS uses a media manager called Media and Device Management Services (MDMS) for
VMS. The MDMS software is provided with ABS software and must be installed and config
 What Is Archive Backup System for OpenVMS? 1–1

What Is Archive Backup System for OpenVMS?
1.1 ABS Operational Environment

teria
sts

our

 and
nviron-

tory
t con-
tore

of
dia that

pera-
 the
e
before installing ABS. Together, ABS and MDMS minimize the amount of user interaction
required to locate saved data and to manage volumes and tape drives used for ABS save and
restore operations.

ABS tracks the location of data when saved as a result of an ABS save request. This information
is kept in an ABS catalog. Upon request, ABS accesses the catalog to locate or restore the data
and coordinates the media management responsibilities with MDMS.

In this chapter:

This chapter provides information about the various components that comprises an ABS opera-
tional environment. The information includes the following items:

• ABS Policy Objects

• ABS Catalogs

• ABS Log Files

• Archive File System

• Backup Agent

• ABS Interfaces

1.1 ABS Operational Environment
ABS operational environment contains the following components:

• ABS policy objects - ABS policy objects define physical locations of saved data, the cri
under which save and restore requests are performed, and the save and restore reque
themselves. The manner in which you implement these ABS policy objects results in y
ABS policy.

ABS policy objects are described in Section 1.2.

• ABS policy database - ABS database contains the definitions for all ABS policy objects
makes reasonable decisions based upon the configuration of your managed storage e
ment and your ABS policy definitions.

• ABS catalogs - ABS catalogs are the components of ABS software that contain the his
information about ABS save requests. Catalogs consist of one or more databases tha
tain the records of data saved using ABS. Those records enable you to locate and res
data that was saved using ABS.

ABS catalogs are described in Section 1.3.

• Archive file system - An archive file system is the component that provides a method
accessing the file system that stores ABS save sets. ABS save sets are stored on me
reside in an archive file system. ABS supports the following archive file systems:

– MDMS

– Files-11

The archive file system is described in Section 1.4.

• Backup agent - A backup agent is the agent that performs the actual data movement o
tion. For OpenVMS systems, the backup agents are the OpenVMS BACKUP Utility and
RMU Backup Utility. For UNIX and NT clients, the supported backup agent is gtar (tap
archiver). ABS uses gtar because most UNIX and NT systems support it.
What Is Archive Backup System for OpenVMS? 1-2

What Is Archive Backup System for OpenVMS?
1.1 ABS Operational Environment

an-
Backup agents are described in Section 1.5.

• An optional 3rd party scheduler product. By default ABS uses the OpenVMS Queue M
ager to schedule requests.

• Interfaces - ABS provides the following interfaces:

– Graphical user interface (GUI)

– Command line interface (CLI)

Note

Not available with the ABS-OMT license.

ABS interfaces are described in Section 1.10.

Figure 1–1 illustrates some of the components of ABS environment.

Figure 1–1 ABS Operational Environment

In Figure 1–1, the following items are also illustrated:

ABS policy definitions

Volume definitions

Data
definitions

Catalog definitions

Restore

Request Environment

Policy

Scheduling
definitions

Data history records

Data movement path

CXO6009B

Save

Request
Storage

Policy

Control path
 What Is Archive Backup System for OpenVMS? 1–3

What Is Archive Backup System for OpenVMS?
1.2 ABS Policy Objects

s, or

ed in
l-
ecifi-

hrough
 CLI.

r NT

t fulfill

sts are

 NT
• Data definitions - These definitions allow you to specify the data (disk names, file name
sets of disk names or file names) that you want to save or restore.

• Media definitions - Media definitions are defined in MDMS, ABS storage policies must
specify the type of media to use for its save operations which you have previously defin
MDMS. Media definitions consist of either an MDMS media type name or an MDMS vo
ume set name, or if you are saving to a disk (Files–11), the disk name and directory sp
cation.

1.2 ABS Policy Objects
The following ABS policy objects are components of ABS software:

• Save requests

• Restore requests

• Storage policies

• Environment policies

The following sections describe ABS policy objects.

1.2.1 Save Request

A save request defines the data to be saved and executes upon immediate invocation or t
an automatic, repetitive schedule. You can create save requests using either ABS GUI, or

A save request defines the following criteria:

• The data to back up

• The type of data to back up (VMS file, Oracle Rdb database, storage area, UNIX file o
file)

• The type of save request (full, incremental, selective, scheduled, and so forth)

• When to save the data (start time and interval)

• Where to save the data (which storage policy to use)

• The length of time to keep the data (retention period or expiration date)

• The owner of the save request

• Who can access a save request (ensures data safety)

• What environment policy to use to execute the save request

• Whether to perform pre- or postprocessing commands

To meet your storage management requirements, you will need to create save requests tha
those requirements. Chapter 9, Creating Save Requests describes how to plan for and create a
save request.

1.2.2 Restore Request

A restore request restores data from offline storage back to online storage. Restore reque
created using either the GUI or DCL and are executed immediately or at a specified time.

A restore request defines the following criteria:

• The data to restore

• The type of data to restore (VMS file, Oracle Rdb database, storage area, UNIX file or
file)
What Is Archive Backup System for OpenVMS? 1-4

What Is Archive Backup System for OpenVMS?
1.2 ABS Policy Objects

 that
• The type of restore request (full, incremental, or selective)

• Where to restore the data (optional output location other than the original location)

• Where the data resides (storage policy)

• Who can access a restore request (ensures data security)

• What environment policy to use to execute the restore request

• Whether to perform pre- or postprocessing commands

More information:

To meet your storage management requirements, you will need to create restore requests
fulfill those requirements. Chapter 10, Creating Restore Requests describes how to plan for and
create a restore request.

Figure 1–2 illustrates the path of a save or restore request.

Figure 1–2 ABS Save or Restore Request

A save or restore request is invoked through the GUI or through the CLI (DCL).

1.2.3 Storage Policy

A storage policy defines the volumes (media type) and archive characteristics where you can
safely store data. Each storage policy has a unique name, contains a set of archive characteris-
tics, and is created and configured by users who have the proper privileges and access right iden-
tifiers (typically the storage administrator). A storage policy allows you to specify a simple
storage policy name rather than a complicated set of characteristics.

Each storage policy defines the following:

IF the request is a . . . THEN the data is . . .

Save request Saved from online storage to the storage policy. An ABS catalog
records the location of the saved data.

Restore request Restored back to online storage. ABS searches the catalog for the
location of the data (storage policy), loads the appropriate volume,
and restores the data.

Storage

Policy

Restore

Request

Save

Request

Active data (online storage) Inactive data (offline storage)

Catalog

Data movement path

Data history records
Control path

Archive File System

CLI

GUI

CXO4090D
 What Is Archive Backup System for OpenVMS? 1–5

What Is Archive Backup System for OpenVMS?
1.3 ABS Catalogs

ira-

ty)

 the

cuted.

d)

 forth

ll,

ion

an be
articu-
torage
• Which type of archive file system to use (MDMS or Files–11)

• If the archive file system is MDMS, the MDMS media type, tape pool, and location

• How long to keep the data stored in a particular storage policy (retention period or exp
tion date)

• Who is allowed to access the storage policy (ensures data safety)

• Who is allowed write data to and read data from the storage policy (ensures data safe

• Which catalog contains the information about the data stored in the storage policy

• How long to use a volume set

• How many save or restore requests can be executed simultaneously

After the installation of ABS is complete, ABS provides storage policies. Section 3.3.3 lists
storage policies provided by ABS installation procedure.

1.2.4 Environment Policy

The environment policy defines the criteria under which save and restore requests are exe
The criteria defined in an environment policy include:

• Who to notify when a backup or restore operation has successfully completed (or faile

• The number of drives to use for the save request

• Whether to use the environment policy for system backups, long term archives, and so

• The owner of the environment policy

• Who is allowed access to the environment policy (ensures data security)

• Default data safety checks to perform during backup or restore operations (such as Fu
Redundancy, CRC, or a combination thereof)

• Whether to enable log and listing file.

• How often to retry the backup or restore operation before requiring user intervention

• Whether to perform job-wide pre- or post-processing commands

• UNIX compression, file system span, and symbolic link options

• Original object actions

• Locking options

After the installation of ABS is complete, ABS provides several environment policies. Sect
3.4.1 lists the environment policies provided by ABS installation procedure.

1.3 ABS Catalogs
An ABS catalog is a database that contains history information about save requests and c
assigned to one or more storage policies. Each time a save request is initiated through a p
lar storage policy, the save request history is recorded in ABS catalog associated with the s
policy.

The information contained in an ABS catalog includes:

• The name of the data that was saved

• The date and time the data was saved

• The save set name where the data is located
What Is Archive Backup System for OpenVMS? 1-6

What Is Archive Backup System for OpenVMS?
1.4 Archive File System

ia

gneto

d by the
iles, or
BS is
 save
• The original location of the data

• The owner of the data

Figure 1–3 shows the relationship between an ABS catalog and an ABS storage policy.

Figure 1–3 ABS Catalogs

After the installation of ABS is complete, ABS provides a default catalog named
ABS_CATALOG. By default, this catalog is associated with all storage policies unless it is
changed by the creator of the storage policy. All ABS catalogs, both the default catalog and user-
created catalogs, support lookup and restore capabilities.

More information:

To meet your storage management requirements, you may need to create catalogs other than the
one provided by ABS. Chapter 15, Creating ABS Catalogs describes how to plan for and create
an ABS catalog.

1.4 Archive File System
An archive file system is the file system that stores ABS save sets. ABS enables you to specify
which archive file system to use (storage policy) to store ABS save sets.

ABS supports the following archive file systems:

• MDMS - ABS is integrated with MDMS to support the management of removable med
and devices.

• Files-11 - ABS supports backup and restore operations to and from disk devices or ma
optical media.

1.5 Backup Agent
ABS uses various backup agents to save and restore data. The backup agent is determine
type of data, such as VMS files, Oracle Rdb databases, Oracle Rdb storage areas, UNIX f
NT files. The backup agent is responsible for the actual data movement operation, while A
responsible for invoking the correct backup agent and recording the information about the
operation.

SYSTEM_BACKUPS
storage policy

USER_BACKUPS
storage policy

PROJECT_X
storage policy

PROJECT_Y
storage policy

ABS_CATALOG

PROJECT_CATALOG

CXO5022C
 What Is Archive Backup System for OpenVMS? 1–7

What Is Archive Backup System for OpenVMS?
1.6 Hierarchical System Management for OpenVMS Support

U

r to
y
 is

the

o
g of
era-
ration.

ary
e

 an

rder
ify the

uling
lved

d on

y
it, the
 a
ABS supports the following backup agents:

• OpenVMS BACKUP Utility - For OpenVMS files, ABS uses the OpenVMS BACKUP
Utility.

• RMU Backup Utility - For Oracle Rdb databases and storage areas, ABS uses the RM
Backup Utility.

• gtar - For UNIX and NT files, ABS uses gtar (tape archiver).

1.6 Hierarchical System Management for OpenVMS Support
ABS supports systems that have HSM installed. ABS and HSM can be configured togethe
permit HSM to perform shelving and /or preshelving of an OpenVMS file data, while nightl
backups under ABS will copy only the file system metadata. This cooperative configuration
referred to as "Backup Via Shelving".

To facilitate this cooperative operation, the VMS BACKUP engine that ABS employs uses
following command qualifiers:

• /[NO]SHELVED - Specifying the negative form of this qualifier directs VMS BACKUP t
omit shelved data from the ABS backup operation, and prevents unintended unshelvin
shelved data. Specifying the qualifier in the positive form overrides the cooperative op
tion and causes the shelved data to be restored before ABS performs the backup ope
This may be useful in some circumstances, such as archiving.

• /[NO]PRESHELVED - Specifying the negative form of this qualifier directs VMS
BACKUP to omit preshelved data from ABS backup operation, and removes unnecess
time and media overhead from the ABS backup operation. Specifying the qualifier in th
positive form overrides the cooperative operation, and directs VMS BACKUP to make
additional copy of the preshelved data.

On systems where HSM is installed, ABS exhibits the following default behavior:

• For save requests that specify individual OpenVMS files, ABS unshelves the data in o
to save it. So that ABS will ignore shelved data on these types of save requests, spec
/NOSHELVED qualifier and/or the /NOPRESHELVED qualifier in the Agent Options
field.

• For save requests that specify an entire OpenVMS disk or one of the combined sched
options (such as Weekly Full with Daily Incremental), ABS ignores shelved and preshe
data. No action is necessary to bypass this data.

1.7 ABS Supports Stacker Configured Devices
ABS supports stacker configured devices when it encounters free volumes already mounte
the drive. ABS will use the volume if it meets the media type criteria.

1.8 ABS Provides Fast Tape Positioning
ABS provides fast tape positioning so that the speed of positioning the tape is considerabl
faster. When positioning to the end of a volume that has a large amount of data stored on
difference in time will be significant from versions of ABS prior to V2.2. Positioning time for
restore request requires less time depending on the file location on the volume.

Note

When using a tape located on a remote drive (RDF device), fast tape positioning may
not be used. To disable fast tape positioning on your server node or client node, define
a logical name on each node:
What Is Archive Backup System for OpenVMS? 1-8

What Is Archive Backup System for OpenVMS?
1.9 Scheduler Interface Options

e

ue

rod-

-

er start
edule

, and

cal
$ DEFINE/SYSTEM ABS_NO_FAST_SKIP TRUE

If you are utilizing a tape drive that does not support the fast tape positioning, you may see errors
such as:

ABS_SKIPMARKS_FAILED, Skip tape marks failure

In those cases, define the logical ABS_NO_FAST_SKIP on the node where the failures occur.

1.9 Scheduler Interface Options
ABS allows the use of different scheduler interfaces. By default ABS uses the programming
interface to the OpenVMS Queue Manager to schedule save and restore requests. These are the
scheduler interface options which can be used:

• INT_QUEUE_MANAGER (default) - uses a programming interface to OpenVMS Queu
Manager

• EXT_QUEUE_MANAGER - uses DCL commands to interface with the OpenVMS Que
Manager by calling a command procedure

• EXT_SCHEDULER - uses DCL commands to interface with the 3rd party scheduler p
uct by calling a command procedure

• DECSCHEDULER - uses a programming interface to POLYCENTER Scheduler (DEC
scheduler) V2.1b

Note

The internal queue manager scheduler interface is the only scheduler interface avail-
able with the ABS-OMT license.

The scheduler interface is invoked when a save or restore request is created, you can eith
the request immediately (the only option for a restore request) or implement a repetitive sch
for save requests.

The scheduler interface is used to:

• Automate and manage ABS jobs that run repeatedly, such as ABS save requests.

• Separate all scheduling specifics such as the schedule interval, completion notification
job dependencies from the job’s main task.

• Capture events through a logging system, so you can generate accounting and histori
reports. This may vary depending on the scheduler interface.

• Execute all requests remotely as well as locally - invisible to the user.

For more information on the scheduling options, see Chapter 11, Scheduling Requests.
 What Is Archive Backup System for OpenVMS? 1–9

What Is Archive Backup System for OpenVMS?
1.10 ABS Interfaces

-

1.10ABS Interfaces
ABS Version 3.0A provides the following interfaces:

Interface Description

ABS GUI ABS provides a graphical user interface (GUI) for users whose systems support
X Window System™ for Motif®. This interface displays a main menu and
pull-down/pop-up windows that allow you to create, delete, set, or show ABS
policy objects. This GUI allows you to perform all ABS functions and opera-
tion.

CLI ABS also provides a Command Line Interface (CLI), which is the Digital Com
mand Line (DCL) interface, for users who prefer this type of interface, or for
users whose systems do not support X Window System for Motif or have
access to a web server.

Note:
Not available with the ABS-OMT license.
What Is Archive Backup System for OpenVMS? 1-10

are.

 on
2
ABS Client-Server Technology

ABS provides a client-server technology that ensures ABS policy database is secure and avail-
able only to authorized ABS clients. ABS server is the node or OpenVMS Cluster system where
ABS policy engine and policy database resides.

ABS recognizes OpenVMS, UNIX, and NT clients. The following sections describe the differ-
ences between the functions and responsibilities of these types of ABS clients.

Note

OpenVMS client support is not available with an ABS-OMT license.

2.1 ABS OpenVMS Client-Server Configuration
Figure 2–1 illustrates an OpenVMS client-server configuration as interpreted by ABS softw
In this illustration, the following components are shown:

• An OpenVMS node that is ABS server node

• An OpenVMS node that is a ABS client.

Figure 2–1 ABS OpenVMS Client-Server Configuration

In Figure 2–1, ABS interprets OpenVMS client-server configuration as follows:

• ABS OpenVMS server node enables ABS OpenVMS client node to access ABS policy
database through the DECnet communications software. ABS policy database resides
ABS server node.

ABS policy
database

ABS catalog Data to
backup

Backup agent

MDMS

CXO-5288B-MC

DECnet

OpenVMS ABS server node OpenVMS ABS client node

ABS
policy
engine

Save and
restore
request

coordinator
 ABS Client-Server Technology 2–1

ABS Client-Server Technology
2.2 ABS UNIX or NT Client Configuration

-

y
es on

server

unica-
nator
ordi-

cli-

e oper-
• The save and restore request coordinator, ABS catalogs, and the backup agent (in this
instance, the OpenVMS BACKUP Utility) all reside on ABS OpenVMS client node.

• Communications with the media management software (MDMS) are initiated by ABS
OpenVMS client.

2.2 ABS UNIX or NT Client Configuration
Figure 2–2 illustrates a UNIX or NT client-server configuration. In this illustration, the follow
ing components are shown:

• An OpenVMS node that is ABS server

• A UNIX or NT node that is ABS client.

In Figure 2–2, ABS interprets the UNIX or NT client configuration as follows:

• ABS OpenVMS server node enables ABS UNIX or NT client node to access ABS polic
database through the TCP/IP Services networking software. ABS policy database resid
ABS server node.

• The save and restore request coordinator and ABS catalogs reside on ABS OpenVMS
node.

• The backup agent (gtar) resides on the UNIX or NT client node.

The save and restore coordinator on the OpenVMS server node coordinates the comm
tions to the backup agent on ABS UNIX or NT client node. The save and restore coordi
controls the data movement between the UNIX or NT client node and MDMS, and it co
nates the catalog entries for the UNIX or NT data on ABS server node.

• Communications with the media management software (MDMS) for ABS UNIX or NT
ent are initiated by ABS OpenVMS server.

• ABS server node is also the node of execution. This node launches the save or restor
ation.
ABS Client-Server Technology 2-2

ABS Client-Server Technology
2.2 ABS UNIX or NT Client Configuration

ile
for
Figure 2–2 ABS UNIX or NT Client Configuration

The main difference between a ABS UNIX or NT client and a ABS OpenVMS client is shown in
Table 2–1.

The components required to configure a UNIX or NT client system are a gtar executable f
(provided with ABS software) and the TCP/IP Services networking software (pre-requisite
UNIX or NT client support). See Archive Backup System for OpenVMS Installation Guide for
instructions about installing and configuring a UNIX or NT client system.

Table 2–1 Differences Between ABS OpenVMS and UNIX or NT Clients

Type of
ABS Client ABS Server Node Responsibility ABS Client Node Responsibility

OpenVMS • Contains ABS policy database
and policy engine

• Contains the save and restore
coordinator

• Contains ABS catalogs

• Initiates communications with
the MDMS software for itself

• Contains the data to back up

• Contains OpenVMS backup
agent

UNIX or NT • Contains ABS policy database
and policy engine

• Contains the save and restore
coordinator

• Contains ABS catalogs

• Initiates communications with
the MDMS software for the
UNIX or NT client node.

• Contains the client-specific
backup agent

• Contains the data to back up

ABS policy
database

ABS catalog Data to
backup

MDMS

CXO-5362B-MC

TCP/IP

OpenVMS ABS server node UNIX or NT client node

Backup agent
ABS

policy
engine

Save and
restore
request

coordinator
 ABS Client-Server Technology 2–3

ribed
ds.
S
3
Customizing Your ABS Policy

There are several decisions you must make to customize Archive Backup System for OpenVMS
(ABS) software so it fulfills your storage management requirements. Customizing ABS policy
objects provided by the installation procedure or creating new ABS policy objects is the method
of defining your ABS policy.

Note

Creating ABS policy objects is not available with ABS-OMT license. However, a
default storage policy and environment policy is supplied that may be changed to meet
your storage management requirements. The default policies are:

• OMT_BACKUPS - storage policy
• OMT_BACKUPS_ENV - environment policy

Consider the following items when planning your ABS policy:

• What data needs to be saved to ensure the stability and integrity of your enterprise?

• When and how often should that data be saved?

• Where do you want to safely store the saved data?

• How (in what environment) should that data be saved or restored?

To configure an ABS policy that meets your specific needs, weigh the considerations desc
in the following sections and then create or modify ABS policy objects that meet those nee
Figure 3–1 shows the options you can set on ABS policy objects that will implement an AB
policy that meets your storage management requirements.
 Customizing Your ABS Policy 3–1

Customizing Your ABS Policy
3.1 Deciding What Data to Save

pen-
T

uest

lected
ojects

odified
d be
ed in

hedul-
Figure 3–1 ABS Policy

The following sections provide information about the decisions you must make to configure an
ABS policy that meets your storage management requirements.

3.1 Deciding What Data to Save
Part of configuring your ABS policy is deciding your backup strategy. Save requests enable you
to specify the data that you need to save, either to ensure data safety or to meet business require-
ments. You may need to create several different save requests to ensure complete implementa-
tion of your backup strategy.

Once your save requests are created, you can modify or delete those save requests (provided they
meet deletion criteria) in order to maintain your ABS policy.

ABS supports the following types of save requests:

• Full - A full save request typically saves every instance of data on an entire disk. For O
VMS disks, the include specification would be an OpenVMS disk name. For UNIX or N
disks, the include specification would be UNIX or NT path name. The type of save req
would be full.

• Selective - A selective save request specifies only certain files on a disk, known as se
data. This is typically done for users who cannot create their own save requests, for pr
that require saving its data, or for long-term archiving purposes.

• Incremental - An incremental save request saves only data that has been created or m
since the last full save request successfully completed. The include specification woul
identical to the full save request. However, this type of save request is not recommend
ABS. A better option is to create a full save request and using one of the combined sc
ing options provided by ABS. Chapter 9, Creating Save Requests describes these options.

Storage Policies

Media

Environment Policies

Notification options

Save Requests

Full/incremental/selective

Data to save

Schedule

Ensure data safety

Meet legal requirements

Meet customer needs

Drives

How long to keep data

Catalog to use

Actions against
saved data

Goal

ABS Policy Object Definitions

CXO6011B
Customizing Your ABS Policy 3-2

Customizing Your ABS Policy
3.2 Deciding When to Save Data

create

en to
ose
ften to

g

osure

t the
Table 3–1 provides some guidelines for deciding which type of save requests you need to
to make sure that you are correctly implementing your backup strategy.

3.2 Deciding When to Save Data
Once you have decided what data you need to save, you must consider when and how oft
save that data. ABS offers a variety of scheduling options. It also allows you to interrupt th
schedules when necessary. Consider the following items before deciding when and how o
schedule save requests:

• When and how often you want to save data, such as daily, weekly, monthly, only durin
nonpeak user hours, and so forth.

• When you want to restrict save requests from executing, such as on holidays, plant cl
days, or vacation days.

• When you want to limit save requests to execute only on specific days, such as only a
close of each quarter of business.

Table 3–1 Deciding What Data To Save

IF you want to make
sure that...

THEN the include
specification on the save
request should contain ...

ABS Policy

All of your data is saved
and recoverable

A disk name or multiple disk
names (up to eight)

A full save request

ABS supports system backup opera-
tions and provides a variety of com-
bined scheduling options.Section
9.3.2 describes the scheduling
options available in ABS.

Data related to a particu-
lar project or group is
saved and recoverable

A file name or multiple file names
(up to eight)

A selective save request

ABS supports saving only selected
data from one or more disks.

Your business policy
allows users to create
their own save and restore
requests

A file name or multiple file names
(up to eight)

A user-created selective save request

ABS enables you to support user-
requested save and restore requests
by providing a storage policy that is
accessible to authorized users.

Data is retained for an
extended period of time,
typically to meet legal
requirements

A disk or file name of the selected
data that you want to archive. The
save request must reference a
storage policy specifically config-
ured for retaining data for an
extended period of time.

A selective save request

ABS enables you to save data that
meets your archiving requirements,
and to delete the original data from
online storage if desired.

Chapter 7, Creating Storage Poli-
cies describes how to create a stor-
age policy with the characteristics
for long-term storage.

Chapter 8, Creating Environment
Policies describes how to create an
environment policy that will delete
the online data once the save request
has successfully completed.
 Customizing Your ABS Policy 3–3

Customizing Your ABS Policy
3.3 Deciding Where to Save Data

y the

 exam-
ristics
e.

torage

ith a

ith a

on
Each save request enables you to specify the start time and the interval at which you want to exe-
cute the save request. These options on a save request are Start Time and Schedule. This, along
with other save request options, enables you to set up a backup strategy that fulfills your storage
management needs.

Chapter 9, Creating Save Requests explains how to create save requests and Section 9.3.2
describes the scheduling options available for those save requests.

3.3 Deciding Where to Save Data
Storage policies define a set of characteristics for data that is saved using ABS. Storage policy
characteristics include where (on which volumes) to store data, how long to store the data, which
catalog to use for recording the location of data, and whether to enable or restrict access to the
data by other users.

As the storage administrator, you can allow access to or restrict access from a storage policy, or
you can create storage policies for the sole purpose of allowing users to create their own save
and restore requests. The manner in which you allow access to a storage policy determines who
can create save and restore requests using that storage policy.

A storage policy also controls volume selection. Each storage policy has an archive type associ-
ated with it to specify how a volume is located. An archive type includes the type of a volume
(either tape or disk) that the storage policy uses.

ABS supports the following archive types:

• Media and Device Management Services for OpenVMS (MDMS)

• Files–11

Table 3–2 describes the archive types that ABS supports, the type of volumes supported b
archive type, and the storage policy association.

Each site has its own reasons for using specific types of volumes to store saved data. For
ple, the type of volume that you choose for long-term storage may have different characte
than the type of volume that you choose for short-term storage or disaster recovery storag

The following sections describe the supported archive types and their association with a s
policy.

3.3.1 MDMS Archive Type

MDMS is an archive type that manages volumes and tape drives. When it is associated w
storage policy, MDMS uses volumes that are defined as follows:

• Media-Type - The media type is defined in MDMS. Media types are also associated w
specific drive or list of drives. ABS can use any of the media types defined in MDMS.

Requirement:

Table 3–2 Archive Type

Archive Type Type of volume Storage Policy Association

MDMS Removable. Examples are TA90, TK85,
TK70, and so forth.

Media type
Pool
Location
Volume Set Name

Files–11 Fixed. Example is an OpenVMS disk. Disk name and directory specificati
Customizing Your ABS Policy 3-4

Customizing Your ABS Policy
3.3 Deciding Where to Save Data

.

t to
do not

ctured
 using

chive

 by

licy
store

t

 resi-
If you select MDMS for the storage policy’s archive type, you must specify a previously
defined MDMS media type.

• Pool - A pool is a pool of volumes in a free state that are available for write operations
Pools are available to specific users (such as ABS) and must be previously created in
MDMS.

• Drives - A drive can be a single drive or list of drives. However, MDMS associates the
media type with a drive or list of drives. You would only use the Drive option if you wan
change the drive or drives associated with the media type. It is recommended that you
use the Drive option in ABS.

• Location - A location is a site specific location assigned to an MDMS volume.

3.3.2 Files–11 Archive Type

Files–11 is an archive type that allows you to store saved data to an OpenVMS File-11 stru
online disk. Because disk storage is very costly, you must consider the long-term effects of
this type of archive type. The recommended and default archive type is MDMS.

Figure 3–2 shows how a storage policy is associated with an archive type, and how the ar
type is associated with the type of volume that the storage policy uses.

Figure 3–2 Storage Policy/Archive Type Association

• SYSTEM_BACKUPS storage policy - This storage policy is provided by ABS and uses
MDMS for its archive type. You can store data saved using ABS on volumes managed
MDMS. Volume selection is determined by the assignments to the Media Type.

• ABS_SHORT_TERM storage policy - This is an example of a user-created storage po
that uses FILES-11 as its archive type. Although this could be costly, you may want to
data for short period of time before deleting it, or use it as a temporary storage area.

• UNIX_BACKUP storage policy - This storage policy is provided by ABS for UNIX clien
save requests. This storage class uses MDMS for its archive type.

Note

Creation of storage policies is not available with an ABS-OMT license. The default pol-
icy is OMT_BACKUPS.

3.3.3 Customizing the Storage Policies Provided by ABS

After the installation of ABS has successfully completed, the following storage policies are
dent on your system:

• ABS_ARCHIVE

Storage policy Archive
Type

CXO6012B

Storage policy Archive
Type

Disk device
Directory
specification

SYSTEM_BACKUPS

Media type
• Pool
• Location
• Drive

MDMS

ABS$ROOT:[000000]ABS_SHORT_TERM

Removable
volume

FILES-11
 Customizing Your ABS Policy 3–5

Customizing Your ABS Policy
3.4 Deciding How to Move Data

n
ble 3–3

 addi-
ment
l-

data
 Now
onment

• DISASTER_RECOVERY

• SYSTEM_BACKUPS

• USER_BACKUPS

• UNIX_BACKUPS

Note

The only storage policy available with the ABS-OMT license is OMT_BACKUPS.

With the exception of USER_BACKUPS, all the storage policies provide by ABS installatio
procedure have the same characteristics. To customize a storage policy, see Table 3–3. Ta
uses ABS_ARCHIVE storage policy as an example.

If you do not want to modify the storage policies provided by ABS, you may need to create
tional storage policies to implement your ABS policy so that is meets your storage manage
needs. See Chapter 7, Creating Storage Policies for instructions about creating new storage po
icies.

3.4 Deciding How to Move Data
Up to this point, you have considered what data to save (save request), when to save the
(save request start time and schedule), and where you will store the data (storage policy).
you must consider how you want to execute save and restore requests, known as the envir
policy

Table 3–3 Customizing ABS Provided Storage Policies

Step Action

1. Make sure you have the proper ABS access rights identifiers assigned to your process so that
you can modify the storage policy:

$ SET DEF SYS$SYSTEM
$ RUN AUTHORIZE

UAF>
UAF> GRANT/ID ABS_CREATE_STORAGE_CLASS SMITH
%UAF-I-GRANTMSG, identifier ABS_CREATE_STORAGE_CLASS granted to
SMITH

UAF> EXIT$

2. Make sure you have the proper access controls set on the storage policy object so that you can
modify it:

$ ABS SET STORAGE ABS_ARCHIVE -
_$/ACCESS=(USER_ID=NODE01::SMITH,ACCESS=”CONTROL+READ+WRITE+EXE -
_$ CUTE+DELETE+SHOW”)

3. After installation, the only user who can access any of the storage policies (except
USER_BACKUPS) is the user who installed ABS software. To allow other users access to
the storage policy, add users and modify the access controls:

$ ABS SET STORAGE -
_$ ABS_ARCHIVE/ACCESS=(USER_ID=*:*,”ACCESS=READ+WRITE+SHOW”)

4. If MDMS is the archive type, enter the media type to use for this storage policy.

5. Modify any of the storage policy’s other attributes (except its name) to reflect your storage
management needs. Storage policy attributes are described in Chapter 7, Creating Storage
Policies.
Customizing Your ABS Policy 3-6

Customizing Your ABS Policy
3.4 Deciding How to Move Data

e
needs,
An environment policy defines the characteristics of the environment in which save and restore
requests execute. Those characteristics include such things as who to notify, how many drives to
use, listing and logging options, and so forth.

3.4.1 Customizing the Environment Policies Provided By ABS

After the installation of ABS has successfully completed, ABS provides the following environ-
ment policies:

• ABS_ARCHIVE_ENV

• DISASTER_RECOVERY_ENV

• SYSTEM_BACKUPS_ENV

• USER_BACKUPS_ENV

• UNIX_BACKUPS_ENV

• DEFAULT_ENV

Note

The only environment policy available with theABS-OMT license is
OMT_BACKUPS_ENV.

With the exception of USER_BACKUPS_ENV, all of the environment policies have the sam
characteristics. To customize the environment policies to meet your storage management
see the instructions in Table 3–4.

Table 3–4 Customizing ABS Provided Environment Policies

Step Action

1. Make sure you have the proper ABS access rights identifiers assigned to your process so that
you can modify the environment policy:

$ SET DEF SYS$SYSTEM
$ RUN AUTHORIZE

UAF>
UAF> GRANT/ID ABS_CREATE_EXECUTION_ENV SMITH
%UAF-I-GRANTMSG, identifier ABS_CREATE_EXECUTION_ENV granted to
SMITH

UAF> EXIT$

2. Make sure you have the proper access controls set on the environment policy object so that
you can modify it:

$ ABS SET ENVIRONMENT ABS_ARCHIVE_ENV -
_$/ACCESS=(USER_ID=NODE01::SMITH,ACCESS=”CONTROL+READ+WRITE+EXE -
_$ CUTE+DELETE+SHOW”)

3. After installation, the only user who can access any of the environment policies (except
USER_BACKUPS_ENV) is the user who installed ABS software. To allow other users
access to the environment policy, add users and modify the access controls:

$ ABS SET ENVIRONMENT -
_$ ABS_ARCHIVE_ENV/ACCESS=(USER_ID=*:*,”ACCESS=READ+WRITE+SHOW”

4. Modify any of the environment policy’s attributes (except its name) to reflect your storage
management needs. Environment policy attributes are described in Chapter 8, Creating Envi-
ronment Policies.
 Customizing Your ABS Policy 3–7

Customizing Your ABS Policy
3.4 Deciding How to Move Data
If you do not want to modify the environment policies provided by ABS, you may need to create
additional ones to meet your storage management needs. See Chapter 8 , Creating Environment
Policies for instructions about creating new environment policies.

3.4.2 Changing the Policy Engine Location

When you install ABS, you are asked for a list of the nodes where the policy engine will run.
This list is put into the ABS$SYSTEM:ABS$POLICY_CONFIG.DAT file. There is a separate
line for each nodename.

Note

With the ABS-OMT license, the policy engine will only run on the node with the
ABS-OMT license. However, you must have the node in the
ABS$SYSTEM:ABS$POLICY_CONFIG.DAT so the policy engine will start.

If you later decide to remove one of the nodenames, you must edit this file and remove the line
for that node (i.e. node1::):

ABS$POLICY_ENGINE_LOCATION = node1::

Be sure that there is at least one line specifying the ABS$POLICY_ENGINE_LOCATION in
this file or ABS will not run.

If you wish to add another policy engine node, you may also add a line to this file. But, you must
be sure that the policy engine image (ABS$SYSTEM:ABS$POLICY_ENGINE.EXE) is avail-
able on that node.
Customizing Your ABS Policy 3-8

tem

ingle
ral

e
ent pur-

S
anage-
among

ware
pol-
ing,
s.

urity
4
Data Safety

The information in this chapter describes how to configure a secure operating environment for
ABS. It also provides example scenarios for setting up central security domains and backup
management domains, the related ABS policy objects, and the access controls to set to allow
access to ABS policy objects.

Note

OpenVMS client support is not available with the ABS-OMT license.

When considering data safety, you must make the following decisions:

• Which node or OpenVMS Cluster™ system will contain ABS server software - This sys
becomes the central security domain for ABS software.

• Will you install more than one ABS server - You can place ABS server software on a s
node or OpenVMS Cluster system, or you can place multiple ABS servers across seve
nodes or OpenVMS Cluster systems. These separate ABS servers are not cooperativ
among each other, but they can share the same MDMS database for media managem
poses.

• Where will you allow control of ABS data movement operations - Any node or OpenVM
Cluster system that is allowed to create ABS save requests is considered a backup m
ment domain. Backup management domains can be centralized, or can be distributed
several systems.

4.1 Central Security Domain
A central security domain is the node or OpenVMS Cluster system where ABS server soft
is installed, and where ABS policy database resides. After the installation of ABS, all ABS
icy objects are located in ABS policy database. The central security domain controls creat
modifying, and deleting all ABS policy objects, especially storage and environment policie

Depending upon your business needs, you can choose to have either a single central sec
domain or multiple central security domains.
 Data Safety 4–1

Data Safety
4.1 Central Security Domain

r

r:

ts.

ed to

, as a
l (such
d with

,

ti-

ection

d the

rform.

Figure 4–1 Central Security Domain on an OpenVMS Cluster

In this configuration:

• ABS server software is installed on a OpenVMS Cluster system, this OpenVMS Cluste
system becomes the central security domain and contains ABS policy database.

• This OpenVMS Cluster is managed by one storage administrator who is responsible fo

– Ensuring that only authorized users can create, modify, or delete ABS policy objec

– Preventing nonprivileged users from accessing data for which they are not authoriz
access.

Assumptions
In a distributed environment, ABS assumes that the systems on which it executes are
whole, reasonably secure. This means that only trusted backup management personne
as the storage administrator or an authorized operator) with a direct need are authorize
the following items:

– Physical access to OpenVMS systems and volumes

– Elevated privileges that enable granting themselves access rights required by ABS
such as ABS_BYPASS, ABS_CREATE_STORAGE_CLASS,
ABS_CREATE_EXECUTION_ENV, and ABS_LOOKUP_ALL. See Archive Backup
System for OpenVMS Installation Guide for descriptions about ABS access right iden
fiers.

– Elevated privileges that enable them to modify ABS server’s database access prot
sets (APS).

User Backup Restrictions
ABS imposes the following restrictions for user backup operations:

• A nonprivileged user cannot save or restore data other than his own.

• A nonprivileged user can save or restore his own data, given the user has been grante
appropriate access controls on ABS storage and environment policies.

• The storage administrator must authorize what operations a nonprivileged user can pe
The storage administrator is responsible for creating environment policies that specify
whether nonprivileged users can:

CXO-4462B-MC

Central
security
domain
Data Safety 4-2

Data Safety
4.2 Backup Management Domains

BS or

r as

 save

ester.

 All
 the

pe of
emen-

sk,

ld be

er of
ore

e or
age-
rol of
o sev-
led by
– Save data under their own user profile (uses an environment policy that specifies
<REQUESTER> or the user’s own name)

– Save data under another user profile (uses an environment policy that specifies A
some other user)

– Restore data under their own user profile, whether the data was saved by the user o
a result of a system backup operation (uses an environment policy that specifies
<REQUESTER> or the user’s own name)

– Restore data under another user profile (uses an environment policy that specifies
<REQUESTER> or the user’s own name)

– A user profile must not be propagated onto different nodes. That is, a user-created
request must be executed on the same node or OpenVMS Cluster where the save
request is submitted.

• The pre- and post- processing commands must be executed in the context of the requ

• The request’s log file must be accessible to the requester.

Note

This may not be possible, depending upon how scheduler in use opens the log file. If
the log file cannot be made accessible, copy the log file to the user’s SYS$LOGIN
directory if possible.

• User cannot own their own archive resources (volume sets, magazines, and so forth).
archive resources must be owned by ABS account and managed by ABS on behalf of
users.

• Executing a save or restore request in the requester’s context does not preclude the ty
save or restore operation. That is, a user save request may be a full, selective, or incr
tal, and user restore request of these types are allowed as well.

Note

The ability of a user to execute any ABS backup or restore operation depends upon the
user’s ability to access the online data. For example, unless a user has access to a di
the user would not be able to create a full save or restore request.

• The performance of a save or restore request executed in the context of the user shou
equivalent to the performance of the same operation executed in the context of ABS
account.

• The number of simultaneous user save requests is constrained by the maximum numb
simultaneous write operations on the storage policy. The number of simultaneous rest
requests is constrained by the number of compatible drives.

4.2 Backup Management Domains
A backup management domain is ABS’s concept of backup management control. Any nod
OpenVMS Cluster system that can create ABS save requests is considered a backup man
ment domain. These systems have ABS client software installed. You can restrict the cont
backup management to a single backup management domain, or you can enable control t
eral backup management domains. Typically, each backup management domain is control
one storage administrator.

ABS conceptually categorizes the following backup management domains:

• Centralized backup management domain
 Data Safety 4–3

Data Safety
4.2 Backup Management Domains

nage-
a sce-

ted
o the
our
t cre-
ackup

entral
rity
gement

stem

in,
R or
• Distributed backup management domain

• Combined backup management domain

The following sections describe how to configure central security domains and backup ma
ment domains to create a secure environment for ABS operations. Each section contains
nario that details a hardware configuration, the placement of the central security domain,
associated ABS policy objects, and the security controls that should be set on those policy
objects to minimize the potential for unauthorized access to data.

4.2.1 Centralized Backup Management Domain

A centralized backup management domain allows backup policy and schedules to be crea
only within a single backup management domain. This backup management domain is als
central security domain. A centralized backup management domain allows you to control y
ABS policy in one, centralized location. However, this backup management domain canno
ate save or restore requests for remote nodes or OpenVMS Cluster systems outside the b
management domain.

Scenario: Centralized Backup Management Domain on a Single Node or
OpenVMS Cluster System

In this scenario, storage and environment policies are created and maintained within the c
security domain. A single backup management domain that is confined to the central secu
domain, can create, modify, and delete save requests. This represents ABS backup mana
control in its simplest form.

Figure 4–2 Centralized Backup Management Domain On An OpenVMS Cluster

In this configuration:

• ABS server software resides on a OpenVMS Cluster system, this OpenVMS Cluster sy
is the central security domain.

• The backup management domain is confined to the central security domain, restricting
backup management control to one storage administrator.

• Save and restore request objects can be created only within the backup management
domain.

• The data movement path is contained within the backup management domain.

• Access to all storage and environment policies is confined to the central security doma
and READ/WRITE/SHOW access may be granted to users with OpenVMS OPERATO
SYSTEM privileges.

CXO-4409B-MC

Central security
domain /
Backup

management
domain

MDMS
Data Safety 4-4

Data Safety
4.2 Backup Management Domains

is

entral
reat-
 Clus-

e cen-
omain
e con-

estore

ent
Example:

Both storage and environment policies must have the following access controls set:

$ ABS SET POLICY_NAME -
_$ /ACCESS_CONTROL=(USER=NODE_NAME::USER_NAME,ACCESS=”READ+WRITE+SHOW”)

Where:

– POLICY_NAME is the name of the storage or environment policy

– NODENAME is the node name of the central security domain

– USERNAME is the name of the user who can access ABS policy. In most cases, it
ABS.

4.2.2 Distributed Backup Management Domain

The distributed backup management domain allows ABS policy objects to be stored in a c
location (the central security domain), but responsibility for backup management control (c
ing and modifying save requests) is distributed among remote nodes or remote OpenVMS
ter systems.

This type of backup management control distributes backup management responsibility to
backup management domains outside the central security domain.

Scenario: Distributed Backup Management Domain

In this scenario, storage and environment policies are defined and maintained only from th
tral security domain. Save and restore requests can be created from the central security d
or from the backup management domain. These remote backup management domains ar
nected to the central security domain through the DECnet software. The save and restore
requests reside on the central security domain (in ABS policy database), but the save or r
operation is executed on the remote system.

Restriction:
A backup management domain cannot create a save request for another backup managem
domain. A backup management domain can only create a save request for itself.

Figure 4–3 Distributed Backup Management Domain on an OpenVMS Cluster

Backup
management

domain

Backup
management

domain

Backup
management

domain

CXO-4411B-MC

Central security
domain /
Backup

management
domain

MDMS
 Data Safety 4–5

Data Safety
4.2 Backup Management Domains

r sys-

uting
and
 man-

ain.
evice

ed to

man-
 shown

 con-

ackup

t is

control
tems,
In this configuration:

• ABS server software is located on a OpenVMS Cluster system, this OpenVMS Cluste
tem contains ABS policy database and is the central security domain.

• Backup management domains are distributed among the three remote systems, distrib
backup management among more than one storage administrator if so desired. Save
restore requests can be created on either the central security domain or on the backup
agement domains.

• The data movement path can be local to or remote from the backup management dom
For example, the remote backup management domain can use either a local backup d
or a remote backup device.

• Some or all storage and environment policies have READ/WRITE/SHOW access grant
users with OpenVMS OPERATOR or SYSTEM privileges from the remote systems.

Examples:

– Storage and environment policies that can be accessed by all the remote backup
agement domains but only by a specific user must have the access controls set as
in the following example:

$ ABS SET POLICY_NAME -
_$ /ACCESS_CONTROL=(USER=*::USER_NAME,ACCESS=”READ+WRITE+SHOW”)

– Storage and environment policies intended for use by a specific remote system (in this
example, backup management domain NODE_A) must have the following access
trols set:

$ ABS SET POLICY_NAME -
_$ /ACCESS_CONTROL=(USER=CLSTRA:USER_NAME,ACCESS=”READ+WRITE+SHOW”)
$ ABS SET POLICY_NAME -
_$ /ACCESS_CONTROL=(USER=NODEA::USER_NAME,ACCESS=”READ+WRITE+SHOW”)

• Storage and environment policies intended for use by more than one remote system (b
management domain NODEB and NODEC, but not NODEA) must have the following
access controls set:

$ ABS SET POLICY_NAME -
_$ /ACCESS_CONTROL=(USER=NODEB:USER_NAME,ACCESS=”READ+WRITE+SHOW”)
$ ABS SET POLICY_NAME -
_$ /ACCESS_CONTROL=(USER=NODEAC:USER_NAME,ACCESS=”READ+WRITE+SHOW”)

Where:

– POLICY_NAME is the name of the storage or environment policy

– NODENAME is the node name of the central security domain

– USER_NAME is the name of the user who can access ABS policy. In most cases, i
ABS.

4.2.3 Combined Backup Management Domain

Depending upon your business needs, you may choose to combine backup management
strategies. You can install ABS server software on multiple nodes or OpenVMS Cluster sys
creating multiple central security domains.
Data Safety 4-6

Data Safety
4.2 Backup Management Domains

rk.

age-
ators.
or all

p man-
Scenario: Combined Backup Management Domain

In this scenario, a network has two OpenVMS Cluster systems that have ABS server software
installed. Because of the two ABS servers, there are two different central security domains on
the network.

The OpenVMS Cluster system (CLSTRA) has several backup management domains while the
other OpenVMS Cluster system (CLSTRB) has only one backup management domain, the cen-
tral security domain.

Figure 4–4 Combined Backup Management Domains on an OpenVMS Cluster

In this configuration:

• ABS server software resides on two separate OpenVMS Cluster systems in the netwo
Both of these systems become central security domains.

• Both central security domains share one common MDMS volume database.

• Each of the central security domains has the MDMS client software installed.

• CLSTRA - The first central security domain (CLSTRA) has several remote backup man
ment domains that distribute backup management control to multiple storage administr
Storage and environment policies may enable READ/WRITE/SHOW access to some
of the remote systems.

Examples:

1. On CLSTRA, storage and environment policies that can be accessed by all the backu
agement domains but a specific user must have the following access controls set:

$ ABS SET POLICY_NAME -
_$ /ACCESS_CONTROL=(USER=*::USER_NAME,ACCESS=”READ+WRITE+SHOW”)

2. Storage and environment policies intended for use by only one remote system (NODEA)
must have the following access controls set:

$ ABS SET POLICY_NAME -
_$ /ACCESS_CONTROL=(USER=NODEA::USER_NAME,ACCESS=”READ+WRITE+SHOW”)

3. Storage and environment policies intended for use by more than one remote system
(NODEB and NODEC, but not NODEA) must have the following access controls set:

$ ABS SET POLICY_NAME -
_$ /ACCESS_CONTROL=(USER=NODEB: USER_NAME,ACCESS=”READ+WRITE+SHOW”)

$ ABS SET POLICY_NAME -
_$ /ACCESS_CONTROL=(USER=NODEAC:USER_NAME,ACCESS=”READ+WRITE+SHOW”)

Backup
management

domain

Backup
management

domain

Backup
management

domain

Central security
domain /
Backup

management
domain

MDMS

CLSTRA CLSTRB

Central security
domain /
Backup

management
domain

CXO4463C
 Data Safety 4–7

Data Safety
4.2 Backup Management Domains
4. CLSTRB - This OpenVMS Cluster system is a central security domain that has only one,
single backup management domain. This backup management domain gives backup man-
agement control to only one storage administrator. All storage and environment policies
within the central security domain must enable READ/WRITE/SHOW access from the cen-
tral security domain node.

Example:

Storage and environment policies on the central security domain (CLSTRB) must have the
following access controls set:

$ ABS SET POLICY_NAME -
_$ /ACCESS_CONTROL=(USER=CLSTRB::USER_NAME,ACCESS=”READ+WRITE+SHOW”)
Data Safety 4-8

s that

ment
e data

ck up

ate-
5
Backup Strategies

ABS’s strategy for protecting data is to provide the most common type of backup strategie
customers require, system backups and user backups.

• System backups are typically the most common type of backups that customers imple
to protect their data. These backups are typically done on a daily basis to ensure that th
is recoverable when necessary.

• User backups are provided for the customer who wants to enable individual users to ba
their own data as needed. ABS provides the ability to meet both backup strategies.

The information in this chapter describes how ABS defines its system and user backup str
gies.

Note

The following features are not available with the ABS-OMT license:

• Creation of storage and environment policies
• Support for OpenVMS clients

OMT_BACKUPS storage policy and OMT_BACKUPS_ENV environment policy are
the only policies available with the ABS-OMT license.

5.1 How ABS Implements Its System Backup Strategy
To implement a system backup strategy, ABS provides policy objects that define the characteris-
tics required for system backup operations. These ABS policy objects are the
SYSTEM_BACKUPS storage policy and the SYSTEM_BACKUPS_ENV environment policy.

When a save request is created that uses the SYSTEM_BACKUPS storage policy, ABS creates
volume sets (according to the consolidation criteria) that are owned by ABS and places the data
specified by the save request on those volumes.

5.1.1 System Backup Process

Table 5–1 describes how system backup operations are implemented using ABS

Table 5–1 System Backup Process

Stage Action

1. ABS provides the default storage policy named SYSTEM_BACKUPS. To this storage pol-
icy, you must assign the media type that you want to use for system backup operations. In
relation, the type of volume is associated with a drive or list of drives compatible with the
volume. This association is done by defining read-write and read-only media types supported
for each drive object.
 Backup Strategies 5–1

Backup Strategies
5.2 How ABS Implements Its User Backup Strategy

vi-

trols
ed to

t of

 cre-

5.2 How ABS Implements Its User Backup Strategy
To implement a user backup strategy, ABS provides storage and environment policies that
define the characteristics that enable users to create their own save and restore requests. These
default policy objects are the USER_BACKUPS storage policy and the
USER_BACKUPS_ENV environment policy.

5.2.1 User Process Context

ABS enables a storage administrator to create a save request in the context of a specific user, but
without granting that user the privileges necessary to execute the save request (such as BYPASS
or CMKRNL).

Create an environment that specifies a user profile, and add an additional privilege mask that
grants the necessary privileges required to execute the save request. This restricts the user to exe-
cuting save requests using only that environment policy.

5.2.2 User Profile Process

When a save or restore request executes in an environment policy that has a user profile assigned
to it, ABS creates the subprocess where the request executes. This subprocess contains the user
name, UIC, privileges, and access right identifiers of the user who is specified in the user profile.

The privileges associated with the subprocess defaults to those identified in the UAF record for
the user. However, ABS also allows an additional privilege mask to be specified in the user pro-
file, and places these additional privileges in the authorized privilege mask of the subprocess.

Therefore, if the subprocess executes a SET PROC/PRIV command (in one of the PROLOGUE
commands) specifying any additional privileges, it will be granted.

2. ABS provides the default environment policy named SYSTEM_BACKUP_ENV. This envi-
ronment policy’s user profile specifies ABS as the user. All save requests that use this en
ronment run only in the context of ABS.

3. ABS writes the data to an ABS save set on a volume set owned by ABS. Only users with
privileged accounts can access the data on those volumes.

4. A privileged user creates a save request using SYSTEM_BACKUPS storage policy and
SYSTEM_BACKUPS_ENV environment policy (or equivalent user-created storage and
environment policies).

5. ABS determines whether to allow the save request to execute by checking the access con
enabled on the storage and environment policies, as well as by checking the user assign
the user profile on the environment policy.

6. When a privileged user creates a save request, ABS creates subprocesses in the contex
ABS.

7. The save request is executed in a job under the ABS account, regardless of the user who
ated the request.

8. ABS creates catalog entries for the saved data. The owner information is parsed from the
backup agent’s output listing, so the current process context does not matter.

9. Process context is set back to ABS when media management services are needed. This
ensures appropriate access checks in the media manager (MDMS) are passed.

10. Process context is set back to ABS when all save and restore requests have completed.

Table 5–1 System Backup Process
Backup Strategies 5-2

Backup Strategies
5.2 How ABS Implements Its User Backup

ol-
g

 pol-

 cre-
store

cy.
 the
Note

When you create a user profile for an environment policy, users with READ or
WRITE access to the environment policy can submit save requests that execute in the
context of the user specified in the user profile. Therefore, access control to an envi-
ronment policy that has a user profile assigned to it must be carefully configured and
controlled.

5.2.3 User Backup Process

Table 5–2 describes the process used by ABS for user backup operations.

Table 5–2 User Backup Process

Stage Action

1. ABS provides the default storage policy named USER_BACKUPS. To this storage policy
you must assign the media type that you want to use for user-created save and restore
requests. In relation, the media type is associated with a drive or list of drives compatible
with the media type. This association is done by defining read-write and read-only media
types supported for each drive object.

2. ABS provides an environment policy named USER_BACKUP_ENV. This environment
policy’s user profile specifies <REQUESTER> as the user. Access control is set to *::*,
meaning all nodes and all users can access the USER_BACKUPS_ENV environment p
icy. All save requests that use this environment policy run in the context of the requestin
process.

3. A nonprivileged user creates a save or restore request using USER_BACKUPS storage
icy and USER_BACKUPS_ENV environment policy (or equivalent user-created storage
and environment policies).

4. A nonprivileged user must have WRITE access control enabled on the storage policy to
ate a save request and READ access control enabled to the storage policy to create a re
request.

5. A nonprivileged user must have SHOW access control enabled on the environment poli
This allows the requester to the environment policy, but the access controls enabled on
storage policy determines what type of operations can be performed (save or restore
request).
 Backup Strategies 5–3

Backup Strategies
5.3 Differences Between System and User Backup Operations

cess

t

e

vi-

eated

e

s

h
5.3 Differences Between System and User Backup Operations
Table 5–3 shows the major differences between a system and user backup operation.

6. ABS determines whether to perform a user backup operation by checking the access con-
trols enabled on the environment policy as well as by checking the user assigned to the user
profile:

• If the user profile for the environment policy specifies a user name of
<REQUESTER>, ABS uses the requester’s account information.

• If the user profile for the environment policy specifies a user name (such as
ABS), the user creating the save or restore request must have additional ac
controls enabled on the environment policy that allows him to emulate the
user when submitting save or restore request:

– To emulate another user during a backup operation, the requester mus
have WRITE access to the environment.

– To emulate the user during a restore operation, the requester must hav
READ access to the environment.

– If the requester does not have either READ or WRITE access to the en
ronment, ABS uses the requester’s default profile.

Note:
This implementation provides the ability to set up a default profile for a storage policy with
a privileged user specified. If end-users are not granted WRITE or READ access to the
environment policy, they can save or restore data to or from the storage policy using their
own profile. The user’s profile is obtained when SHOW access control is enabled on the
environment policy.

7. When a user creates a save request, ABS creates subprocesses in the context of the
requester.

8. The save request is executed as a job under ABS account, regardless of the user who cr
the request.

9. ABS creates catalog entries for the saved data. The owner information is parsed from th
backup agent’s output listing, so the current process context does not matter.

10. Process context is set back to ABS when media management services are needed. Thi
ensures appropriate access checks in the media manager (MDMS) are passed.

11. ABS writes the data to an ABS save set on a volume set owned by ABS. Only users wit
privileged accounts or the original requester can access the data on those volumes.

12. Process context is set back to ABS when all save or restore requests have completed.

Table 5–2 User Backup Process

Table 5–3 Major Differences Between System and User Backup Operations

System Backup Operation User Backup Operation

The context of the user process submitting the
save request is set to ABS.

The context of the user process submitting the save
request is set to the original requester (the user creat-
ing the save request).

Storage Policy = SYSTEM_BACKUPS Storage Policy = USER_BACKUPSa
Backup Strategies 5-4

Backup Strategies
5.4 Configuring ABS for OpenVMS Client

VMS
 sys-
eeds.
Note

If an environment policy specifies an explicit user, the save or restore request is exe-
cuted in the context of the user assigned in the user profile. Therefore, access control to
any environment policy that specifies a user profile needs to be carefully configured
and controlled. Section explains the details of submitting save requests in the context
of another user’s process.

5.4 Configuring ABS for OpenVMS Client Backup Operations
To configure ABS policy objects to be able to perform OpenVMS client system and user back-
ups, review the following sections.

5.4.1 Creating ABS Policy Objects For OpenVMS Client System Backup
Operations

You can modify storage and environment policies provided by ABS as described in the other
chapters or you can create additional storage and environment polices for OpenVMS client sys-
tem backup operations.

The following list describes how the access controls must be set on the storage and environment
policies intended for OpenVMS client system backup operations:

• On the storage policy, enable all access controls to ABS

• On the environment policy:

– Specify a user profile with the username of ABS

– Enable all access controls to ABS

$ ABS SET ENVIRONMENT_POLICY/ACCESS_CONTROL= -
_$ (*::ABS/ACCESS=”READ+WRITE+SHOW+SET+DELETE+CONTROL”)

• To create system save and restore requests from ABS OpenVMS server for ABS Open
client system, or to create system save and restore requests on ABS OpenVMS client
tem, you must first create (or modify) storage and environment policies to meet those n

Environment Policy =
SYSTEM_BACKUPS_ENV

Environment Policy = USER_BACKUPS_ENVb

SYSTEM_BACKUPS_ENV
/ PROFILE=(CLUSTER=*,NODE=*,USER-
NAME=ABS)

USER_BACKUPS_ENV
/PROFILE=(CLUSTER=*,NODE=*,USER-
NAME=<REQUESTER>)

User must be a privileged user Can be a nonprivileged user

a. The storage policy named USER_BACKUPS uses the environment policy named
USER_BACKUPS_ENV.

b. The environment policy named USER_BACKUPS_ENV specifies a user profile, and
the user profile specifies the user as <REQUESTER>. This causes the save or
restore request to execute in the context of the user who creates the request.

Table 5–3 Major Differences Between System and User Backup Operations
 Backup Strategies 5–5

Backup Strategies
5.4 Configuring ABS for OpenVMS Client Backup Operations

l

ge
e

)
de
pter

S
The examples in show you how to create ABS storage and environment policies that enable sys-
tem backup operations for an ABS client node.

5.4.2 Creating Save Requests for OpenVMS Client System Backup Operations

You can create system save requests for an OpenVMS client node from either ABS OpenVMS
server node or from ABS OpenVMS client node. Table 5–5 describes how to do both.

Table 5–4 Creating Storage and Environment Policies for OpenVMS Client
System Backup Operations

Step Action

1. Create (or modify) a storage policy that allows access to ABS OpenVMS client node. For
example, create a storage policy named CLIENTNODE_SYSTEM_BACKUPS:

ABS> CREATE STORAGE_CLASS CLIENTNODE_SYSTEM_BACKUPS -
_ABS>/ACCESS=(USER_ID=*::ABS,ACCESS=”READ+WRITE+SET+SHOW+CON-
TROL+DELETE”)

Restrictions:
• You can only create (or modify) a storage policy on ABS server node (centra

security domain).

• The storage policy node of execution must be ABS OpenVMS server node
(SVNODE::). By default, ABS obtains the node on which you create the stora
policy. Because you can only create a storage policy on ABS server node, th
current node (server node) becomes the node of execution.

• The creating account must have ABS_CREATE_STORAGE policy access
rights identifier granted. See Chapter 3 in Archive Backup System for OpenVMS
Installation Guide for instructions about granting access rights identifiers.

The storage policy must reference the archive file system resources (MDMS or FILES–11
that are available to ABS OpenVMS client node. It is possible for ABS OpenVMS client no
to utilize MDMS to store data on a remote device (such as on ABS server node). See Cha
19, Connecting and Managing Remote Devices for information about configuring remote tape
drives.

2. Create (or modify) a corresponding environment that also allows access to ABS OpenVM
client node:

ABS> CREATE ENVIRONMENT CL_SYSTEM_BACKUPS_ENV/ -
_ABS> ACCESS=COTROL=(USER_ID=*::ABS,ACCESS=”READ+WRITE+SET+
_ABS> SHOW+CONTROL+DELETE”)/PROFILE=CLUSTER=*,NODE=*,USERNAME=ABS

Restrictions:

• You can only create (or modify) an environment policy on ABS server node.

• The account that is creating or modifying the environment policy must have
ABS_CREATE_ENV access rights identifier granted. See Archive Backup Sys-
tem for OpenVMS Installation Guide for instructions about granting access
rights identifiers.

Because the environment policy CLIENTNODE_SYSTEM_BACKUPS_ENV specifies a
user profile with the user name ABS, only system backup operations in the context of ABS are
allowed.
Backup Strategies 5-6

Backup Strategies
5.4 Configuring ABS for OpenVMS Client

ser-
Note

Do not combine a full disk save with an incremental disk save to create a single save set
on OpenVMS systems.

5.4.3 Creating ABS Policy Objects for OpenVMS Client User Backup Operations

You can modify existing storage and environment policies, or you can create other storage and
environment policies for OpenVMS client user backup operations.

The following list describes how the access controls must be set on the storage and environment
policies intended for user backup operations:

• On the storage policy:

– Enable SHOW access to users who are allowed to access the storage policy

– Enable WRITE access to users who are allowed to create save requests

– Enable READ access to users who are allowed to create restore requests

• On the environment policy:

– Specify a user profile with the username of <REQUESTER> (for all users) or the u
name of an individual user

Table 5–5 Creating System Backup Save or Restore Requests For OpenVMS
Client

Step Action

1. From ABS Server Node:

To create a system save or restore request for an OpenVMS client node (CLNODE) from
ABS server node, on ABS server node (SVNODE) create a request that uses the storage pol-
icy named CLIENTNODE_SYSTEM_BACKUPS and the environment policy named
CLIENTNODE_SYSTEM_BACKUPS_ENV. Specify ABS OpenVMS client node as the
source node (where the data to save resides):

$ ABS SAVE/STORAGE_CLASS=CLIENTNODE_SYSTEM_BACKUPS/FULL
_$ DISK$USER1:/SOURCE_NODE=CLNODE::

Result:
The save or restore operation is executed on the remote client node CLNODE.

Requirement:
To create a save or restore request that executes on the OpenVMS client node, the creating
account on ABS server node must have ABS_CREATE_REMOTE_JOBS access rights
granted.

2. From the OpenVMS Client Node:

To create or submit a system save or restore request for an OpenVMS ABS client from ABS
OpenVMS client node, on the client node create a request that uses the storage policy named
CLIENTNODE_SYSTEM_BACKUPS and the environment policy named
CLIENTNODE_SYSTEM_BACKUPS_ENV. Specify OpenVMS client node as the source
node for (where the data resides):

$ ABS SAVE/STORAGE=CLIENTNODE_SYSTEM_BACKUPS/FULL -
_$ DISK$USER1:/SOURCE_NODE=CLNODE::

Result:
The save or restore request is executed on the remote client node CLNODE.
 Backup Strategies 5–7

Backup Strategies
5.4 Configuring ABS for OpenVMS Client Backup Operations

cific

AD
e envi-
e pol-

create
s.

s so

e
de,
– Enable SHOW access to all users for the <REQUESTER> user profile, or to a spe
user for an individual user profile

The user must have WRITE access to the storage policy to create a save request, and RE
access to the storage policy to create a restore request. Thus, setting SHOW access on th
ronment policy allows the requester to use this default profile, but the access on the storag
icy determines what type of operations the user can perform.

To create user save and restore requests for ABS OpenVMS client system, you must first
(or modify) storage and environment policies on ABS server system that meet those need

In Table 5–6, the examples shows you how to create ABS storage and environment policie
that a nonprivileged user can create a save or restore request for an OpenVMS client.

Table 5–6 Creating Storage and Environment Policies for OpenVMS Client
User Backup Operations

Step Action

1. Create (or modify) a storage policy for user backup operations. For example, you could name
the storage policy CLIENTNODE_USER_BACKUPS. This storage policy allows access to
user SMITH from the node named CLNODE. In this example, user SMITH would be allowed
to create save and restore requests using the following storage policy:

ABS> CREATE STORAGE_CLASS CLIENTNODE_USER_BACKUPS -
_ABS> /ACCESS=(USER_ID=CLNODE::SMITH,ACCESS=”READ+WRITE+SET+SHOW+ -
_ABS> DELETE+CONTROL”)

Restrictions:
• You can only create (or modify) a storage policy on ABS server node (central

security domain).

• The node of execution for the storage policy must be ABS OpenVMS server
node (SVNODE::). By default, ABS obtains the node from which you create th
storage policy. Because you can only create a storage policy on ABS server no
the current node (server node) becomes the node of execution.

• The creating account must have ABS_CREATE_STORAGE_CLASS access
rights identifier granted. See Archive Backup System for OpenVMS Installation
Guide for instructions about granting access rights identifiers.

2. Enter ABS SHOW STORAGE_ClASS command of CLIENTNODE_USER_BACKUPS to
see the access controls:

ABS SHOW STORAGE_CLASS CLIENTNODE_USER_BACKUPS/BRIEF

Access Right -- CLNODE::SMITH Access Granted -- READ, WRITE, SET, SHOW,
DELETE, CONTROL

3. Make sure the storage policy uses the media type that is available to ABS OpenVMS client
node. It is possible for ABS OpenVMS client node to utilize MDMS to store data on a remote
device (such as on ABS server node):

$ ABS CREATE STORAGE_CLASS
CLIENTNODE_USER_BACKUPS/TYPE_OF_MEDIA=TK85

See Chapter 19, Connecting and Managing Remote Devices for information about configuring
remote tape drives.
Backup Strategies 5-8

Backup Strategies
5.5 Configuring ABS for NT and UNIX Client

era-

hap-
stem
5.4.4 Creating Save Requests for OpenVMS Client User Backup Operations

You can create save requests for the OpenVMS ABS client node only from the client node itself.
Table 5–7, describes how to do this:

5.5 Configuring ABS for NT and UNIX Client Backup Operations
To configure ABS policy objects to be able to perform NT or UNIX client system backup op
tions, review the following sections.

5.5.1 Creating ABS Policy Objects For NT and UNIX Client System Backup
Operations

You can modify storage and environment policies provided by ABS as described in other c
ters or you can create additional storage and environment polices for NT or UNIX client sy
backup operations.

4. Create a corresponding environment policy that allows access to the user SMITH:

ABS> CREATE ENVIRONMENT CLIENTNODE_USER_BACKUPS_ENV -
_ABS> /ACCESS=(USER_ID=CLNODE::SMITH,ACCESS=”READ+WRITE+SET+SHOW+ -
_ABS> CONTROL+DELETE”)/PROFILE=(CLUSTER=*,NODE=CLNODE,USER-
NAME=SMITH)

Because the environment CLIENTNODE_USER_BACKUPS_ENV specifies a user profile
with the user name SMITH and the node name CLNODE::, ABS performs user backup opera-
tions in the context of the user SMITH on node CLNODE::.

Note:
If the node CLNODE:: is a part of an OpenVMS Cluster, you can specify the OpenVMS Clus-
ter alias name instead of an asterisk (*).

Restrictions:

• You can only create (or modify) an environment on ABS server node (central
security domain).

• The creating account must have ABS_CREATE_ENV access rights identifier
granted. See Archive Backup System for OpenVMS Installation Guide for
instructions about granting access rights identifiers.

Table 5–6 Creating Storage and Environment Policies for OpenVMS Client
User Backup Operations

Table 5–7 Creating Save Requests for OpenVMS Client User Backup
Operations

Step Action

1. From ABS Client Node:
Create a save request on OpenVMS client node (CLNODE::) that uses the storage policy
named CLIENTNODE_USER_BACKUPS and the environment policy named
CLIENTNODE_USER_BACKUPS_ENV. Specify the source node for the save or restore
request as OpenVMS client node (node where the data resides).

ABS> SAVE/STORAGE_CLASS=CLIENTNODE_USER_BACKUPS -
_ABS> DISK$USER1:[SMITH]*.*/SOURCE_NODE=CLNODE::

Result:
The save request is executed on the remote client node CLNODE.
 Backup Strategies 5–9

Backup Strategies
5.5 Configuring ABS for NT and UNIX Client Backup Operations

VMS
t sys-

ose

s that

lt,
an
de)

)

e
The following list describes how the access controls must be set on the storage and environment
policies intended for OpenVMS client system backup operations:

• On the storage policy, enable all access controls to ABS

• On the environment policy:

– Specify a user profile with the username of ABS

– Enable all access controls to ABS

$ ABS SET ENVIRONMENT_POLICY/ACCESS_CONTROL= -
_$ (*::ABS/ACCESS=”READ+WRITE+SHOW+SET+DELETE+CONTROL”)

• To create system save and restore requests from ABS OpenVMS server for ABS Open
client system, or to create system save and restore requests on ABS NT or UNIX clien
tem, you must first create (or modify) storage and environment policies to that meet th
needs.

The examples in Table 5–8 show you how to create ABS storage and environment policie
enable system backup operations for an ABS NT or UNIX client node.

Table 5–8 Creating Storage and Environment Policies for NT/UNIX Client
System Backup Operations

Step Action

1. Create (or modify) a storage policy that allows access to ABS NT or UNIX client node. For
example, create a storage policy named NTNODE_SYSTEM_BACKUPS:

ABS> CREATE STORAGE_CLASS NTNODE_SYSTEM_BACKUPS -
_ABS> /ACCESS=(USER_ID=*::ABS,ACCESS=”READ+WRITE+SET+SHOW+ -
_ABS> CONTROL+DELETE”)

Restrictions:
• You can only create (or modify) a storage policy on ABS OpenVMS server

node (central security domain).

• The storage policy node of execution must be an ABS server node. By defau
ABS obtains the node on which you create the storage policy. Because you c
only create a storage policy on ABS server node, the current node (server no
is the default. Supply the correct NT or UNIX node name.

• The creating account must have ABS_CREATE_STORAGE_policy access
rights identifier granted. See Archive Backup System for OpenVMS Installation
Guide for instructions about granting access rights identifiers.

The storage policy must reference the archive file system resources (MDMS or FILES–11
that are available to ABS NT or UNIX client node. It is possible for ABS NT or UNIX client
node to utilize MDMS to store data on a remote device (such as on ABS server node). Se
Chapter 19, Connecting and Managing Remote Devices for information about configuring
remote tape drives.
Backup Strategies 5-10

Backup Strategies
5.5 Configuring ABS for NT and UNIX Client
5.5.2 Creating Save Requests for NT and UNIX Client System Backup Operations

You can create system save requests for an NT or UNIX client node from ABS OpenVMS server
node. Table 5–9 describes how to do this:

2. Create (or modify) a corresponding environment policy that also allows access to ABS NT or
UNIX client node:

ABS> CREATE ENVIRONMENT NTNODE_SYSTEM_BACKUPS_ENV/ -
_ABS> ACCESS=_CONTROL=(USER_ID=*::ABS,ACCESS=”READ+WRITE+SET+SHOW+
_ABS> CONTROL+DELETE”)/PROFILE=CLUSTER=*,NODE=*,USERNAME=ABS

Restrictions:

• You can only create (or modify) an environment policy on ABS server node.

• The account that is creating or modifying the environment policy must have
ABS_CREATE_ENV access rights identifier granted. See Archive Backup Sys-
tem for OpenVMS Installation Guide for instructions about granting access
rights identifiers.

Because the environment policy NTNODE_SYSTEM_BACKUPS_ENV specifies a user pro-
file with the user name ABS, only system backup operations in the context of ABS are
allowed. This is a restriction of NT and UNIX backup operations.

Table 5–8 Creating Storage and Environment Policies for NT/UNIX Client
System Backup Operations

Table 5–9 Creating Storage and Environment Policies for NT/UNIX Client
System Backup Operations

Step Action

1. From ABS server node:

To create an NT or UNIX system save or restore request for an NT or UNIX client node
(NTNODE) from ABS server node, on the server node (SVNODE) create a save request that
uses the storage policy named NTNODE_SYSTEM_BACKUPS and the environment policy
named NTNODE_SYSTEM_BACKUPS_ENV. Specify ABS NT or UNIX client node as the
source node (where the data to save resides):

$ ABS SAVE/STORAGE_CLASS=NTNODE_SYSTEM_BACKUPS/FULL c:\ -
_$ /SOURCE_NODE=NTNODE::

Result:
The save or restore operation is executed on the server node SVNODE.

2. From the NT or UNIX Client Node:

To create or submit a system save or restore request for an ABS NT or UNIX client from ABS
NT or UNIX client node, on the client node create a save request that uses the storage policy
named NTNODE_SYSTEM_BACKUPS and the environment policy named
NTNODE_SYSTEM_BACKUPS_ENV. Specify the NT or UNIX client node as the source
node for (where the data resides):

$ ABS SAVE/STORAGE=NTNODE_SYSTEM_BACKUPS/FULL -
_$ C:\ /SOURCE_NODE=NTNODE::

Result:
The save or restore request is executed on the server node.
 Backup Strategies 5–11

Backup Strategies
5.6 Oracle Rdb Databases and Storage Areas Backup Operations

ABS
on the

quent
5.6 Oracle Rdb Databases and Storage Areas Backup Operations
ABS supports backup and restore operations of Oracle Rdb databases and storage areas. ABS
uses “file types” to distinguish the type of data being saved or restored. This ensures that
invokes the correct backup agent for the save or restore request. File types are an option
GUI, or if you are using DCL, specified by using the /OBJECT_TYPE qualifier.

ABS provides the following file types for Oracle Rdb databases and storage areas:

• RDB_V4.2_Database

• RDB_V4.2_Storage_Area

• RDB_V5.1_Database

• RDB_V5.1_Storage_Area

• RDB_V6.0_Database

• RDB_V6.0_Storage_Area

• RDB_V6.1_Database

• RDB_V6.1_Storage_Area

• RDB_V7.0_Database

• RDB_V7.0_Storage_Area

The following example shows how you might create a full save request that performs subse
nightly incremental saves of an Oracle Rdb database:

$ ABS SAVE ”DISK$RDB_DISK:[RDB_60_DATABASE]RDB_60_DATABASE.RDB” -
_$ /OBJECT_TYPE=”RDB_V6.0_DATABASE”/INTERVAL=DAILY_FULL_WEEKLY/START=22:00 -
_$ /STORAGE=SYSTEM_BACKUPS/NAME=RDB_60_DATABASE_BACKUP

Result:
This command causes ABS to create a job for the request named
RDB_60_DATABASE_BACKUP that runs every night at 22:00 (10:00 p.m.). The first time the
job runs, ABS does a full backup operation of the Oracle Rdb database. Each subsequent night
for the next six nights, ABS performs an incremental backup operation of the Oracle Rdb data-
base. On the seventh night, the cycle is repeated. All save sets are written to the storage policy
named SYSTEM_BACKUPS.

5.6.1 Saving Individual Storage Areas

To save individual storage areas in an Oracle Rdb database, you must add the /INCLUDE quali-
fier to the Oracle Rdb database name specified in the save request. You must include this quali-
fier whether you are using the GUI or the DCL interface.

The following example shows how to back up only AREA3 of an Oracle Rdb database using
DCL:

$ ABS SAVE -
_$ ”DISK$RDB_DISK:[RDB_60_DATABASE]RDB_60_DATABASE.RDB/INCLUDE=AREA3”-
_$ /OBJECT_TYPE=”RDB_V6.0_STORAGE AREA”/INTERVAL=DAILY_FULL_WEEKLY -
_$ /START=21:00/STORAGE=SYSTEM_BACKUPS/NAME=”RDB_60_DB_AREA3_BACKUP”

Result:
This command causes ABS to create a job for the request named

Night 1 at 22:00 Night 2-6 at 22:00 Night 7 at 22:00

Full Save Request Incremental Save Request Full Save request Cycle repeats
Backup Strategies 5-12

Backup Strategies
5.6 Oracle Rdb Databases and Storage Areas

 you can
se data.

e to
 area:

 in
reas
 Rdb
RDB_60_DB_AREA3_BACKUP that runs nightly at 21:00 (9:00 p.m.). The first time the job
runs, ABS performs a full backup operation of the storage area. Each subsequent night for the
next six nights, ABS performs an incremental backup operation of the storage area. On the sev-
enth night, the cycle is repeated. All save sets are written into the storage policy named
SYSTEM_BACKUPS.

If you want to specify more than one storage area, you can include a comma-separated list of
storage area names:

Example:
$ ABS SAVE-
_$”DISK$RDB_DISK:[RDB_60_DATABASE]RDB_60_DATABASE.RDB/INCLUDE=(AREA1,AREA3)”
_$/OBJECT_TYPE=”RDB_V6.0_STORAGE_AREA”/INTERVAL=DAILY_FULL_WEEKLY-
$/START=21:00$/STORAGE=SYSTEM_BACKUPS$_/NAME=”RDB_60_DB_AREA3_BACKUP”

5.6.2 Catalog Entries

For a save request that specifies an Oracle Rdb database, ABS creates multiple entries in ABS
catalog:

• One for the Oracle Rdb database itself

• One for each storage area

Because ABS creates catalog entries for each storage area within a Oracle Rdb database,
restore any individual storage area from the save set that contains the Oracle Rdb databa

5.6.2.1 Oracle Rdb Database Catalog Entries:

Catalog entries for the Oracle Rdb database have the same format as a file specification:

DISK:[DIRECTORY]DATABASE_NAME.RDB

5.6.2.2 Oracle Rdb Storage Area Catalog Entries:

Catalog entries for the Oracle Rdb storage areas consist of the Oracle Rdb database nam
which the storage area belongs, plus an /AREA qualifier indicating the name of the storage

DISK:[DIRECTORY]DATABASE_NAME.RDB/AREA=STORAGE_AREA_NAME

For example, suppose an Oracle Rdb V6.0 database named RDB_60_DATABASE resides
DISK$RDB_DISK:[DATABASE]. Also suppose that this database contains three storage a
named AREA1, AREA2 and AREA3. If you create a save request that specifies this Oracle
database, the save request also saves the storage areas within the database.

In this situation, ABS creates the following catalog entries:

Object type: RDB_V6.0_DATABASE
Object name: DISK$RDB_DISK:[DATABASE]RDB_60_DATABASE.RDB

Object type: RDB_V6.0_STORAGE_AREA
Object name: DISK$RDB_DISK:[DATABASE]RDB_60_DATABASE.RDB/AREA=AREA1

Object type: RDB_V6.0_STORAGE_AREA
Object name: DISK$RDB_DISK:[DATABASE]RDB_60_DATABASE.RDB/AREA=AREA2

Object type: RDB_V6.0_STORAGE_AREA
Object name: DISK$RDB_DISK:[DATABASE]RDB_60_DATABASE.RDB/AREA=AREA3

Night 1 at 21:00 Night 2-6 at 21:00 Night 7 at 21:00

Full save request Incremental save request Full save request cycle repeats
 Backup Strategies 5–13

Backup Strategies
5.6 Oracle Rdb Databases and Storage Areas Backup Operations
If you create a save request that specifies only a storage area, ABS only creates entries in the cat-
alog for the storage area and not for its associated Oracle Rdb database.

5.6.3 Searching for Storage Areas in the Catalog

To find catalog entries for Oracle Rdb storage areas, use one of the following methods using
either the GUI or DCL:

1. The following DCL example specifies the correct storage area syntax:

$ ABS LOOKUP “DISK$RDB_DISK:[DATABASE]RDB_60_DATABASE.RDB/AREA=AREA2” -
_$ /OBJECT_TYPE=”RDB_V6.0_STORAGE_AREA”

Note

If you use DCL for the lookup operation, you must enclose the file type in quotation
marks. This is because the /AREA qualifier is part of the catalog entry and not a qual-
ifier on the DCL command line.

2. The following DCL example finds all storage areas for a specific database:

$ ABS LOOKUP “DISK$RDB_DISK:[DATABASE]RDB_60_DATABASE.RDB/AREA=*” -
_$ /OBJECT_TYPE=”RDB_V6.0_STORAGE_AREA”

3. The following GUI example finds all storage areas with the name AREA3 for any Oracle
Rdb database on DISK$RDB_DISK::

Object Type: ALL
Object Name: DISK$RDB_DISK:[*]*.RDB/AREA=AREA3

Restriction:
You cannot use any wildcard characters in the disk name.

4. The following GUI example finds all instances of saved data on a specific disk (including
storage areas and Oracle Rdb databases):

Object type: ALL
Object name: DISK$RDB_DISK:[*]*.*

5.6.4 Restoring Storage Areas and Databases

Using ABS, you can restore entire Oracle Rdb databases or individual storage areas. There are
two types of restore requests, full and selective.

Recommendation:
To restore Oracle Rdb databases or storage areas, it is recommended that you create a full restore
request. This causes ABS not only to restore the most recent full backup of the data, but also to
apply any subsequent incremental backup save sets.

Example of restoring an RDB database using DCL:
$ ABS RESTORE ”DISK$SLSRMU2:[RDB_60_DATABASE]RDB_60_DATABASE.RDB” -
_$/OBJECT_TYPE=”RDB_V6.0_DATABASE”/FULL

Requirement:
The files associated with the Oracle Rdb database must have been deleted from the disk before
issuing this command, or on the DCL command line include the /CONFLICT=NEW qualifier.

Example of restoring an Oracle Rdb storage area using DCL:
$ ABS RESTORE -
_$”DISK$SLSRMU2:[RDB_60_DATABASE]RDB_60_DATABASE.RDB/AREA=SLS_DEV1_AREA5” -
_$/OBJ=”RDB_V6.0_STORAGE_AREA”/FULL
Backup Strategies 5-14

Backup Strategies
5.7 Cataloging Copied Backup Savesets

efer-

a colon
av), an
Requirement
The files associated with the storage area must have been deleted from the disk before issuing
this command, or on the DCL command line include the /CONFLICT=NEW qualifier.

5.7 Cataloging Copied Backup Savesets
ABS supports cataloging information from copied backup savesets on tape, or from tapes cre-
ated by VMS Backup into ABS catalogs. This allows you to lookup and restore files from
savesets created outside of ABS.

To allow this functionality, a new object_type, VMS_SAVESET was created.

Restrictions:

• The saveset must reside on a tape.

• Only VMS Backup savesets may be cataloged.

• The tape volume must be moved into MDMS and allocated to ABS so that ABS may r
ence the volume.

• A separate catalog and storage_class should be created for the saveset information.

To catalog the saveset information, you must create a save request with the tape_volume,
, and the saveset name, or wildcard, as the include specification (ie. Tape001:mysaveset.s
object type of VMS_SAVESET, and a selective movement type:

$ ABS SAVE tape001:mysaveset.sav –
/OBJECT_TYPE=VMS_SAVESET –
/SELECTIVE –
/NAME=mysaveset_catalog –
/STORAGE_CLASS=my_sc –
/ENVIRONMENT=my_env –
/START=01-JUL-2000

 or

$ ABS SAVE tape001:* –
/OBJECT_TYPE=VMS_SAVESET –
/SELECTIVE –
/NAME=mysaveset_catalog –
/STORAGE_CLASS=my_sc –
/ENVIRONMENT=my_env –
/START=01-JUL-2000

ABS will load the tape listed in the include specification, then do a Backup/List of the contents,
loading the information into the ABS catalog defined in the storage_class. The original date of
the saveset will be preserved in the catalog.

Recommended Implementation:
It is recommended that you create a new catalog to store this data. You also should create a new
storage_class to be used by these cataloging operations.

This will allow you to restore from the copied tapes or from the original tapes by selecting the
appropriate storage_class for the restore request.

For example:

Several ABS save requests were saved on tape ABS000 using the SYSTEM_BACKUPS
storage_class. Saveset Manager was used to copy that tape to another tape, TAP000.

Before cataloging the data, do the following:
 Backup Strategies 5–15

Backup Strategies
5.7 Cataloging Copied Backup Savesets

_SC

 and
 the
spec-
will
• Create a new catalog called COPIED_TAPES. Create a storage_class called COPIED
which points to the catalog COPIED_TAPES.

• Create a save request specifying TAP000:* for the include specification, and give it an
object type of VMS_SAVESET and the COPIED_SC storage_class.

ABS will execute the request, cataloging the information in the COPIED_TAPES catalog.

To restore the data which is on ABS000 or TAP000, decide which copy you wish to restore
specify the appropriate storage_class in the restore request. For example, to restore from
original tapes, specify the SYSTEM_BACKUPS storage_class. To restore from the copy,
ify the COPIED_SC storage_class. The ABS LOOKUP command with the /FULL qualifier
show the volumes used for the data.

Note

If the information about the original and copied savesets is put into the same catalog,
they will have exactly the same archived date. This could cause confusing when restor-
ing the data because ABS may not choose the tapes you wish to use for the request. To
make it easier to restore, it is recommended to use a separate catalog (as described
above).
Backup Strategies 5-16

6
Displaying ABS Graphical User Interface

ABS GUI allows you to create, modify and delete ABS policies and requests. It also allows you
to find data that was previously saved using ABS.

ABS enables you to display GUI on the OpenVMS server or client system, on an NT client sys-
tem, or on any system that supports X Window System™ for Motif®.

6.1 Displaying ABS GUI On an OpenVMS System
Use the procedure to display ABS GUI on an OpenVMS system.

Table 6–1 Displaying ABS GUI on an OpenVMS System

Step Action

1. Set display to your current node.

Example:

$ SET DISPLAY/CREATE/NODE=OpenVMS_node_name

Note:
Make sure that you have added the node from which you are accessing the GUI to the session
manager security option.

2. Enter the following command:

$ ABS/INTERFACE=DECWINDOWS

Result:
ABS displays ABS GUI main window. See Figure 6–1.
 Displaying ABS Graphical User Interface 6–1

Displaying ABS Graphical User Interface
6.2 Displaying ABS GUI on an NT System

Figure 6–1 ABS Main Window

6.2 Displaying ABS GUI on an NT System
To display the GUI on an NT system using the eXcursion™ software, follow the procedure in
one of the following tables:

• Table 6–2–Describes how to display the GUI using eXcursion and DCL commands.

• Table 6–3–Describes how to display the GUI using the eXcursion menu options.

Table 6–2 describes how to display the GUI using eXcursion and DCL commands.

Table 6–3 describes how to display ABS GUI using the eXcursion Menu options.

Table 6–2 Displaying the GUI On an NT System Using eXcursion and DCL
Commands

Step Action

1. Click the eXcursion icon, select Applications from the menu choices. Click OpenVMS
server node and execute ABS software.

2. Enter the password of the account invoking the application (typically SYSTEM).

3. Once you have logged into ABS OpenVMS server node, set display to the NT client node:

$ SET DISPLAY/CREATE/NODE=NT_nodename/TRANSPORT=TCPIP

4. Enter the following command to invoke ABS GUI:

$ ABS/INTERFACE=DECWINDOWS

Table 6–3 Displaying ABS GUI Using eXcursion Menu Options

Step Action

1. Click eXcursion icon, select Control Panel.
Displaying ABS Graphical User Interface 6-2

Displaying ABS Graphical User Interface
6.3 Standard X Window for Motif Buttons

ase.

. For
cre-
6.3 Standard X Window for Motif Buttons
ABS GUI windows contain the following standard buttons:

• OK - Prompts for confirmation about submitting the operation.

• Cancel - Cancels the operation.

• Submit - Submits the creation or modification of a request or policy to ABS policy datab

• Help - Displays Help in Bookreader format about the operation that you are performing
example, if you are saving data, when you click Help, ABS displays information about
ating a save request.

2. Click Accounts from the labeled tabs displayed at the top of the window.

3. Enter the OpenVMS ABS server node name in the Account Alias: and Host: areas.

4. Select either Username and enter the user name of the account that will be creating save and
restore requests (typically SYSTEM) or select Prompt for Username. If you select Prompt
for Username, you will be prompted for the user name each time you invoke the GUI from
eXcursion.

5. Select either Password and enter the password for the Username or select Prompt for Pass-
word. If you select Prompt for Password, you will be prompted for the password each time
you invoke the GUI from eXcursion.

6. Click Add.

7. Click Applications from the labeled tabs.

8. Enter ABS GUI in the Application Alias: area.

9. Enter the following command in the Command area:

$ RUN ABS$SYSTEM:ABS_UI.EXE

10. Enter the OpenVMS server node name that you entered in Accounts window.

11. Click Add, click Run.

12. If you selected Prompt for Username, enter the user name of account that will be creating
save and restore requests (typically SYSTEM).

13. If you selected Prompt for Password, enter the password for the account on OpenVMS ABS
server node.

Table 6–3 Displaying ABS GUI Using eXcursion Menu Options

Step Action
 Displaying ABS Graphical User Interface 6–3

 create
te a

I)

S stor-

uture
7
Creating Storage Policies

A storage policy defines the type of archive file system, type of media, and archive characteris-
tics for ABS save sets. ABS provides the following preconfigured storage policies:

• ABS_ARCHIVE

• DISASTER_RECOVERY

• SYSTEM_BACKUPS

• USER_BACKUPS

• UNIX_BACKUPS

Note

Storage policy creation is not available with the ABS-OMT license.

Archive Backup System for OpenVMS Installation Guide describes the characteristics of these
preconfigured storage policies. To meet your storage management needs, you may have to
additional storage policies. Review the information in this chapter to determine how to crea
storage policy that meets your site-specific needs.

This chapter describes the following information:

• Instructions for using the worksheets provided in Appendix E

• Instructions for creating an ABS storage policy using ABS graphical user interface (GU

Note

If you are using the command line interface (CLI) to create a storage policy, refer to
Archive Backup System for OpenVMS Command Reference Guide for the command
syntax and qualifier descriptions.

The command line interface is not available with the ABS-OMT license.

7.1 Using ABS Policy Worksheets
Chapter 7, Chapter 8, and Chapter 9 are designed for use with the worksheets provided in
Appendix E. Use the worksheets as scratch areas to help you create and manage your AB
age and environment policies.

Follow these steps to use the worksheets along with the information in this chapter:

Step 1. Remove the worksheets from Appendix E.

If possible, make copies of the worksheets so that you can keep the originals for f
configurations or modifications.

Step 2. Review Chapter 7, Chapter 8, and Chapter 9.
 Creating Storage Policies 7–1

Creating Storage Policies
7.2 Requirements

-

s,
hat
uire-

t policy
stor-
Note

Each worksheet in Appendix E corresponds with an ABS policy. The following chart
maps each ABS policy object with its corresponding worksheet

Step 3. Determine the GUI fields that you need to configure for your ABS policies and record
those fields on the worksheets.

Step 4. When you have completed the worksheets, create your ABS policy according to the
completed worksheets.

7.2 Requirements
To create a storage policy, you must:

• Have ABS_CREATE_STORAGE_CLASS access rights identifiers enabled on your pro
cess.

• Be logged into ABS server node.

7.3 Creating an ABS Storage Policy
Use the procedure in Table 7–1 to create an ABS storage policy.

7.4 Storage Policy Name
Each storage policy must have a unique name and be made up of alphanumeric character
hyphens (-), underscores (_), or a combination thereof. Assign the storage policy a name t
reflects the purpose of the storage policy. For example, to meet your long-term storage req
ments you may want to create storage policies with the names of 1_YEAR, 5_YEARS,
PROJECT_X_DATA, and so forth.

Character Limit:
The storage policy name cannot exceed 31 characters. Because the matching environmen
name is typically the storage policy name appended with _ENV, it is recommended that a
age policy name not exceed 27 characters.

ABS Policy Corresponding Worksheet

Chapter 7, Creating Storage Policies Table E-1,

Chapter 8, Creating Environment Policies Table E-2,

Chapter 9, Creating Save Requests Table E-3

Table 7–1 Creating an ABS Storage Policy

Step Action

1. Display the GUI (see Chapter 6, Displaying ABS Graphical User Interface).

2. Click Define Storage Policy from the main GUI window.

Result:
ABS displays the Define Storage Policy window

3. Review the following sections for each of the options for the Define Storage Policy. To deter-
mine your site-specific requirements, use the worksheet provided in Table E-1.
Creating Storage Policies 7-2

Creating Storage Policies
7.5 Save Data To

icy.

y the

licy.

ia

vol-

at
ly this

18,

MS. A
scribes
To make sure that you retain the data for the amount of time indicated in the storage policy
name, set the Retain Data For option to match those time frames. See Section 7.6 for information
about setting the retention period.

7.5 Save Data To
The Save Data To option enables you to choose whether you want to save data to a volume in the
MDMS database, or whether you want to save data to an OpenVMS disk.

Use the procedure in Table 7–2 to select where you want to store data for this storage pol

7.5.1 Tape Options

By selecting Tape Options, you are instructing ABS to use volumes and drives managed b
Media and Device Management software (described in Archive Backup System for OpenVMS
Installation Guide and in Part II of this manual):

• Section 7.5.1.1describes how to assign a specific MDMS media type to the storage po

• Section 7.5.1.2 describes how to use a pool of volumes.

• Section 7.5.1.3 describes how to use specific tape drives associated with specific med
types.

• Section 7.5.1.4 describes how to use volumes from a specific MDMS location.

• Section 7.5.1.5 describes how to specify the criteria under which ABS will create new
ume sets.

7.5.1.1 Media Type

For the Media Type option, enter the media type name (previously configured in MDMS) th
you want this storage policy to use. Specifying a media type name instructs ABS to use on
type of media for any save requests that use this storage policy.

Requirement:
Supplying a valid media type is required.

Example of how a media type is defined in MDMS:
$ MDMS CREATE MEDIA_TYPE TK85K

Additional Information:
For additional information about media types, drives, pools, and location, refer to Chapter
Basic MDMS Operations.

7.5.1.2 Pool

The Pool option enables you to enter a pool name that has been previously created in MD
pool contains free volumes that only certain users can access, such as ABS. Chapter 18 de

Table 7–2 Selecting Tape or Disk Storage

Step Action

1. Click the box next to Tape or Disk. Your selection becomes highlighted.

2. If you selected Tape Options, click the box next to Tape Options and see Section 7.5.1 for
instructions.

3. If you selected Disk Options, click the box next Disk Options and enter the OpenVMS disk
and directory specification in the Root Directory to Save Data To box:

ABS$ROOT:[000000]
 Creating Storage Policies 7–3

Creating Storage Policies
7.5 Save Data To

riate

sign

 the
alues

ed up
same
how to create pools in MDMS. Even though a media type may be available to several pools, you
may want to restrict a storage policy to only one pool of volumes.

7.5.1.3 Drives

The Drives option allows you to enter a specific drive or comma-separated list of drives to use
for this storage policy. Specify the drive name as MDMS drive name rather than the VMS device
name.

Example:
DRIVE2,DRIVE3,DRIVE4

where the following drive names are defined as follows in MDMS:

• MDMS CREATE DRIVE DRIVE2 /DEVICE=4MUA892

• MDMS CREATE DRIVE DRIVE3 /DEVICE=4MUA893

• MDMS CREATE DRIVE DRIVE4 /DEVICE=4MUA894

Recommendation:
Do not assign drive names to this option, but instead, configure MDMS so that the approp
media types are paired with the desired drives.

7.5.1.4 Location

The Location option enables you to specify the location of the volumes that you want to as
to the storage policy. The location is defined in MDMS.

7.5.1.5 Criteria Under Which ABS Creates Volume Sets

The criteria that ABS uses to create volume sets is determined by the options described in
following sections. It is important to note that the values in all of these options are desired v
and not always absolute.

For example, if all of the disk or file names specified in a save request have not been back
before the specified criteria is met, ABS continues to perform the backup operation to the
volume set even though the criteria may have been exceeded during the save operation.

See the ABS Command Reference Manual for more information on setting the criteria using
DCL. The qualifier in the ABS CREATE STORAGE_CLASS command is /CONSOLIDA-
TION=(INTERVAL,COUNT,SIZE).

7.5.1.5.1 Days Before Creating a New Volume Set – Enter the number of days (in
OpenVMS time format) that you want between the creation of a new volume set. If you assign
the value 10, a new volume set is created every ten days.

The default number of days is 7.

7.5.1.5.2 Save Sets Per Volume Set – Enter the number save sets you want to allow per
volume set. For example, if you set this option to one (1), ABS creates a new volume set for each
save set. If this value is set to 10, ABS creates a new volume set for every ten save sets.

Recommendation:
It is recommended that you enter zero (0) for this option. By entering zero, a new volume set is
created based upon the values assigned to the criteria options as described in Section 7.5.1.5.1
and Section 7.5.1.5.3.

Default:
The default value for this option is zero (0).

7.5.1.5.3 Volumes Per Volume Set – Enter the maximum number of volumes that you
want to allow per volume set.
Creating Storage Policies 7-4

Creating Storage Policies
7.6 Retain Data For

 win-

y.

torage
lu-

te that
7.5.1.6 Clear Volume Set List From Storage Policy

This option is only available when you modify an existing storage policy. During the create pro-
cess, this option is grayed out.

There may be a time when you want to remove the reference to a particular volume set and start
a new one. ABS allows you to do this. Follow these steps:

Step 1. Follow the steps in Table 12–2 to access the Modify or Delete Policies & Requests
dow. Select the storage policy from which to clear the volume set name.

Step 2. Click Tape Options

Result:
ABS displays the Tape Options window.

Step 3. Click Clear Volume Set

Result:
ABS displays a list of volume set names that will be cleared from the storage polic

Step 4. Click OK to clear the list of volume set names.

Result:
The volume set list disappears and ABS displays the following message:

Volume Set will be cleared when you clicked OK on the Tape Options window

Step 5. Click OK on the Tape Options window.

Result:
ABS displays the following message:

Clearing of Volume Set for Storage Policy storage_policy_name Succeeded.

7.6 Retain Data For
Use the Retain Data For option to assign the period of time to retain data saved using this s
policy. ABS provides two options, Days and Expiration On. These options are mutually exc
sive. You can assign the number of days to retain the data, or you can assign an exact da
you want the saved data to expire. ABS default retains data for 365 days.

Use one of the following options to define how long to save the data:

Table 7–3 Options to Save the Data

Option Action

Retain For To use the Retain For option, click DAYS, click the box next to it. Enter the number of
days to retain the data.

For example, to meet legal requirements, you may have data that you need to retain for 5
years. Select Days and enter 1851 (365 days X 5).

Maximum Number of Days:
The maximum number of days is 9999.
 Creating Storage Policies 7–5

Creating Storage Policies
7.7 Catalog and Execution Node

ve
s not

ne

e, those
urces

, you

, slide
7.7 Catalog and Execution Node
Each ABS storage policy uses an ABS catalog to record the history of saved data. Specify ABS
catalog that you want this storage policy to use, and execute the save request on the node speci-
fied for the Execute Save Operation On option.

7.7.1 Selecting ABS Catalog

ABS uses its catalogs to locate data saved using ABS. ABS provides a default catalog named
ABS_CATALOG.

To select the catalog to use for the storage policy, click the box next to Write History Information
To and select one of ABS catalogs from the list.

Note

You can assign the same catalog name to multiple storage policies.

Requirements:
If you wish to use a catalog other than one of the default catalogs provided by ABS, make sure
that you:

• Create the catalog before you assign it to the storage policy

• Place the catalog in ABS$CATALOG directory

Chapter 15, Creating ABS Catalogs provides information about creating ABS catalogs.

7.7.2 Selecting the Node of Execution

To select the node on which to execute the save request, click the box next to Execute Sa
Operation On and select the node name from the list of node name. If the node name doe
appear in the list, select Other and enter the node name.

7.8 Number of Streams
This option allows you to configure the storage policy so that you can execute more than o
save request simultaneously.

For example, if you create three save requests that are scheduled to start at the same tim
save requests can run simultaneously provided there are enough media management reso
(such as tape drives and free volumes) to support multiple backup operations. In this case
would set the Number of Streams option to 3. Valid values range from 1 to 36.

To increase or decrease this option, place the pointer on the slide rule and hold down MB1
up to decrease the value, slide down to decrease the value.

Default:
The default value is 1.

Expire On To use the Expire On option, click Expire On and select Today, Tomorrow, or Specific
Date.

If you select Specific Date, click the date box and enter the date and time in standard
OpenVMS format. For example, to have the saved data expire on March 13, 2000 at 2:00
p.m, enter the following format:

13-MAR-2000 14:00

Table 7–3 Options to Save the Data

Option Action
Creating Storage Policies 7-6

Creating Storage Policies
7.9 Storage Policy Access Control

a-

 you
el to

r

licy.

y.

t if

licy

he
7.9 Storage Policy Access Control
The Storage Policy Access Control option enables you to authorize users to access the storage
policy, and to enable those users with certain types of access controls.

The user who creates the storage policy is automatically granted access to it, and he is granted all
of the access controls (READ, WRITE, SHOW, SET, DELETE, and CONTROL). To add other
users and to provide them with access control to the storage policy, use the procedure described
in Table 7–4.

7.10Submitting the Storage Policy
Once you have entered all the information for the storage policy, do the following:

1. Click OK on the main window to submit the storage policy to ABS policy database.

Result:
ABS displays the Submit Storage Policy window, this window contains the basic inform
tion for the storage policy.

2. Click OK to submit the storage policy, or click Cancel to cancel the submit operation. If
cancel, the main window reappears and you can modify any information, or click Canc
cancel creating the storage policy.

Table 7–4 Enabling Access Control to the Storage Policy

Step Action

1. Click Add

2. Click Node Name to add the node name of the user

3. Click User Name to add the user’s name

4. Click the box next the access control that you want to enable for the user you are adding o
modifying. See the following section for access control descriptions.

• Read - Users with Read access control can restore data using the storage po

• Write - Users with Write access control can save data using the storage polic

• Delete - Users with Delete access control can delete the storage policy objec
the number of catalog references is set to zero (0).

• Set - Users with Set access control can modify any attribute of the storage po
object, including access control.

• Show - Users with Show access control can show the storage policy object.

• Control - Users with Control access control can modify the access control for t
storage policy object, but not any of its other attributes.
 Creating Storage Policies 7–7

create
 cre-

e

8
Creating Environment Policies

An environment policy defines the environment in which save and restore requests are executed.
ABS provides the following default environment policies:

• ABS_ARCHIVE_ENV

• ABS_DEFAULT_ENV

• DISASTER_RECOVERY_ENV

• SYSTEM_BACKUPS_ENV

• USER_BACKUPS_ENV

• UNIX_BACKUPS_ENV

Note

Environment policy creation is not available with the ABS-OMT license.

Archive Backup System for OpenVMS Installation Guide describes the characteristics of these
default environment policies. To meet your storage management needs, you may have to
additional environment policies. Review the information in this chapter to determine how to
ate an environment policy that meets your site-specific needs.

The information in this chapter includes:

• Instructions for using the worksheets provided in Appendix

• Instructions for creating an ABS environment policy using ABS graphical user interfac
(GUI)

Note

If you are using the command line interface (CLI) to create an environment policy,
refer to Archive Backup System for OpenVMS Command Reference Guide for the
command syntax and qualifier descriptions.

The command line interface is not available with the ABS-OMT license.

8.1 Using ABS Policy Worksheets
Chapter 7, Chapter 8, and Chapter 9 are designed for use with the worksheets provided in
Appendix E. Use the worksheets as described in Section 7.1.

8.2 Requirements
To create an ABS environment policy, the creating process must:

• Have ABS_CREATE_EXECUTION_ENV access right identifier enabled.
 Creating Environment Policies 8–1

Creating Environment Policies
8.3 Creating an ABS Environment Policy
• Be logged into ABS server node. See Archive Backup System for OpenVMS Installation
Guide for information about ABS server.

8.3 Creating an ABS Environment Policy
Use the procedure described in Table 8–1 to create an ABS environment policy:

Table 8–1 Creating an ABS Environment Policy

8.4 Environment Policy Name
Each environment policy must have a unique name and be made up of alphanumeric characters,
hyphens (-), underscores (_), or a combination thereof. The environment policy name should
have a matching storage policy name with the characters _ENV appended to it. For example, if
you create a storage policy named 5_YEARS, the matching environment policy name should be
5_YEARS_ENV. ABS will look for a matching storage and environment policy names. If you
do not have a matching environment name, then ABS will use the default environment policy
named ABS_DEFAULT_ENV.

Restriction:
The environment policy name cannot exceed 31 characters.

8.5 Save and Restore Environment Options
The Save and Restore Environment Options enable you to set up the conditions under which
save and restore requests will execute using this environment policy. the following sections
describe these conditions and how to set them.

8.5.1 Who to Notify

The Who to Notify option enables you to specify several methods of notification and conditions
under which notifications about ABS save and restore requests are executed. You can notify per-
sonnel when ABS save and restore request complete successfully, or when and why they fail.

8.5.1.1 How to Notify and Who to Notify

To enable these options, use the procedure in Table 8–2

Step Action

1. Display the GUI (see Chapter 6, ABS Graphical User Interface)

2. Click Define Environment Policy from the main GUI window.

Result:
ABS displays the Define Environment Policy window

3. Review the following sections for each of the options for the Define Environment Policy. To
determine your site-specific requirements, use the worksheet provided in Table E-1.
Creating Environment Policies 8-2

Creating Environment Policies
8.5 Save and Restore Environment Options

ore

rs

ly

. To

cks
de
ption
xecu-
Table 8–2 Selecting the Notification Options

8.5.1.2 When to Notify

An ABS environment policy provides several conditions as when to notify. To set these condi-
tions, do the following:

• Click the box adjacent to Conditions Under Which to Send Notification. Select one or m
of the following options:

– Starting - Notifies when an ABS save or restore request begins

– Completing - Notifies when an ABS save or restore request has completed

– Warnings - Notifies if an ABS save or restore request encounters any warning erro

– Errors - Notifies if an ABS save or restore request encounters any type of errors

– Fatal Errors - Notifies if an ABS save or restore request encounters fatal errors on

8.5.1.3 Type of Notification

An ABS environment policy allows you to select the type of notification message to display
set the type of notification, do the following:

• Click the box adjacent to Type of Message to Return and select one of the following
options:

– Brief - Contains only basic information (default)

– Normal - Contains a moderate amount of information

– Verbose - Contains the maximum amount of information

8.5.2 Data Verification

The Data Verification options provides you with the ability to specify default data safety che
for ABS save and restore requests that use this environment policy. Data verification inclu
checks such as full data verification, redundancy checks, and tape read verification. This o
enables you to ensure data safety by performing various types of data verification during e
tion of ABS save and restore requests.

To enable one or more Data Verification options, do the following:

Step Action

1. Click the Form of Notification box. ABS supplies the following options:

• OPCOM - Choose this option (default) to notify the operator using a valid
OPCOM class (TAPES)

• VMS Mail - Choose this option to notify a specific user through a VMS mail
account

• None - Choose this option if you do not want any method of notification

2. If you select OPCOM, ABS automatically fills in the VMS class with TAPES.

3. If you select VMS Mail, click the box adjacent to VMS Mail Address to Receive Notification
and enter a valid user name:

NODESV::SMITH

4. If you select NONE, the environment policy will not send a notification under any conditions.
 Creating Environment Policies 8–3

Creating Environment Policies
8.5 Save and Restore Environment Options

 the

s it
tore

 oper-
s of

ly

ands
ave or
e save

e- and
mmand

uest.
• Click the box next to the option you want to enable. Select one or more of the following
options:

– Full Data Verification - Instructs ABS to reread all data and compare it to what is on
disk.

– Cyclic Redundancy Check - Performs a cyclic redundancy check (CRC) and write
for each data block on the tape. This enables detection of a bad block during res
operations.

– XOR Redundancy Groups – If the CRC check detects a bad block during a restore
ation, the XOR mechanism allows recovery of the block by using redundancy group
blocks (written during the save operation). The OpenVMS Backup Utility is the on
backup agent currently provided by ABS that provides an XOR mechanism. It is
enabled by default with a redundancy group size of 10 blocks.

8.5.3 Listing

The Listing option allows you to specify the default listing file behavior for save and restore
requests that use this ABS environment policy.

• Click on one of the following options:

– None - Does not generate a listing file.

– Brief - Generates a brief listing file.

Note

A brief listing file is ABS specific and lists each disk or file name saved during a save
operation.

– Full - Generates a full listing file.

8.5.4 Pre- and Post- Processing Commands

The Processing Commands option enables you to specify pre- and post- processing comm
that will execute once. A preprocessing command executes once, prior to the start of the s
restore request, and a postprocessing command executes once, after the completion of th
or restore request. This option accepts a platform specific string.

ABS generates logical names that may be used from within the prologue and epilogue (pr
post- processing commands) for the entire save request. These may be referenced in a co
procedure which is executed as a prologue or epilogue for the environment policy.

These logical names are defined in the process JOB table. They exist during the save req
Once the save request is complete the logicals will no longer be available.

ABS_SAVE_REQUEST_NAME Name of the save request.

ABS_REQUEST_TYPE SAVE or RESTORE.

ABS_STORAGE_CLASS Name of the storage class used by the request.

ABS_EXECUTION_ENVIRONMENT Name of the execution environment used by the
request.

ABS_NODE_NAME Node name specified in the request.

ABS_OUTPUT_DEVICE The name of the device used by the save request. If
multiple output devices have been used this logical will
be a comma separated list.
Creating Environment Policies 8-4

Creating Environment Policies
8.5 Save and Restore Environment Options

 80

 suc-

en-

t has

store

rior to

 0

min-

f you
 sec-

nd/or
 the

MS
Restrictions:

• When entering the pre- or post- processing command, an OpenVMS string is limited to
characters.

• A postprocessing command will execute only if the save or restore request completes
cessfully.

8.5.5 Original File

The Original File option enables you to select the default behavior for the original data (Op
VMS disk or file) being saved.

To set the original file option, do this:

• Click on the box located next to one of the following options:

– Record Backup Date - Sets the backup date in the file header information

– No Change - Does not change the original online data

– Delete Original Data - Deletes the data from the online disk when the save reques
completed. This option is typically set when using ABS enviroment policy for
archiving data.

8.5.6 Retry Options

The Retry Options enables you to specify the number of times and how often a save or re
request should be retried before operator intervention is required.

• Select one of the following options

– Retry Count - The number of times the save or restore request should be retried p
activating the notification options. Valid values are 0 to 10,000.

– Minutes between Retry Attempts - The amount of time (in minutes) between retry
attempts. Valid values are 1 to 60.

Restriction:
If the retry count is set to 0 (zero), the minutes between retry attempts also must be set to
(zero).

Default:
If you do not assign a value to this option, the default values are 3 for Retry Count and 15
utes for Minutes between Retry Attempts.

Hint:
Each time a retry attempt occurs, ABS enviroment policy generates a warning message. I
want to be notified of the retry attempt, select Warnings Occur in the When option (refer to
tion Section 8.5.1).

8.5.7 User Profile

The User Profile option enables you to configure an environment policy that allows save a
restore requests to run in the context of either ABS process or the user’s process provided
users are authorized to create their own save and restore requests.

Restrictions:

• To create a user profile for an environment policy, you must have the following OpenV
privileges enabled:

– SYSPRV

– CMKRNL
 Creating Environment Policies 8–5

Creating Environment Policies
8.5 Save and Restore Environment Options

ess.
he
’s

 click

cess,
scribed

ve
pen.

ve and
avail-
of tape

ber of
means
execut-

he
the

iron-
ot

is

uests
en
 to
e the
• All UNIX save and restore requests must be performed in the context of the ABS proc
The environment policies used for UNIX operations must specify the user as ABS for t
user profile. You cannot create UNIX or NT backup operations in the context of a user
process.

• To set the environment policy so that save requests run in the context of ABS process,
User Profile and then click ABS process.

• To set the environment policy so that save requests run in the context of the user’s pro
click User Profile and then click User process. Be sure to authorize users access as de
in Section 8.6.

8.5.8 Open Files

The Open Files option allows you to save files that are open during the execution of the sa
request. If you select Hot Backup, this allows you to save Oracle Rdb databases that are o
Ignore Writers enables you to save OpenVMS, UNIX, and NT files that are open.

8.5.9 Tape Drives

The Tape Drives option enables you to set the number of tape drives used for each ABS sa
restore request that use this environment policy. If the requested number of tape drives is
able, ABS allocates those drives for the save or restore request. If the requested number
drives is not available, ABS will use the amount of tape drives available.

For example, if you create a save request that uses an environment policy where the num
tape drives is set to 3, ABS allocates three drives when the save request job begins. This
those three drives are unavailable to other applications during the time the save request is
ing.

Default:
The default value is 1. This value cannot be 0 (zero).

Recommendation:
Use the default value of 1. Allocating more than one drive per save request will constrain t
tape drives. This means those tape drives will not be available to other applications while
save request is executing.

8.5.10 Compression

ABS supports the following types of compression for UNIX clients:

• No Compression

• UNIX Compression

• GZIP Compression

Recommendation:
It is recommended that you use the default UNIX environment policy or create an ABS env
ment policy with the desired compression options for all of your UNIX save requests. Do n
mix compression types for UNIX save requests.

For example, use the same ABS environment policy for all of your UNIX save requests. Th
way, all UNIX data saved using ABS will have the same compression option set.

If you use different types of compression options on different save requests (UNIX save req
use different ABS environment policies), the saved data will be compressed differently. Wh
you attempt to restore the UNIX data, you must know which compression option was used
save the original UNIX data. ABS is unable to restore the file without being instructed to us
proper compression.
Creating Environment Policies 8-6

Creating Environment Policies
8.6 Environment Policy Access Control

BS

user is
o
 in
Restriction:
This qualifier is not valid for NT client save and restore operations.

Default:
The default ABS setting is No Compression.

8.5.11 Links Option

ABS provides you with the ability to either back up the UNIX symbolic links only, or to follow
the UNIX symbolic links and back up the data as well.

Restriction:
This option is valid only for UNIX client operations.

Default:
The default ABS setting is Links Only.

8.5.12 Span Filesystems

ABS allows you to save only the root file system (such as the disk the root directory resides on),
or an entire filesystem type if the filesystem spans physical devices. ABS supports the following
options:

• None

• All

Restrictions:

• This qualifier is restricted to UNIX files.

• This qualifier is not valid for OpenVMS or NT client backup operations.

Default:
None.

8.6 Environment Policy Access Control
The Environment Policy Access Control option enables you to authorize users to access A
environment policy, and to enable those users with certain types of access control.

The user who creates the environment policy is automatically granted access to it, and the
granted all the access controls (READ, WRITE, SHOW, SET, DELETE, and CONTROL). T
add other users and to provide them access to ABS environment policy, use the procedure
Table 8–3.
 Creating Environment Policies 8–7

Creating Environment Policies
8.7 Submitting the Environment Policy

r

nt

nt

ct.

Table 8–3 Enabling Access to an ABS Environment Policy

8.7 Submitting the Environment Policy
Once you have entered all the information for the environment policy, do the following:

1. Click OK on the main window to submit the environment policy to ABS policy database.

Result:
ABS displays the Submit Environment Policy window; this window contains the basic
information for ABS environment policy.

2. Click OK to submit the environment policy, or click Cancel to cancel the submit operation.

If you cancel, the main window reappears and you can modify any information. Click Can-
cel to cancel creating ABS environment policy object.

Step Action

1. Click Add

2. Click Node Name to add the users’s node name

3. Click User Name to add the user’s name

4. Click the box next the access control that you want to enable for the user you are adding o
modifying:

• Read - Users with Read access control can restore data using the environme
policy.

• Write - Users with Write access control can save data using the environment
policy.

• Delete - Users with Delete access control can delete the environment policy
object if the number of catalog references is set to zero (0).

• Set - Users with Set access control can modify any attribute of the environme
policy object, including access control.

• Show - Users with Show access control can show the environment policy obje

• Control - Users with Control access control can modify the access control for
the environment policy object, but not any of its other attributes.
Creating Environment Policies 8-8

ding log
-

nt to
9
Creating Save Requests

Save requests are ABS policy objects that define the data that you want to save, and when to
save that data. A save request uses an ABS policy that defines the volume on which the data will
be saved (Storage Policy), and the conditions under which the save request will execute (Envi-
ronment Policy).

Note

The following ABS features are not available with the ABS-OMT license:

• Support for OpenVMS clients
• Save request scheduling options except for the following:

– On demand (ON_DEMAND)
– Weekly full/daily incremental (DAILY_FULL_WEEKLY)
– One time only (ONE_TIME_ONLY)

9.1 Save Request Name
Each save request must have a unique name and be made up of alphanumeric characters,
hyphens (-), underscores (_), or a combination thereof. The default save request name is the user
name appended by the current date and time.

To change the default save request name:

• Double-click the default save request name to select it (the name gets highlighted)

• Enter the new save request name

Restriction:
A save request name cannot exceed 40 characters. Because ABS generates the correspon
file name by appending the save request name with eight additional characters, it is recom
mended that you limit the save request name to 32 characters.

9.2 What Data To Save
Use this option to specify the file name, disk name, or set of file or disk names that you wa
save:

• File names can be OpenVMS, Oracle Rdb, UNIX, or NT file names.

• Disk names can be OpenVMS or NT disk names.

Note

When creating a new save request, What Data To Save area is blank by default. Once
you have added a file name or disk name, that name appears in the What Data To Save
display area.
 Creating Save Requests 9–1

Creating Save Requests
9.2 What Data To Save

–2.

 Sec-

To add a file name, disk name, or a set of file or disk names to the save request, use the proce-
dure in Table 9–1.

To correctly enter the disk or file name according to file type, see the instructions in Table 9

Table 9–1 Adding Disk or File Names To A Save Request

Step Action

1. Click Add... in What Data To Save area.

Result:
ABS displays What Data To Save window and defaults to the What to Save option.

2. In the left-hand column, select the type of data to save. For example, to save an entire Open-
VMS disk, click Entire OpenVMS Disk. To save an NT file, click NT Individual File.

3. Select the node where the file or disk resides. This is the first option in the right-hand column.
If the node is not available from the listed nodes, click Other and enter the node name in the
box.

4. Enter the file name or disk name that you want to save. You may enter multiple file or disk
names (up to eight) as a comma-separated list. However, to add a list of comma-separated file
names, they must all be the same file type (OpenVMS, Oracle Rdb, NT, or UNIX).

Note:
To correctly enter the disk or file name, see Table 9–2.

Restrictions:
For a list of restrictions regarding adding disk names and file names to a save request, see
tion 9.2.1

5. To exclude a specific file or set of files from the save request, click the box next to Data to
Exclude and enter the file name. For example, enter *.COM to exclude all files with a .COM
file extension.

Table 9–2 Correctly Entering the Disk Name or File Name

Type of Data Correct Syntax

VMS Files To save an entire OpenVMS disk, enter the disk name with the trailing
colon:

DISK$USER1:

To save an individual OpenVMS file or set of files select Individual
OpenVMS Files, click Individual VMS Files in the left-hand column and
enter the file name or file names using the following syntax:

DISK$1:*.COM,DISK$2:*.COM

Note:
OpenVMS disk and file names are not case-sensitive.

Oracle Rdb
Database

To save an Oracle Rdb database, click RDB Database in the left-hand col-
umn, select the Oracle Rdb version, and enter the disk and file name using
the following syntax:

DISK$1:[USER1_RDB]SITE_PERSONNEL.RDB

Note:
Oracle Rdb disk and file names are not case-sensitive.
Creating Save Requests 9-2

Creating Save Requests
9.2 What Data To Save

t fails.

 sup-
.

cation:

S

k
area
9.2.1 Save Request Restrictions

ABS imposes the following restrictions when adding disk names or file names to a save request:

• Do not specify more than eight file names or disk names per save request.

• Do not specify more than one OpenVMS client node name in a single save request.

For example, do not create a save request that specifies NODEA::DISK$USER and
NODEB::DISK1. In this example, ABS starts the save operation on NODEA and then
attempts to save the disk named DISK1 (not located on NODEA), and the save reques

• Specify wildcard characters only when creating a save request for backup agents that
port wildcard characters, such as the VMS BACKUP Utility or gtar for UNIX or NT files

• Do not specify wildcard characters for an Oracle Rdb database or storage area specifi

– Oracle Rdb database - An Oracle Rdb database specification requires an OpenVM
disk name, the directory specification, and Oracle Rdb database file name:

DISK$USER1:[USER1_RDB]SITE_PERSONNEL.RDB

– Oracle Rdb storage area - An Oracle Rdb storage area requires an OpenVMS dis
name, the directory specification, the Oracle Rdb database file name, the storage

Oracle Rdb
Storage Area

To save an Oracle Rdb storage area, click Rdb Storage Area, select the
Rdb version, enter the file name using the following syntax:

DISK$1:[USER1_RDB]SITE_PERSONNEL.RDB/INCLUDE= -
ACCOUNTING

Note:
Oracle Rdb disk and file names are not case-sensitive.

UNIX Files To save the directory /abs and all subdirectories and files underneath it,
click UNIX Disk or Directory Tree in the left-hand column and enter the
file name using one of the following syntaxes:

/abs/
/abs
/abs/*

To save an individual file, click UNIX Individual File in the left-hand col-
umn and enter the file name using the following syntax:

/usr/usr1/file.c

Requirement:
UNIX file names are case sensitive. You must enter the file name exactly
as it was created on the UNIX system.

NT Files To save the NT directory named \usr and all subdirectories and files
underneath it, click NT Disk or Directory Tree in the left-hand column
and enter the file name using one of the following syntaxes:

c:\usr\
c:\usr
c:\usr*

Note:
NT file names are not case sensitive.

Table 9–2 Correctly Entering the Disk Name or File Name

Type of Data Correct Syntax
 Creating Save Requests 9–3

Creating Save Requests
9.2 What Data To Save

isk
-wide
es to
e
ot

ll

sk

e first
he

it

 before

cess-
r

h
e

uest.
name, and the /INCLUDE qualifier:

DISK$USER1:[USER1_RDB]SITE_PERSONNEL.RDB/INCLUDE=ACCOUNTING

• Specify only system-wide logical names or physical device names - If the OpenVMS d
name contains a concealed logical name, the concealed logical name must be a system
logical name or physical device name. An ABS save request translates the logical nam
the first concealed logical name found. However, if this concealed logical name is in th
process table and not in the system-wide logical table, access to the logical name is n
available to ABS, and the save or restore operation will fail.

Recommendation:

– Unless you are creating a save request for an entire OpenVMS disk, specify the fu
path name. Include the disk name, directory name, and file name:

DISK$1:[USER1]LOGIN.COM

– If you are creating a save request for an entire OpenVMS disk, specify only the di
name and include the trailing colon:

DISK$USER1:

• Bound volume set - When creating a save request for a bound volume set, enter only th
disk name assigned to the bound volume set. ABS recognizes each disk assigned to t
bound volume set.

Restoring a bound volume set:
To restore a bound volume set, see the restrictions described in Section 10.2.1.

• Do not submit UNIX and NT save requests from an ABS VMS client node. Only subm
them on ABS server nodes.

9.2.2 Pre- and Post- Processing Commands

Use the pre- and post- processing commands to submit commands that take action either
or after each file or disk name entered for the save request.

Enter a command string for these options:

Preprocessing command:

$ @SHUTDOWN_DB.COM

Postprocessing command:

$ @STARTUP_DB.COM

ABS generates these logical names for use within a prologue or epilogue (pre- or post- pro
ing command) for a SAVE or RESTORE request. A set of "_n" logicals will be generated fo
each include specification in the request. The series will begin with 1 and continue for eac
include specification within the request. These may be referenced in a command procedur
which is executed as a prologue or epilogue for the save or restore request.

These logical names are defined in the process JOB table. They exist during the save req
Once the save request is complete the logicals will no longer be available.

ABS_OS_OBJECT_SET_n Include specification.

ABS_OS_OBJECT_TYPE_n Object type for the object set.
Creating Save Requests 9-4

Creating Save Requests
9.2 What Data To Save

 80

lly.

d

el-

.

ed
Restrictions:

• When entering the pre- or post- processing command, an OpenVMS string is limited to
characters.

• You can only enter one pre- and post- processing command per save request.

• A postprocessing command will execute only if the save request completes successfu

ABS_OS_DMT_n Data movement type for the object set. Valid val-
ues are FULL, SELECTIVE, INCREMENTAL.

ABS_OS_INCREMENTAL_LEVEL_n If the data movement type is INCREMENTAL,
the ABS_OS_INCREMENTAL_LEVEL_n value
defines the incremental level of the save request.
The string will be in the format "Level n Opera-
tion" where n is the incremental level. If the data
movement type is FULL the incremental level
will be "Full Operation". If the data movement
type is a base operation the incremental level will
be "Base (Full) Operation". If the data movement
type is selective the incremental level will be
"Selective Operation".

ABS_OS_VOLUME_SET_n Name of the volume set used for this request. If
the request is to disk the value will be the disk and
directory the saveset has been written to.

ABS_OS_START_RVN_n The starting Relative Volume Number within the
volume set that this object set references. The
value of this logical will be 0 if the request is
going to disk.

ABS_OS_LAST_RVN_n The relative volume number within the volume
set that was last used to save the saveset create
by this object set. The value of this logical will be
0 if the request is going to disk. Note that this log-
ical will not be valid for the prologue command.
For the prologue command the value will be "Not
yet determined" It will be defined for the epilogue
command.

ABS_OS_START_FILE_POSITION_n The starting file position of the saveset on the r
ative volume number within the volume set. This
logical will indicate how many tapes marks to
skip to find the start of the saveset on the volume
The value of this logical will be 0 if the request is
going to disk.

ABS_OS_SAVESET_NAME_n The name of the saveset that has been generat
by ABS. This saveset contains the data saved
based upon the object set.

ABS_OS_SAVESET_FORMAT_n The format of the saveset. This will determine
whether the saveset is in a VMS backup format,
gtar format, or RMU backup format.

ABS_OS_STATUS_n The ABS status of the include specification
request.
 Creating Save Requests 9–5

Creating Save Requests
9.3 When to Save Data

e
db,

ier

.3.1),
3.2).

re:

est

Time.

xam-
mat:

 spec-

S
 from
tility.
Default:

If you do not assign a string to this option, ABS does not execute any pre- or post processing
commands.

9.2.3 Selection Criteria

Enter the specific selection criteria for the disk or file name you are adding to the save request.
You can save data specifically by a before or since date.

• Before - Any version of the file created or modified before the specified date.

• Since - Any version of the file created or modified since the specified date.

9.2.4 Agent Qualifier

Enter any backup agent specific qualifiers for the save request. Backup agent qualifiers ar
determined by the type of file or disk that you are backing up, such as OpenVMS, Oracle R
UNIX, or NT files. Using this qualifier may supersede qualifiers set by ABS. Use this qualif
with extreme caution.

9.3 When to Save Data
ABS provides the option of immediately executing the save request (described in Section 9
or setting up the save request to execute on a repetitive schedule (described in Section 9.
ABS provides several scheduling options for a save request.

9.3.1 Immediately Executing the Save Request

To execute the save request immediately follow these steps:

Step 1. Click Start and select NOW (default)

Step 2. Click Schedule and select One Time Only (default)

9.3.2 Repetitive Scheduling of Save Request

To schedule a save request to execute on a repetitive schedule, use the following procedu

1. Click Start and select one of the following options:

– Now - Submits the save request as soon as you click OK, on the main Save Requ
window.

– Today - Submits the save request today at the time specified for the Start Time.

– Tomorrow - Submits the save request tomorrow at the time specified for the Start

– OpenVMS Time - Submits the save request per the OpenVMS time specification.

Click the date box and enter the date and time in standard OpenVMS format. For e
ple, to start the save request on March 13, 2000 at 2:00 p.m, use the following for

13-MAR-2000 14:00

2. Click Schedule. See the following descriptions of the scheduling options:

– One Time Only - Executes the save request one time only according to the option
ified for Start Time.

After the save request has successfully completed and 72 hours have passed, AB
Database Cleanup Utility routine deletes the job from the scheduler database and
the ABS database. See Appendix C for a description of ABS Database Cleanup U
Creating Save Requests 9-6

Creating Save Requests
9.3 When to Save Data

 the

y

et

ave

run

 Start

gle
ified,
p
the

will
st.

up
ful
– On Demand - This option submits the save request to the scheduler and executes
save request once according to the option specified for Start Time. The difference
between One Time Only and On Demand is that the ABS Database Cleanup Utilit
does not delete the save request from the ABS policy database.

For scheduler options INT_QUEUE_MANAGER and EXT_QUEUE_MANAGER s
a new start time to execute the save request.

For scheduler option DECSCHEDULER use the RUN command to resubmit the s
request:
SCHEDULE> RUN job-name/USER=ABS

Where job-name is the name of the On-Demand save request.

For scheduler option EXT_QUEUE_MANAGER use the appropriate command to
the job.

– Daily - Executes a save request once per day according to the option specified for
Time.

– Weekly Full/Daily Incremental - This scheduling option enables you to create a sin
save request that executes a full backup operation once per week on the day spec
and an incremental backup operation for each subsequent day after the full backu
operation is successful. ABS performs the full backup operation on a fixed day of
week during the 7-day cycle.

The Weekly Full/Daily Incremental Process:

For example, if the save request starts the full backup operation on Monday, ABS
always perform the full backup operation on Monday for that particular save reque
This happens even if some of the subsequent incremental backup operations fail.

Example A:

If that full backup operation fails, the cycle is repeated until a successful, full back
operation is achieved. ABS considers success and qualified success as a success
completed operation. ABS considers all other status as a failed operation.

Day Type

Monday Full

Tuesday Level 1

Wednesday Level 2

Thursday Level 3

Friday Level 4

Saturday Level 5

Sunday Level 6

Monday Full
 Creating Save Requests 9–7

Creating Save Requests
9.3 When to Save Data

 spec-

 and

time
Example B:

Note

If you are manually setting up your 3rd party scheduler to skip special days, ABS skips
the next level of an incremental backup operation. In Example B, ABS skips Sunday
and does not perform the Level 6 incremental backup operation. ABS resumes the full
backup operation again on Monday, and the schedule once again repeats itself.

Notice also in Example B that ABS repeats the full backup operation until a successful full
backup operation is achieved on Wednesday. If one of the incremental backup operations
fail, ABS skips to the next level of the incremental backup operations. Unlike repeating the
full backup operation, ABS does not repeat the same level of incremental backup operations
during the 7-day cycle.

In the Example B, the Level 4 incremental backup operation failed on Friday. On Saturday,
ABS resumes with a Level 5 incremental backup operation. However, the contents of the
incremental backup operations are correct because ABS will back up all new or modified
files since the last successful full backup or the last successful lower level incremental
backup operation.

The save log file will contain the following backup command issued by ABS for Saturday,
05-APR-1997:

$ BACKUP/.../SINCE=”03-APR-1997 02:00:00.00”

Because the last successful lower level incremental backup operation was performed on 03-
APR-1997, all changes to any file since the date and time specified in the BACKUP com-
mand are included in the backup operation.

– Weekly - Executes the save request once per week according to the date and time
ified for the start time.

– Biweekly - Executes the save request once every two weeks according to the date
time specified for the start time.

– Monthly - Executes the job the first time on the date and time specified in the start
field. Subsequent jobs are scheduled on the first day of each month.

Day Date and Time Run Type Result

Monday 31-MAR-1997 02:00 Full Failure

Tuesday 01-APR-1997 02:00 Full Failure

Wednesday 02-APR-1997 02:00 Full Success

Thursday 03-APR-1997 02:00 Level 3 Success

Friday 04-APR-1997 02:00 Level 4 Failure

Saturday 05-APR-1997 02:00 Level 5 Success

Sunday 06-APR-1997 02:00 Assume skipping this day using a 3rd
party scheduler

Monday 07-APR-1997 02:00 Full Success
Creating Save Requests 9-8

Creating Save Requests
9.4 Where and How

 time
onth

 start
onths.

 time
ar.

up
ation.
t full
 of

p
kup
ince

 a

d-

ific
lid

a job.
mine

he

 prod-
it
nual

ives to

licies,

opera-
See
ol-

o to
 and
– Quarterly - Executes the job the first time on the date and time specified in the start
field. Subsequent jobs are scheduled to execute on the first day of the quarter (3 m
period).

– Semi-annually - Executes the job the first time on the date and time specified in the
time field. Subsequent jobs are scheduled to execute on the first day of the next m

– Annually - Executes the job the first time on the date and time specified in the start
field. Subsequent jobs are scheduled to execute on the first day of the calendar ye

– Log-2 - ABS executes a full backup operation on day 1, and an incremental back
operation on day 2. On day 3, ABS executes an extended incremental backup oper
An extended incremental backup operation backs up any file modified since the las
or extended incremental backup operation. See Appendix D for an illustrated view
Log-n backup schedules.

– Log-3 - ABS executes a full backup operation on day 1, and an incremental backu
operation on days 2 and 3. On day 4, ABS executes an extended incremental bac
operation. An extended incremental backup operation backs up any file modified s
the last full or extended incremental backup operation.

Advantages of Log-n backup operations:

Performing Log-n backup operations require less restore operations to fully restore
lost or corrupted disk volume. The higher the number of Log-n, the less restore opera-
tions you need to perform. Log-n backup operations are configured on a 32-day sche
ule. See Appendix D for an illustrated view of Log-n backup operations.

– Explicit Interval - This option enables you to submit the save request using a spec
scheduler interval. If you select Explicit, you must enter a scheduler time format va
for the scheduler being used.

– Never - Never submits the save request and does not call the scheduler to create
For example, you may need to create one or more save requests before you deter
their schedule. To submit the save request, modify the save request and change t
scheduling option.

Depending on the selected scheduling option and the use of a 3rd party scheduler
uct, the Explicit Interval option allows to specify more flexible intervals. The Explic
Interval is passed as a string to the scheduler in use. Consult your scheduler’s ma
for more information.

9.4 Where and How
ABS enables you to create and use specific policies that define which volumes and tape dr
use for save requests, and in what type of environment to execute the save requests.

A save request must use a storage policy and an execution policy. ABS supplies default po
but you can use different policies if you so choose.

• Storage Policy - A storage policy defines the volumes and tape drives to use for save
tions. It also defines how long to retain the data and when to create new volume sets.
Chapter 7, Creating Storage Policies for instructions about setting up data retention and v
ume consolidation criteria.

• Execution Policy - An execution policy defines the environment in which to execute the
save request, such as what context to run the save request (user context or ABS), wh
notify when the save request completes, under which error conditions to notify a user,
so forth. See Chapter 8, Creating Environment Policies for more details.
 Creating Save Requests 9–9

Creating Save Requests
9.5 Save Request Access Control

ither
ancel

ing

or
To change the storage policy or execution policy, click on the box next to each policy and select
one of the policies displayed in the list box.

9.5 Save Request Access Control
The Save Request Access Control option enables you to authorize other users to access the save
request, and to enable those users with specific access controls.

The default is the user who creates the save request.

9.6 Submitting the Save Request
Once you have entered all of the information for the save request, click OK on the main Save
Request screen to submit the save request to ABS policy database.

Result:
ABS displays the Submit Save Request screen, this screen contains the basic information for the
save request.

• Click Submit to submit the save request.

• Click Cancel to cancel to submit operation.

If you click Cancel, the main screen reappears with the information you entered. You e
can modify this information and resubmit the save request, or you can click Cancel to c
creating the save request.

Table 9–3 Enabling Access To An ABS Save Request

Step Action

1. Click Add...

2. Click Node Name to add the users’s node name

3. Click User Name to add the user’s name

4. Click the box next to the access control that you want to enable for the user you are add
or modifying:

• Read - Users with Read access control can show a save request.

• Write - Users with Write access control can show a save request.

• Delete - Users with Delete access control can delete the save request.

• Set - Users with Set access control can modify any attribute of the save
request, including access control.

• Show - Users with Show access control can show the save request

• Control - Users with Control access control can modify the access control f
the save request, but not any of its other attributes.

5. Once you have entered the information for the save request, click OK on the main window
to submit the save request to ABS policy database.

Result:
ABS displays the Submit Save Request window, this window contains the basic informa-
tion for the save request. See Section 9.6 for details about submitting a save request.
Creating Save Requests 9-10

lt,
tore

0–1.
10
Creating Restore Requests

Restore requests are ABS policy objects that define the data that you want to restore. A restore
request references an ABS catalog that contains the backup information about that data. It also
uses an ABS environment policy that defines the conditions under which the restore request will
execute.

10.1Restore Request Name
Each restore request has a unique name and is made of alphanumeric characters, hyphens (-),
underscores (_), or a combination thereof. The default restore request name is the user name
appended by the current date and time.

To change the default restore request name:

Step 1. Double-click the default restore request name to select it (the name becomes high-
lighted)

Step 2. Enter the new restore request name

Character Limit:

A restore request name cannot exceed 40 characters. Because the matching log file name is the
restore request name appended with eight additional characters, it is recommended that the
restore request name does not exceed 32 characters.

10.2What Data To Restore
Use this option to specify the file name, disk name, or set of file or disk names that you want to
restore:

• File names can be OpenVMS, Oracle Rdb, UNIX, or NT file names.

• Disk names can be OpenVMS or NT disk names.

Upon initial creation of a new restore request, the What Data To Restore area is, by defau
blank. Once you have added a file name or disk name, it appears in the What Data To Res
area.

To add a file name, disk name, or a set of file or disk names, use the procedure in Table 1

Table 10–1 Adding Disk or File Names To A Restore Request

Step Action

1. Click Add... in the What Data To Restore area.

Result:
ABS displays the What Data To Restore window and defaults to the What to Restore option.

2. In the left-hand column, select the type of data to restore. For example, to restore an entire
OpenVMS disk, click Entire OpenVMS Disk. To restore an NT file, click NT Individual File.
 Creating Restore Requests 10–1

Creating Restore Requests
10.2 What Data To Restore

e file

see

Table 10–2 describes how to enter the correct syntax for a restore request according to th
type.

3. Enter the file name or disk name that you want to restore. You may enter multiple file or disk
names (up to eight) as a comma-separated list. However, to add a list of comma-separated file
names, they must all be the same file type (OpenVMS, Oracle Rdb, NT, Or UNIX).

Note:
To correctly enter the disk names and file names for the restore request, see Table 10–2.

Restrictions:
For a list of restrictions regarding adding disk names and file names to a restore request,
Section 10.2.1

4. To exclude a specific file or set of files from the restore request, click on the box Data to
Exclude and enter the file name. For example, enter *.COM to exclude all files with a .COM
file extension.

Table 10–2 Entering The Correct Syntax For A Restore Request

File Type Syntax

VMS Files To restore an entire OpenVMS disk, enter the disk name and include the trailing
colon:

DISK$USER1:

To restore an individual OpenVMS file or set of files, select Individual OpenVMS
Files in the left-hand column and enter the file name or file names using the follow-
ing syntax:

DISK$1:*.COM,DISK$2:*.COM

Note:
OpenVMS disk and file names are not case-sensitive.

Oracle Rdb
Database

To restore an Oracle Rdb database, click Rdb Database in the left-hand column,
select the Rdb version, and enter the disk and file name using the following syntax:

DISK$1:[USER1_RDB]SITE_PERSONNEL.RDB

Note:
Oracle Rdb disk and file names are not case-sensitive.

Oracle Rdb
Storage Area

To restore an Oracle Rdb storage area, click RDB Storage Area, select the RDB ver-
sion, and enter the disk name and file name using the following syntax:

DISK$1:[USER1_RDB]SITE_PERSONNEL.RDB/AREA=ACCOUNTING

Note:
Oracle Rdb disk and file names are not case-sensitive.

Table 10–1 Adding Disk or File Names To A Restore Request

Step Action
Creating Restore Requests 10-2

Creating Restore Requests
10.2 What Data To Restore

 such

disk
se

ase

d in
ries,
10.2.1 Restore Request Restrictions

ABS imposes the following restrictions when adding file names or disk names to a restore
request:

• You cannot specify more than eight file names or disk names per restore request.

• Wildcard characters are only valid for backup agents that support wildcard characters,
as the OpenVMS BACKUP Utility.

• Wildcard characters are not valid for an Oracle Rdb database or storage area:

– Oracle Rdb database - You cannot specify wildcard characters for an Oracle Rdb
name, directory specification, or file name. You must enter the name of the databa
exactly as it was entered on the save request.

Example:

DISK$USER1:[USER1_RDB]SITE_PERSONNEL.RDB

– Storage area - A storage area requires the disk name, directory name, Rdb datab
name, and the area. Wildcard characters are not permitted.

Example:

DISK_NAME:[DIRECTORY_NAME]RDB_DATABASE.RDB/AREA=AREA_NAME

• NT and UNIX files - Restoring NT or UNIX files is determined by the path name entere
What Data to Restore option. To restore a UNIX root directory and all of its subdirecto
enter the following path name:

Example:

UNIX To restore all the directory structures and files under a directory, click UNIX Disk
or Directory Tree in the left-hand column and enter the following syntax:

/usr/

To restore a specific UNIX file, click UNIX Individual File in the left-hand column
and enter the complete pathname:

/usr/usr1/file.c

Note:
UNIX file names are case-sensitive. You must enter the file name exactly as it was
originally created on the UNIX system.

NT To restore an NT directory and all the files underneath it, click NT Disk or Direc-
tory Tree and enter the following syntax:

c:\usr\

To restore an individual NT file, click NT Individual File in the left-hand column
and enter the file name using the following syntax:

c:\usr\usr1\file.c

Note:
NT file names are not case-sensitive.

Table 10–2 Entering The Correct Syntax For A Restore Request

File Type Syntax
 Creating Restore Requests 10–3

Creating Restore Requests
10.2 What Data To Restore

ave
e
files

ave

cify
d in
et.

gical
vice
ical
 the

disk

iling

t take
/usr/

• If you need to restore a complete directory structure for an NT client system, and the s
request was NT Disk or Directory Tree, then you must perform the same type of restor
operation. If you do not create the same type in this situation, ABS will not restore the
located in the top-level directory.

Example:

$ ABS SAVE “C:\TEST1”/OBJECT_TYPE=WINDOWS_NT_FILES_GTAR/SOURCE=NTNODE/FULL -
$ ABS RESTORE “C:\TEST1”/OBJECT_TYPE=WINDOWS_NT_FILES_GTAR/SOURCE=NTNODE -
_$ /FULL

You can, however, select NT Individual File to restore individual NT files saved from the
NT Disk or Directory Tree type of save request.

• Bound volume set - To restore a bound volume set:

– You must enter the What Data to Restore option exactly as it was entered on the s
request.

– You must use the Restore To option to restore a bound volume set. You must spe
the entire list of disk names in the bound volume set. The number of disks specifie
the output location must match the number of disks in the original bound volume s
See Section 10.5 for a description of the Restore To option.

Note

You can specify a comma-separated list of file or disk names
DISK$USER1:,DISK$USER2:,DISK$USER3:

– You either must dismount these output disks or mount them /FOREIGN.

• Concealed logical names - If the What Data to Restore option contains a concealed lo
name, the concealed logical name must be a system-wide logical name or physical de
name. Save and restore requests translate the logical names to the first concealed log
name found. However, if this concealed logical name is in the process table, access to
logical name is not available to ABS, and the restore operation will fail.

Recommendation:
Unless you are restoring an entire OpenVMS disk, specify the full path name. Include the
name, directory name, and file name.

Examples:

DISK$1:[USER1]LOGIN.COM

If you are restoring an entire OpenVMS disk, specify only the disk name and include the tra
colon:

DISK$USER1:

10.2.2 Pre and Post- Processing Commands

Use the pre- and post- processing commands to submit commands (platform specific) tha
action either before or after each file or disk name entered for the restore request.

Enter a command string for these options:

Preprocessing command:
Creating Restore Requests 10-4

Creating Restore Requests
10.2 What Data To Restore
$ @SHUTDOWN_DB.COM

Postprocessing command:

$ @STARTUP_DB.COM

ABS generates these logical names for use within a prologue or epilogue (pre- or post- process-
ing command) for a SAVE or RESTORE request. A set of "_n" logicals will be generated for
each include specification in the request. The series will begin with 1 and continue for each
include specification within the request. These may be referenced in a command procedure
which is executed as a prologue or epilogue for the save or restore request.

These logical names are defined in the process JOB table. They exist during the save request.
Once the save request is complete the logicals will no longer be available.

ABS_OS_OBJECT_SET_n Include specification.

ABS_OS_OBJECT_TYPE_n Object type for the object set.

ABS_OS_DMT_n Data movement type for the object set. Valid val-
ues are FULL, SELECTIVE, INCREMENTAL.

ABS_OS_INCREMENTAL_LEVEL_n If the data movement type is INCREMENTAL,
the ABS_OS_INCREMENTAL_LEVEL_n value
defines the incremental level of the save request.
The string will be in the format "Level n Opera-
tion" where n is the incremental level. If the data
movement type is FULL the incremental level
will be "Full Operation". If the data movement
type is a base operation the incremental level will
be "Base (Full) Operation". If the data movement
type is selective the incremental level will be
"Selective Operation".

ABS_OS_VOLUME_SET_n Name of the volume set used for this request. If
the request is to disk the value will be the disk and
directory the saveset has been written to.

ABS_OS_START_RVN_n The starting Relative Volume Number within the
volume set that this object set references. The
value of this logical will be 0 if the request is
going to disk.

ABS_OS_LAST_RVN_n The relative volume number within the volume
set that was last used to save the saveset created
by this object set. The value of this logical will be
0 if the request is going to disk. Note that this log-
ical will not be valid for the prologue command.
For the prologue command the value will be "Not
yet determined" It will be defined for the epilogue
command.

ABS_OS_START_FILE_POSITION_n The starting file position of the saveset on the rel-
ative volume number within the volume set. This
logical will indicate how many tapes marks to
skip to find the start of the saveset on the volume.
The value of this logical will be 0 if the request is
going to disk.
 Creating Restore Requests 10–5

Creating Restore Requests
10.3 When

80

fully.

ng

o the
.

 are
b,

dard
00

u to

ed
Restrictions:

• When entering the pre- or postprocessing command, an OpenVMS string is limited to
characters.

• You can only enter one pre- and post- processing command per restore request.

• A postprocessing command will execute only if the restore request completes success

Default:
If you do not assign a string to this option, ABS does not execute any pre- or postprocessi
commands.

10.2.3 Selection Criteria

Enter the specific selection criteria for the OpenVMS disk or file name the you are adding t
restore request. You can constrain the restore request by specifying a before or since date

• Before - Restores any version of the file saved before the specified date.

• Since - Restores any version of the file saved since the specified date.

• Latest Copy - Restores the latest copy of the file saved.

10.2.4 Agent Qualifiers

Enter any backup agent specific qualifiers for the restore request. Backup agent qualifiers
determined by the type of file or disk that you are restoring, such as OpenVMS, Oracle Rd
UNIX, or NT.

10.3When
To execute the restore request, follow these steps:

Step 1. Click Start Time

Step 2. Select NOW, TOMORROW, NEVER, or OpenVMS Time.

If you select OpenVMS time, click the date box and enter the date and time in stan
OpenVMS format. For example, to start the save request on March 13, 2000 at 2:
p.m, use the following format:

13-MAR-2000 14:00

10.4Where and How
ABS enables you to specify a storage policy to use for the restore request, and enables yo
specify under what conditions to execute the restore request.

ABS_OS_SAVESET_NAME_n The name of the saveset that has been generat
by ABS. This saveset contains the data saved
based upon the object set.

ABS_OS_SAVESET_FORMAT_n The format of the saveset. This will determine
whether the saveset is in a VMS backup format,
gtar format, or RMU backup format.

ABS_OS_STATUS_n The ABS status of the include specification
request.
Creating Restore Requests 10-6

Creating Restore Requests
10.5 Restore To

me

data.

n.

ach

rent
b

racle
The storage policy option allows you to specify the name of the storage policy that contains the
data that you want to restore. Specifying a storage policy name instructs ABS to search for the
data in ABS catalog assigned to that storage policy.

Note

If multiple storage policies reference the same ABS catalog, and more than one storage
policy contains the same file or disk name, ABS restores the most recent version of the
file or disk even though it may not be located in the specified storage policy.

Default storage policy:
If you do not specify this option, ABS searches the default storage class, SYSTEM_BACKUPS.

An environment policy defines under what conditions to execute the restore request. For exam-
ple, some conditions may be in what context to run the restore request (in the context of the user
or ABS), who to notify when the restore request completes, under which error conditions to
notify a user, and so forth. See Chapter 8, Creating Environment Policies for more details.

Requirement:
A restore request must use a storage policy and an environment policy. ABS provides default
policies, but you can use different policies if you so choose. Click on Storage Policy and Execu-
tion Policy and select one of the policies displayed in the list box.

10.5Restore To
The Restore To option enables you to specify an output location for the restored data. Use the
following procedure:

Step 1. Click Restore To...

Step 2. Enter the output location for the restored data. The location consists of the following
items:

– Disk Name - The disk name for the location of the restored data. For a bound volu
set, specify each disk in the bound volume set in a comma-separated list.

– Directory Specification - The name of the directory where you want to restore the

Recommendation:
Do not specify the file name. Specify only the disk name and directory specificatio
ABS restores the file to its original name. This prevents multiple files from being
restored on top of one another.

Restrictions:
If you are restoring a bound volume set, you must specify the output location for e
disk device in the bound volume set.

Requirement:
Include the colon as part of the disk name.

Example:
DISK$USER1:,DISK$USER2:,DISK$USER3:

If you are restoring a multiple file Oracle Rdb database, you cannot specify a diffe
output location. You can change the output location only for a single file Oracle Rd
database.

The directory specification for the Oracle Rdb database must already exist. The O
 Creating Restore Requests 10–7

Creating Restore Requests
10.6 Restore Request Access Controls

dow

tion
el the

a-

he
RMU Backup Utility cannot create a new directory.

Do not use the option for NT restore operations. The Restore To option is not valid for
NT restore operations.

10.6Restore Request Access Controls
Access Control option enables you to authorize other users access to the restore request, and to
enable those users with specific access controls.

The default access is set to the user who creates the restore request. To add other users and
access controls, see the procedure in Table 10–3:

10.7Submitting the Restore Request
Once you have entered all the information for the restore request, click OK on the main win
to submit the restore request to ABS policy database.

Result:
ABS displays the Submit Restore Request window, this window contains the basic informa
for the restore request. Click Submit to submit the restore request, or click Cancel to canc
submit operation. If you cancel, the main window reappears and you can modify any inform
tion, or click Cancel to cancel creating the restore request.

Table 10–3 Enabling Access Control To A Restore Request

Step Action

1. Click Add...

2. Add the node name and the user name:

NODE01::SMITH

3. To enable the desired access controls, click the box next the control. When selected, the box is
highlighted:

• Read - Users with Read access control can show the restore request.

• Write - Users with Write access control can modify the restore request.

• Delete - Users with Delete access control can delete the restore request.

• Set - Users with Set access control can modify any attribute of the restore
request, including access control.

• Show - Users with Show access control can show the restore request

• Control - Users with Control access control can modify the access control for t
restore request, but not any of its other attributes.
Creating Restore Requests 10-8

i-
r or
which

S for

eeds to

ing
e jobs

 or
base.

ich
uler’s

is
e
11
Scheduling Requests

Save and restore requests are executed by calling the command procedure
ABS$SYSTEM:COORDINATOR.COM with the request’s universal ID as parameter 1. Typ
cally this is done in a detached process created either by using OpenVMS Queue Manage
through a 3rd party scheduler program. ABS supports five options for scheduling requests
are all described in this chapter.

Note

The internal queue manager scheduling option is the only scheduling option available
with an ABS-OMT license.

11.1 Setting the Scheduler Interface Option
During installation the user is asked to decide on the scheduler interface to be used by AB
scheduling requests. The scheduler interface chosen is stored in the file
ABS$SYSTEM:ABS$POLICY_CONFIG.DAT:

! Scheduler option, must be one of the list below:
! (written by KITINSTAL at installation)
! NONE
! DECSCHEDULER
! EXT_SCHEDULER
! INT_QUEUE_MANAGER
! EXT_QUEUE_MANAGER
!
ABS$SCHEDULER = INT_QUEUE_MANAGER

This file can be edited and the scheduler setting can be changed using a text editor. ABS n
be restarted for the change to take effect.

11.2 Changing between Scheduler Interface Option
Before changing the scheduler interface option from either EXT_SCHEDULER or
DECSCHEDULER you have to make sure that ABS jobs are no longer being scheduled us
the old scheduler interface. Either delete all ABS jobs from the scheduler database or set th
on hold.

No preliminary change is necessary when switching from either INT_QUEUE_MANAGER
EXT_QUEUE_MANAGER because ABS jobs do not remain in the Queue Manager’s data

Once ABS has been restarted and the new scheduler interface option is either
EXT_SCHEDULER or DECSCHEDULER you have to set the start time for all requests wh
should be scheduled. At this point all save requests should become jobs in the new sched
database.

If switching to either INT_QUEUE_MANAGER or EXT_QUEUE_MANAGER no extra step
necessary. ABS will call the Queue Manager when necessary to create the batch job for th
request.
 Scheduling Requests 11–1

Scheduling Requests
11.3 Scheduler Interface Option INT_QUEUE_MANAGER
11.3 Scheduler Interface Option INT_QUEUE_MANAGER
This option causes ABS to call the OpenVMS Queue Manager to create, delete, modify and
show jobs for save and restore requests. All jobs are queued to a batch queue called
ABS$<node_name> (e.g. ABS$FUDGE) where node_name is the execution node name for the
request. With this option the policy engine has a scheduler function active which calls the Open-
VMS Queue Manager to create jobs for requests which are due to run.

For a request which is scheduled to run on a node which is not the current node and which is not
in the current OpenVMS cluster, ABS sends a message to the ABS$COORD_CLEAN process
on the remote node. The batch job for the request is then created, deleted or modified on the
remote node by the ABS$COORD_CLEAN process.

No further setup is necessary to use this option. On your ABS VMS Client nodes, be sure that
the ABS$COORD_CLEAN process is running and the ABS$<node_name> queue is working.

Information about ABS scheduling activities is logged into the
ABS$LOG:ABS$POLICY_<node_name>.LOG file. To receive more information in the log
file, you may define a logical:

$ DEFINE/SYSTEM ABS_SCHEDULER_LOGGING TRUE

An OPCOM message is also sent to the TAPE operator in case of ABS scheduling failures.

This is the default scheduler interface option for ABS.

11.4 Scheduler Interface Option EXT_QUEUE_MANAGER
This option causes ABS to execute the command procedure ABS$SYSTEM:
ABS$EXT_QUEUE_MANAGER.COM. The command procedure uses DCL to interface with
the OpenVMS Queue Manager to either create, delete, modify or show a batch job for a request.
With this option the policy engine has a scheduler function active which calls the command pro-
cedure to create jobs for requests that are due to run.

The template file ABS$SYSTEM: ABS$EXT_QUEUE_MANAGER.TEMPLATE provided
during installation should be copied to ABS$SYSTEM:ABS$EXT_QUEUE_MANAGER.COM
and can be used as-is or, can be modified if necessary. However, caution needs to be taken if the
template command procedure is modified. A failure in the command procedure could cause save
or restore requests to fail. For debugging purpose, the command procedure is run in a subprocess
of the ABS$POLICY process. It creates a logfile called
ABS$LOG:ABS$EXT_QUEUE_MANAGER_<request_name>.LOG. This log may be used for
troubleshooting problems with the command procedure.

Note

During installations, a new template file will be provided, however, your command
procedure will not be overwritten.

For a request which is scheduled to run on a node which is not the current node and which is not
in the current OpenVMS cluster, ABS sends a message to the ABS$COORD_CLEAN process at
the remote node. The ABS$COORD_CLEAN process then spawns a subprocess to execute the
local copy of ABS$SYSTEM: ABS$EXT_QUEUE_MANAGER.COM.

No further setup is necessary to use this option. On your ABS VMS Client nodes, be sure that
the ABS$COORD_CLEAN process is running and the ABS$<node_name> queue is working

This option should be used as an alternative to INT_QUEUE_MANAGER if the OpenVMS
Queue Manager should be used to execute requests but modifications are necessary to allow for
Scheduling Requests 11-2

Scheduling Requests
11.5 Scheduler Interface Option EXT_SCHEDULER
a more sophisticated schedules. For example a save request should never run on the first day of a
month.

See the description in the template procedure about the input and output parameters.

Information about ABS scheduling activities is logged into the
ABS$LOG:ABS$POLICY_<node_name>.LOG file. To receive more information in the log
file, you may define a logical:

$ DEFINE/SYSTEM ABS_SCHEDULER_LOGGING TRUE

An OPCOM message is also sent to the TAPE operator in case of ABS scheduling failures.

11.5 Scheduler Interface Option EXT_SCHEDULER
This option causes ABS to execute the command procedure ABS$SYSTEM:
ABS$EXT_SCHEDULER.COM. The command procedure uses DCL to interface with a 3rd
party scheduler product to either create, delete, modify or show a scheduled job for a request.

The template file ABS$SYSTEM: ABS$EXT_SCHEDULER.TEMPLATE provided during
installation is an example of how to interface with POLYCENTER Scheduler. The template file
should be copied to ABS$SYSTEM:ABS$EXT_SCHEDULER.COM. This command proce-
dure needs to be carefully adjusted to work with any other scheduler product. A failure in the
command procedure could cause save or restore requests to fail. The command procedure is run
in a subprocess of the ABS$POLICY process. It creates a log file called
ABS$LOG:ABS$EXT_SCHEDULER_<request_name>.LOG. This log may be used for trou-
bleshooting problems with the command procedure.

Note

During installations, a new template file will be provided, however, your command
procedure will not be overwritten.

In contrast to EXT_QUEUE_MANAGER, ABS calls this interface only once to create a new job
for a request. ABS assumes that the external scheduler does its own rescheduling of requests and
can schedule request to run on a remote node.

Information about ABS scheduling activities is logged into the
ABS$LOG:ABS$POLICY_<node_name>.LOG file. To receive more information in the log
file, you may define a logical:

$ DEFINE/SYSTEM ABS_SCHEDULER_LOGGING TRUE

An OPCOM message is also sent to the TAPE operator in case of ABS scheduling failures.

This option should be used to tie ABS into an existing scheduler product.

11.6 Scheduler Interface Option DECSCHEDULER
This option causes ABS to call the POLYCENTER Scheduler V2.1b (DECscheduler) program-
ming interface to create, delete, modify or show a job for a request.

Refer to the POLYCENTER Scheduler documentation on how to setup and manage the sched-
uler.

This option is qualified to be used with POLYCENTER Scheduler V2.1b only. However, it may
be used with different versions of DECscheduler but without any further guarantee to work cor-
rectly.
 Scheduling Requests 11–3

Scheduling Requests
11.7 Scheduler Interface Option NONE

equire-

 due

pen-
 the
cess
est to

a

-
com-

atch
 cases

a

r-

the
-

r a 3rd
mands
SYS-
11.7 Scheduler Interface Option NONE
This option causes ABS to NOT call any scheduler to create, delete, modify or show a job for a
request.

The SHOW SAVE/SYMBOLS and SHOW RESTORE/SYMBOLS commands provide a means
of obtaining scheduling information for a request and a means to execute that request through the
following DCL command line sequence:

$ ABS SHOW SAVE my_request/SYMBOLS
$ SUBMIT ABS$SYSTEM:COORDINATOR /PARAMETER=”’’ABS_UID’”/USER=ABS

This executes the request ‘my_request’ immediately on the current node.

This option should be used if neither of the other options can be used or there is a simple r
ment for executing requests.

11.8 Scheduler Interface Internals
ABS calls the scheduler interface from process ABS$POLICY.

Option INT_QUEUE_MANAGER: ABS uses the programming interface to the OpenVMS
Queue Manager. A scheduler thread is started within the ABS$POLICY process to submit
requests to the OpenVMS Queue Manager. The request will be submitted to batch queue
ABS$<execution_node>. If the batch queue is available on the local node or is within the O
VMS cluster the ABS$POLICY process calls the local Queue Manager. For remote nodes
ABS$POLICY process forwards the request via DECnet to the ABS$COORD_CLEAN pro
running on the execution node. The ABS$COORD_CLEAN process then submits the requ
the local batch queue ABS$<execution_node>.

Failures to call the OpenVMS Queue Manager will be logged in
ABS$LOG:ABS$POLICY_<node_name>.LOG or
ABS$LOG:ABS$COORD_CLEANUP_<node_name>.LOG. The scheduler thread in the
ABS$POLICY process sends OPCOM messages to operator TAPES if it fails to schedule
request.

Option EXT_QUEUE_MANAGER: This option uses the same method as
INT_QUEUE_MANAGER to schedule jobs locally or remote. But instead of calling the pro
gramming interface of the OpenVMS Queue Manager, a subprocess is created to run the
mand procedure ABS$SYSTEM:ABS$EXT_QUEUE_MANAGER.COM. The command
procedure is responsible to issue the DCL commands to create, delete, modify and show b
jobs. Also the command procedure has to return status about the commands and in some
additional information. See the command procedure file for more details.

Failures to execute the command procedure will be logged in
ABS$LOG:ABS$POLICY_<node_name>.LOG or
ABS$LOG:ABS$COORD_CLEANUP_<node_name>.LOG. The scheduler thread in the
ABS$POLICY process sends OPCOM messages to operator TAPES if it fails to schedule
request. Each activation of the command procedure creates a logfile
ABS$LOG:ABS$EXT_QUEUE_MANAGER_<request_name>.LOG. The request name po
tion of the logfile name maybe truncated to a valid OpenVMS file specification.

Option EXT_SCHEDULER: This option uses the same method as
EXT_QUEUE_MANAGER to interface with the scheduler. A subprocess is created to run
command procedure ABS$SYSTEM:ABS$EXT_SCHEDULER.COM. The command proce
dure is responsible to issue the DCL commands to create, delete, modify and show jobs fo
party scheduler product. Also the command procedure has to return status about the com
and in some cases additional information. See the command procedure template file ABS$
TEM:ABS$EXT_SCHEDULER.TEMPLATE for more details. In contrast to option
Scheduling Requests 11-4

Scheduling Requests
11.8 Scheduler Interface Internals
EXT_QUEUE_MANAGER, ABS assumes that the 3rd party scheduler product reschedules all
requests locally and remote. So ABS will not call the scheduler if a request is due to run.

Failures to execute the command procedure will be logged in
ABS$LOG:ABS$POLICY_<node_name>.LOG. Each activation of the command procedure
creates a logfile ABS$LOG:ABS$EXT_SCHEDULER_<request_name>.LOG. The request
name portion of the logfile name maybe truncated to a valid OpenVMS file specification

Option DECSCHEDULER: ABS uses the programming interface to POLYCENTER Sched-
uler V2.1b. ABS calls this scheduler only once locally to create any request since this scheduler
product can reschedule jobs locally and remote.

Failures to call the POLYCENTER Scheduler will be logged in
ABS$LOG:ABS$POLICY_<node_name>.LOG.
 Scheduling Requests 11–5

1.
12
Modifying and Deleting ABS Policies

and Requests

ABS allows you to modify and delete ABS policies and requests that already exist in ABS policy
database. To modify polices and requests, see the requirements listed in Table 12–1.

Note

The creation of storage and environment policies are not available with an ABS-OMT
license. Therefore if you delete the default policies, you can not recreate the policies
with the GUI. Use the following command to recreate the storage and environment
policies:

$ RUN ABS$SYSTEM:LITE_DB_INIT.EXE

To modify or delete an ABS policy or request, invoke ABS GUI as described in Chapter 6, Dis-
playing ABS Graphical User Interface. Click Modify or Delete Requests & Policies.

Result:
ABS displays the Modify or Delete Requests And Policies window, illustrated in Figure 12–

Table 12–1 Requirements for Modifying and Deleting Policies and Requests

To modify or delete... You must ...

Storage Policies Have ABS_CREATE_STORAGE_CLASS access right identifier
enabled on your user process

Environment Policies Have ABS_CREATE_EXECUTION_ENV access right identifier
enabled on your user process

Any policy or request • Have the SYSPRV OpenVMS privilege enabled on your
user process

• Have the CMKRNL OpenVMS privilege enabled on your
user process

• Be logged onto ABS server node.
 Modifying and Deleting ABS Policies and Requests 12–1

Modifying and Deleting ABS Policies and Requests
12.1 Select Request or Policy
Figure 12–1 Modify or Delete Requests And Policies Window

12.1Select Request or Policy
Use the following procedure to modify or delete an exiting ABS request or policy.

Table 12–2 Modifying or Deleting an ABS Policy or Request

Step Action

1. Click the button next to the type of request or policy that you want to modify or delete in the
Select Request or Policy area.

Result:
Depending upon your selection, a list of policies or requests are displayed in the lower area of
the window.
Modifying and Deleting ABS Policies and Requests 12-2

Modifying and Deleting ABS Policies and Requests
12.1 Select Request or Policy
2. Select the request or policy from the list; click Modify or Delete.

IF you selected ...

Delete

Modify

THEN ...

ABS displays a confirmation box.
Click Yes to delete the request or policy.
Click Cancel to abort the delete operation.

If a storage policy or execution policy has catalog references to it, ABS
will display a window and ask if you are sure you want delete the pol-
icy.

If you answer yes and delete a storage policy that has catalog refer-
ences, you will not be able to restore the data that was saved using that
particular storage policy. ABS will display a message that warns you
about this situation.

ABS displays the modification screen for the policy or request you
selected. Depending upon the type of request or policy that you are
modifying, refer to one of the following Chapters:

Chapter 7, Creating Storage Policies

Chapter 8, Creating Environment Policies

Chapter 9, Creating Save Requests

Chapter 10, Creating Restore Requests

3. When you have completed the modification or deletion, click OK.

Result:
ABS displays an informational window that contains the current settings for the request or pol-
icy.

4. Click Submit to modify the request or policy, click Cancel to abort the modify operation.

Table 12–2 Modifying or Deleting an ABS Policy or Request

Step Action
 Modifying and Deleting ABS Policies and Requests 12–3

13
Looking Up Saved Data

From the Lookup Saved Data option, you can find data that was previously saved using ABS or
SLS. The following sections describe how to use the Lookup Saved Data option.

13.1Data to Lookup
Click the box next to Data to Lookup and enter the disk or file name that you want to find. You
can enter up to eight disk or file names as a comma-separated list.

Recommendation:
It is recommended that you do not mix file types in one lookup operation. For example, do not
specify OpenVMS disk or file names along with UNIX or NT disk or file names in one lookup
operation.

The file name syntax is dependent upon the file type, described in Section 13.1.1

13.1.1 File Type

This option allows you to specify the type of file to search for. The default is All, but this type of
lookup is not recommended. Instead, click the box next to File Type and select the type of file,
such as VMS files. See Section 13.1.2 to determine how to correctly enter the lookup syntax.

13.1.2 Entering the Correct Lookup Syntax

Table 13–1 describes how to enter the correct syntax for the lookup operation.

Table 13–1 Entering The Correct Syntax For A Lookup Operation

File Type Syntax

All Any of syntax definitions per file types described in this table.

Note:
The lookup operation takes longer if you select this option. Because the lookup opera-
tion is not constrained to a specific file type, the search takes much longer because it is
looking through all file types before locating the data.

VMS Files To find an OpenVMS disk name, select VMS files and enter the disk name:

DISK$USER1:

To find an OpenVMS individual file, enter OpenVMS file name:

DISK$USER1:[DIRECTORY]LOGIN.COM

Note:
OpenVMS file names are not case-sensitive.
 Looking Up Saved Data 13–1

Looking Up Saved Data
13.1 Data to Lookup

e-
13.1.3 Node of Original Data

This option enables you to specify the node name where saved data originally resided. Use the
following procedure to enter the node name:

UNIX To find an individual UNIX file, enter the syntax as shown in the following example:

/usr/users/smith/login

To find a UNIX directory, enter the following syntax:

/usr/users/abs/

To use a wildcard character (*) to find UNIX files, enter the following syntax:

/usr/users/*

Result:
This example will find all files and directories saved under the directory /usr/users. The
behavior of a UNIX wildcard lookup operation is similar to the UNIX command “ls -r
/user/users/*”.

Note:
UNIX file names are case-sensitive. You must enter the file name exactly as it was cr
ated on the UNIX system.

NT To find an NT file, use the following syntax:

C:\USERS\SMITH\TEMP.TXT

To find an NT directory, use the following syntax:

C:\USERS\SMITH\

To find NT files using a wildcard character (*), use the following syntax:

C:\USERS*

Result:
This example will find all files and directories saved under the directory C:\USERS\.
The behavior of an NT wildcard lookup operation is similar to the Windows NT com-
mand “DIR \USERS* /S” on the C drive.

Note:
NT file names are not case-sensitive.

Oracle Rdb
Database

To find an Oracle Rdb database name, select RDB_Vn.n_DATABASE and enter the
database file specification:

DISK$1:[ISER1_RDB}SITE_PERSONNEL.RDB

Note:
Oracle Rdb database file names are not case-sensitive.

Oracle Rdb Storage Area To find an Oracle Rdb storage area, select
RDB_Vn.n_STORAGE_AREA and enter the storage area specification using the fol-
lowing syntax:

DISK$1:[USER1_RDB]SITE_PERSONNEL.RDB/AREA=ACCOUNTING

Note:
Oracle Rdb Storage Area file names are not case-sensitive.

Table 13–1 Entering The Correct Syntax For A Lookup Operation

File Type Syntax
Looking Up Saved Data 13-2

Looking Up Saved Data
13.2 Submitting the Lookup Operation

d.

as pro-
Step 1. Click the box next to Node of Original Data.

Step 2. Click one of the node names displayed in the node name list, or click Other and enter
the node name in the box.

13.1.4 Storage or Catalog Name

If you know the storage policy name or catalog name where the saved data resides, you can con-
strain the search to that particular storage policy or catalog.

Restriction:
This option is mutually exclusive. You can select either a storage policy name or a catalog name,
but not both.

Note

You can assign the same catalog name to multiple storage policies. When more than
one storage policy contains the same saved data, and those storage policies reference
the same catalog name, ABS displays the saved data regardless of which storage policy
the data references.

13.1.5 Archived Dates to Search

Archived Dates to Search option enables you to constrain the lookup operation to an exact spec-
ified date, before a specified date, or after a specified date.

See Table 13–2 to constrain the lookup operation by a specified date.

Restriction:
If you are looking for data that was saved using SLS, only the On Exact Date option is vali
This is because SLS does not supply any other dates.

13.2Submitting the Lookup Operation
To submit the lookup operation once you have entered the correct data, use the following
cedure:

• Click OK to submit the lookup operation.

Table 13–2 Finding Saved Data By Date

To find data saved . . . Then . . .

 On an exact date 1. Click the selection box next to Date Match and select On Exact
Date

2. Enter the exact date in the box next to the Date Archived option.
To enter the correct date format, see Appendix B.

Before a specific date 1. Click the selection box next to Date Match and select On Or
Before

2. Enter the before date in the box next to the Date Archived
option. To enter the correct date format, see Appendix B.

After a specific date 1. Click the selection box next to Date Match and select On Or
After

2. Enter the after date in the box next to the Date Archived option.
To enter the correct date format, see Appendix B.
 Looking Up Saved Data 13–3

Looking Up Saved Data
13.2 Submitting the Lookup Operation

 in the
• Once ABS has located the saved data, ABS displays information about the saved data
Saved Data Found area.

• Click Cancel to cancel the lookup operation.
Looking Up Saved Data 13-4

14
Monitoring Job Status

ABS allows you to monitor the status of an active ABS job from the GUI. To view the status of
an active job, use the following procedure:

Step 1. From the system prompt, define the following logical name:

$ DEFINE/SYSTEM/EXEC ABS$MONITOR_UPDATE_INTERVAL 30

Result:
Causes ABS coordinator to update monitor information about any active jobs every 30
seconds.

Step 2. Display ABS GUI.

Step 3. Click Job Status from the main ABS GUI window.

Step 4. Click the job name that you want to check.

Step 5. Click Show Status.

Result:
ABS displays the status of the job.

Step 6. Click Stop if you want to stop displaying the job status. You can select another job as
described in Step 4. and Step 5.

Step 7. Click Close when you are finished.
 Monitoring Job Status 14–1

15
Creating ABS Catalogs

An ABS catalog contains historical information about ABS save operations. This historical
information includes the location of data that was saved using ABS. For this purpose, ABS pro-
vides a catalog named ABS_CATALOG.

Most businesses can operate efficiently using only ABS_CATALOG provided by ABS. How-
ever, your business needs may require you to create additional catalogs. Some of those business
needs may be:

• Speed of record insertion

• Speed of lookup operations

• Segregation of saved data

• Restoring data that was previously saved using Storage Library System for OpenVMS
(SLS)

This chapter contains the following information:

• Creating ABS catalogs

• Creating ABS catalogs for the purpose of restoring data saved using SLS

• Creating ABS staging catalogs

• Showing catalog objects

• Improving catalog performance

15.1Creating An ABS Catalog

To create an ABS catalog, follow these steps:

Step 1. Define the following symbol to run ABS catalog utility:

$ CATALOG_OBJ :== ABSSYSTEM:ABS_CATALOG_OBJECT

Step 2. Invoke the catalog utility symbol:

$ CATALOG_OBJ

After invoking the utility, the catalog utility program prompts for the following infor-
mation:

Function ([CREATE],SHOW,MODIFY,DELETE):
Catalog name: PRIVATE_CATALOG
Catalog type ([BRIEF],SLS,FULL_RESTORE):
Catalog owner [current_node::current_username]:
Use faster staging catalog operation ([YES],NO):

Catalog location [ABS$CATALOG]:
 Creating ABS Catalogs 15–1

Creating ABS Catalogs
15.1 Creating An ABS Catalog

ta-

ee

d.

a cat-

to

oing to
eans

orig-

aved.

. No
ORE
Default:
If you do not specify an answer to any of the options (except the catalog name), the catalog
object utility selects the defaults (enclosed in square brackets ([])). If ABS$CATALOG points to
a search list, the catalog files will be created in the location pointed to by the first element in the
search list.

Result:

• Places a new ABS catalog object named PRIVATE_CATALOG in the catalog object da
base

• Allows you to select a catalog object type (either BRIEF, SLS or FULL_RESTORE). S
section below if you select SLS.

• Specifies the owner as the current user on the current node unless otherwise specifie

• Allows you to enable faster staging catalog operation. See description below.

• The catalog files are placed at location ABS$CATALOG (a logical name search list).

You can specify a different device and directory for the new catalog files. To use such
alog you have to add a new search list element to the logical name ABS$CATALOG in
ABS$SYSTEM:ABS$SYSTARTUP.COM. You either restart ABS or, if you do not want
restart ABS at this point just modify the current definition of this logical using the DCL
DEFINE command.

For example:

$ DEFINE/SYSTEM/EXECUTIVE/NOLOG ABS$CATALOG -

ABS$ROOT:[CATALOG],DISK$BACKUPS:[ABS_CATALOGS]

This allows catalog files to be located in DISK$BACKUPS:[ABS_CATALOGS].

Restriction:
If you create an SLS ABS catalog type, you cannot enable staging.

• Creates the catalog file in ABS$CATALOG directory (not for SLS catalogs).

Requirement:
You must create a catalog on the node where the data resides (the data that you are g
back up), even if the data is going to be backed up to a drive on a remote node. This m
you must run the catalog object utility on the node where the backup operation will be
inated.

Example:

15.1.1 Creating a BRIEF type catalog

The BRIEF catalog type stores all information about save requests performed and all files s
It allows individual file lookups and restores. This is the default catalog type.

15.1.2 Creating a FULL_RESTORE type catalog

The FULL_RESTORE catalog type only stores information about save requests performed
information about individual filenames are stored in the catalog. The size of a FULL_REST

IF ... AND ... THEN ...

You are going to back up the
data on NODEA to a drive on
NODEB

The storage policy uses
the catalog named
PRIVATE_CATALOG

PRIVATE_CATALOG
must reside on NODEA.
Creating ABS Catalogs 15-2

Creating ABS Catalogs
15.1 Creating An ABS Catalog

tore

 SLS.
ns and

aved

SLS

or a

tions

le 15–1
catalog is drastically smaller than the BRIEF catalog type but you cannot restore individual files.
Save requests using this catalog type must be of type FULL and only specify a disk name. Stag-
ing does not apply to these catalogs.

You can still use the backup agent outside of ABS to do a selective restore.

For example:

$ BACKUP MKA500:01MAY20001234567. /SELECT=[MyDir]MyFile.Dat *

restores the file [MyDir]MyFile.Dat from save set 01MAY20001234567 to the current directory.

To view information about saved disks in a FULL_RESTORE catalog, use the ABS REPORT
SAVE_LOG command. The report shows you the volume ID and save set name used.

When a save request uses a FULL_RESTORE type of catalog, the following message is dis-
played in the save request log file:

"Full_Restore catalog type, individual object names will not be logged"

Restrictions:

An ABS FULL_RESTORE catalog imposes the following restrictions:

• You may only use a FULL_RESTORE catalog to do FULL save requests and FULL res
requests.

• You may not view the saved file information using the ABS LOOKUP command.

15.1.3 Creating An SLS Type Catalog

ABS allows you to create ABS catalogs solely for the purpose of restoring data saved using
These catalogs are not maintained in ABS database and are used only for restore operatio
not for save operations.

ABS catalogs that are created for SLS provide the following features:

• The ability to perform a ABS selective restore operation for data that was previously s
using SLS.

• The ability to perform a ABS lookup operation to search for data objects in an existing
history file.

• The ability to specify wildcard characters, such as an asterisk (*) or percent sign (%), f
ABS lookup operation that searches SLS history sets. You can also specify the ellipsis
within square brackets ([...]).

Restrictions:
An ABS catalog created for SLS restore operations imposes the following restrictions:

• You cannot restore Oracle Rdb databases saved using SLS.

• You cannot perform a full restore operation on an image backup that used SLS.

• You cannot perform a full restore operation with subsequent incremental backup opera
that used SLS.

To create a catalog for restoring data that was saved using SLS, see the procedure in Tab
 Creating ABS Catalogs 15–3

Creating ABS Catalogs
15.2 Showing a Catalog

ra-

ra-

ave
Table 15–1 Creating an ABS Catalog For SLS Restores

15.1.4 Creating a Catalog using Staging Operation

ABS allows you to enable staging for a ABS catalog. A catalog that provides staging improves
the performance of the save operation because the catalog entry for a saved file is first written to
a sequential disk file in ABS$CATALOG. Once the backup operation has completed a separate
process moves the entries from the staging catalog file to the final catalog (the catalog name
specified in the storage class associated with the save request).

The final catalog does not contain the information about the save operation until the staging pro-
cess has completed. If you request a backup operation and immediately look in the final catalog,
the entries may not be available, yet. The backup operation and the staging process must com-
plete before the currently saved files can be looked up in the catalog.

You can always modify the staging setting for an existing catalog using the
ABS_CATALOG_OBJECTS utility. The use of this feature is highly recommended.

15.2Showing a Catalog

To view a catalog definition, use the ABS_CATALOG_OBJECT utility and select the SHOW
function.

To view the contents of a catalog use the ABS LOOKUP command or select the lookup function
in the GUI. The DCL commands and GUI operations that search the catalog files require the user
to have read access to those catalog files. This is because these operations are executed in the
context of the user, and not in the context of the ABS account.

Step Action

1. Create a new catalog by invoking the catalog object utility:

$ CATALOG_OBJ :== ABSSYSTEM:ABS_CATALOG_OBJECT
$ CATALOG_OBJ

2. Specify the SLS history set name as the name of the catalog, for example:

Catalog name: MY_HIST

Notes:

• The catalog name must match the SLS history set name.

• For each SLS history set name from which you want to perform a lookup ope
tion, you must create a corresponding ABS catalog.

• For each SLS history set name from which you want to perform a restore ope
tion, you must create a corresponding ABS catalog and storage policy.

3. Enter the SLS catalog type:

Catalog type ([BRIEF],SLS,FULL_RESTORE): SLS

4. Do not enable staging:

Use faster staging catalog operation ([YES]/NO): NO

5. If you plan to perform a restore operation, create a storage policy that:

• References the new catalog name (same as the SLS history set name).

• Specifies a media type.

• Enables READ only access control. Because this catalog is not intended for s
operations, do not enable WRITE access control.
Creating ABS Catalogs 15-4

Creating ABS Catalogs
15.3 Modifying a Catalog
With the default catalog protection, a user would have to be logged into a system account or
ABS account, or have elevated privileges that enables the user read access to the files (such as
BYPASS, SYSPRV, or READALL).

Examples of such operations are using ABS LOOKUP command and ABS REPORT
SAVE_LOG DCL command, or using the LOOKUP option from the GUI.

15.3Modifying a Catalog

If you choose to MODIFY a catalog object, you will be prompted for the fields in the same man-
ner as CREATE. To be sure of the values to set, you should first do a SHOW of the catalog so
that you will not inadvertently change fields which you do not want to change.

Restriction:
You may not modify the CATALOG TYPE. To change the catalog type you must first delete
and then recreate the catalog.

15.4Deleting a Catalog

The DELETE option will delete the catalog object and the catalog files located in the
ABS$CATALOG directory. If you do not wish to delete the actual catalog files, then copy them
to another name or location prior to executing the DELETE function.

15.5 Improving Catalog Performance

ABS provides a catalog conversion command procedure that improves the target catalog update
performance by doing a file-to-file conversion. A target catalog is the final catalog where ABS
entries reside, while a staging catalog is a temporary catalog that increases ABS performance
during save operations. By converting the target catalogs, you can improve ABS target catalog
update performance. This describes how to convert ABS catalogs. For additional improvement
of the catalog update performance, you can also move the target catalogs to a different disk by
defining a system level search list logical for ABS$CATALOG in ABS$SYSTARTUP.COM.

15.5.1 Converting ABS Catalogs

Run the conversion command procedure for each individual catalog.

$ @ABS$SYSTEM:ABS$CONVERT_CATALOG MyCatalog

The command procedure creates a new copy of the catalog files. The new and the old files will
reside in the same directory. The command procedure also allows you to move the converted
files to a different disk or directory.

$ @ABS$SYSTEM:ABS$CONVERT_CATALOG <catalog_name> <disk:>[<dir>]

15.5.2 Moving Target Catalogs to a Different Disk

You can also improve the target catalog update performance by moving the target catalogs to a
different disk.

To do this, follow the procedure in Table 15–2.
 Creating ABS Catalogs 15–5

Creating ABS Catalogs
15.6 Sizes of Catalog Files
Table 15–2 Moving Target Catalogs to a Different Disk

However, ABS always writes the staging catalogs to the first element in the ABS$CATALOG search list,
and then it writes the entries for the target catalogs to a different disk.

15.5.3 Moving Staging Catalog Entries

With staging catalog enabled ABS creates a command procedure at the end of a save request. A
separate process is created which executes this command procedure to move all entries from the
staging catalog to the final catalog. If all entries have been moved successfully the command
procedure is deleted. If ABS failed to execute the command procedure you can run it manually.
To do this, enter the following command at the system prompt on the node the save request was
executed:

$ @ABS$CATALOG:<catalog_name>_m_n.COM

To determine which file to execute, search your save request log files in ABS$LOG to find the
file names for the staging files.

The save request ABS$LOG:<save_request_name>.LOG file will contain the following infor-
mation:

COORDINATOR: Staging process PID : 00006505
COORDINATOR: Staging catalog : ABS$CATALOG:ABS_CATALOG_4.STG;1
COORDINATOR: Staging procedure : ABS$CATALOG:ABS_CATALOG_4_1.COM;1
COORDINATOR: Staging logfile : ABS$LOG:ABS_CATALOG_4.LOG

15.6Sizes of Catalog Files

The ABS catalog files will grow as you continue to execute save requests which use those cata-
logs. The sizes depend on the number of files saved and the retention period used. For as long as
the retention period has not expired more entries will be added to the catalog. Once the retention
period is reached the daily ABS_CLEAN_CATLG_<node_name> batch job will remove
expired entries from the catalog. So the more files you save and the longer you want to keep the
archived data the larger the catalog files.

Be sure that you consider this information when creating catalogs and assigning retention values
to your storage classes. It may be best to create separate catalogs for each storage class, if the
retention period is different. For example, you may create a storage class called
MONTHLY_SAVE_SC, with a retention period of one month. Create a catalog to be used by
that storage class. The catalog size will grow for one month and then maintain its size. But for

Step Action

1. Create a system-level search list logical for both ABS$CATALOG and logical names:

$ define/sys abs$catalog abs$root:[catalog],<disk:>[<dir>]

This search list includes the default catalog location as well as the disk (or disks) that can be
used for the target catalogs. Update the logical definition in SYS$STARTUP:ABS$SYSTAR-
TUP.COM.

2. Manually copy the target catalogs from ABS$ROOT:[CATALOG] to
<disk:>[ABS_CATALOG] or use the conversion procedure:

$ @ABS$SYSTEM:ABS$CONVERT_CATALOG <catalog_name> <disk:>[<dir>]

3. Once the catalog files are copied to the new location, delete the following catalog files from
their original location:

ABS$CATALOG:<catalog_name>_BAOE.DAT
ABS$CATALOG:<catalog_name>_BAOE_INSNC.DAT
ABS$CATALOG:<catalog_name>_BTLE.DAT
Creating ABS Catalogs 15-6

Creating ABS Catalogs
15.7 What size is the ABS catalog?

ies or

ave set.

 actual

It
ecord

record

e on

 in
your storage class, YEARLY_SAVE_SC, with a retention periods of a year, use a different cata-
log. That catalog will grow for one year, then maintain its size. If you have multiple catalogs, it
will be easier for you to move catalogs to different disks if the size exceeds available space or do
regular maintenance by running the ABS$SYSTEM:CONVERT_CATALOG command proce-
dure.

15.6.1 Technical Details

ABS can have multiple catalogs. Each catalog is comprised of three RMS Indexed Sequential
Files:

• <catalog_name>_BTLE.DAT - Transaction Log Entry

• <catalog_name>_BAOE.DAT - Archive Object Entry

• <catalog_name>_BAOE_INSNC.DAT - Archive Entry Object Instance

These files must reside in the same directory. Different catalogs can be in different director
different disk volumes.

The Transaction Log Entry file contains two entries per save request executed. It contains
among other data the save set name, the tape’s volume ID and the expiration date of the s
Depending on record compression the average record size on disk is about 300 bytes.

The Archive Object Entry file contains one entry for each file backed up. It contains among
other data the device and file name. Depending on record compression and depending on
filename sizes the average record size on disk is about 300 bytes.

The Archive Object Entry Instance file contains an entry for every time a file is backed up.
does not contain the filename but a back pointer to the record in the AOE. Depending on r
compression the average record size on disk is about 200 bytes.

15.7What size is the ABS catalog?
TLE: This grows to the average size of how many save requests are active.

• This file does not have size problems

• Low volatility to deletes

• 300 bytes times number of active save requests times retention period in days + some
overhead.

AOE: This grows to the number of files that are actively being backed up

• Medium volatility to deletes

• 300 bytes times number of active files + some record overhead

AOE_INSNC: This can grow very large.

• Sized is based on how many files are being backup up and how long the retention tim
the file is.

• High volatility to deletes.

• 200 bytes times average number of files backed up per day times the retention period
days.

Example1:

• 1 disk volume with 40,000 files

• full saves every week (40,000 files)

• incrementals 6 times a week (estimate 2,000 files/day)
 Creating ABS Catalogs 15–7

Creating ABS Catalogs
15.7 What size is the ABS catalog?

hedule
talogs.
pace
• retention is 30 days for all backups

• TLE 300 X 7 X 30 = 63K bytes

• AOE: 300 X 40,000 = 12 MB

• AOE_INSNC: 200 X 7428 X 30 = 44 MB

Example 2:

• 1 disk volume, 40,000 files

• full saves every night (40,000 files)

• retention is 30 days for all backups

• TLE: small

• AOE: 300 X 40,000 = 12 MB

• AOE_INSNC: 200 X 40,000 X 30 = 240 MB

Example 3:

• 10 disk volumes, total of 400,000 files

• full saves every week (400,000 files)

• incrementals 6 times a week (20,000 files)

• retention is 30 days for all backups

• TLE: small

• AOE: 300 X 400,000 = 120 MB

• AOE_INSNC: 200 X 74285 X 30 = 445 MB

Example 4:

• 10 disk volumes, 400,000 files,

• full saves every night (400,000 files)

• retention is 365 days for all backups

• TLE: small compared to rest

• AOE: 300 X 400,000 = 120 MB

• AOE_INSNC: 200 X 400,000 X 365 = 29 GB

…and if you had 100 volumes: AOE_INSNC is 292 GB!!!

As you can see from example 4 catalogs can become quite large. Changing the backup sc
so that less files are saved and using shorter retention periods help to maintain smaller ca
If this cannot be achieved extra disk space should be reserved for the ABS catalogs with s
for future expansion.
Creating ABS Catalogs 15-8

Part II
MDMS Operations

This part of the Archive Backup System for OpenVMS Guide to Operations contains information
abou the Media and Device Management Services for OpenVMS (MDMS).

e

s of
bel
ests
ment

d.

lts).

l be

uests

take

 a
16
What is MDMS?

This chapter starts by describing the Media and Device Management Services software
(MDMS)’ management concept and its implementation. Following that is a description of th
product’s internal interfaces.

Note

User interfaces are described in the following chapter.

Media and Device Management Services V3.0A (MDMS), can be used to manage location
tape volumes in your IT environment. MDMS identifies all tape volumes by their volume la
or ID. Volumes can be located in different places like tape drives or onsite locations. Requ
can be made to MDMS for moving volumes between locations. If automated volume move
is possible - like in a jukebox (tape loader, tape library) - MDMS moves volume/s without
human intervention. MDMS sends out operator messages if human intervention is require

MDMS allows scheduled moves of volumes between onsite and offsite locations (e.g. vau
Multiple nodes in a network can be setup as an MDMS domain. Note that:

• all nodes in a domain access one MDMS database

• all MDMS objects like volumes and drives are described in the MDMS database

MDMS is a client/server application. At a given time only one node in an MDMS domain wil
serving user requests and accessing the database. This is the database server. All other MDMS
servers (which are not the database server) are clients to the database server. All user req
will be delegated through the local MDMS server to the database server of the domain.

In case of failure of the designated database server, MDMS’ automatic failover procedures
ensure that any of the other nodes in the domain, that has the MDMS server running, can
over the role of the database server.

16.1MDMS Objects
MDMS manages all information in its database as objects. Table 16–1 lists and describes the
MDMS objects.

Table 16–1 MDMS Object Records and What they Manage

This Object Record... Meets the Need to...

Domain Manage domain-wide operating parameters. MDMS creates this object
record automatically.

Node Describe a node in the MDMS domain. It defines the node’s network
names.You cannot operate MDMS without Node object records.

Group Group node object records. Groups are a convenient shortcut to specify
list of nodes.
 What is MDMS? 16–1

What is MDMS?
16.2 MDMS Interfaces
MDMS tries to reflect the true states of objects in the database. MDMS requests by users may
cause a change in the state of objects. For some objects MDMS can only assume the state, for
example: that a volume has been moved offsite. Wherever possible, MDMS tries to verify the
state of the object. For example if MDMS finds a volume that should have been in a jukebox
slot, in a drive, it updates the database with the current placement of the volume.

16.2MDMS Interfaces
MDMS provides an internal callable interface to ABS and HSM software. This interfacing is
transparent to the ABS or HSM user. However some MDMS objects can be selected from ABS
and HSM.

MDMS communicates with the OpenVMS OPCOM facility when volumes need to be moved,
loaded, unloaded, and for other situations where operator actions are required. Most MDMS
commands allow control over whether or not an OPCOM message will be generated and
whether or not an operator reply is necessary.

MDMS controls jukeboxes by calling specific callable interfaces. For SCSI controlled jukeboxes
MDMS uses the MRD/MRU callable interface. For StorageTek jukeboxes MDMS uses DCSC.
You still have access to these jukeboxes using the individual control software but doing so will
make objects in the MDMS database out-of-date.

Location Describe a location in your environment. A location can be the name of a
building, a room or a facility.

Request Handle all MDMS operations initiated by a user or an application.

Drive Describe an OpenVMS drive to MDMS.

Jukebox Describe a tape loader or tape library to MDMS.

Magazine Describe a tape magazine to MDMS. The use of magazine objects, is
optional even if magazines are used in reality.

Media Type Describe the different media types represented by volumes.

Pool Describe a group of volumes. Pools control which user has access to vol-
umes in a group.

Volume Describe an individual magnetic tape medium.

Table 16–1 MDMS Object Records and What they Manage

This Object Record... Meets the Need to...
What is MDMS? 16-2

17
MDMS Configuration

The Media and Device Management Services Installation and configuration guide provides
information about establishing the MDMS domain configuration. The information in this chap-
ter goes beyond the initial configuration of MDMS, explaining concepts in more detail than the
product installation and configuration guide. This chapter also includes procedures related to
changing an existing MDMS configuration.

The major sections in this chapter focus on the MDMS domain and its components, and the
devices that MDMS manages.

A sample configuration for MDMS is shown in Appendix E.

If you have MDMS/SLS V2.X installed, you can convert the symbols and database to MDMS
V3. Appendix Kdescribes what has changed, how to do the conversion and how to use MDMS
V2.9 clients with an MDMS V3 database server (for a rolling upgrade).

17.1The MDMS Management Domain
To manage drives and volumes, you must first configure the scope of the MDMS management
domain. This includes placing the database in the best location to assure availability, installing
and configuring the MDMS process on nodes that serve ABS 3 or HSM 3, and defining node and
domain object record attributes. The MDMS Domain is defined by:

• the MDMS database

• start up files on the nodes which access it

• node and domain object records
 MDMS Configuration 17–1

MDMS Configuration
17.1 The MDMS Management Domain
Figure 17–1 The MDMS Domain

Understanding MDMS configuration concepts is necessary to configure a reliable and available
service

17.1.1 The MDMS Database

The MDMS database is a collection of OpenVMS RMS files that store the records describing the
objects you manage. lists the files that make up the MDMS database.

CAMPUS_MANAGEMENT
Domain

FIRST_FLOOR
Location

SECOND_FLOOR
Location

TL896_1_JUKE
Jukebox

TL896_2_JUKE
Jukebox

Operators Operator

BMR009
Node

BMR010
Node

BDT002
Node

BDT003
Node

BDT004
Node

BTC002
Backup
server
node

BTC001
Server
node

BTM006
Node

BTM007
Node

Network

MDMS
Database

CXO6746A

TZ89_1
Drive

X X

Table 17–1 MDMS Database Files and Their Contents

Database File Object Records

MDMS$DOMAIN_DB.DAT The only Domain object record

MDMS$DRIVE_DB.DAT All Drive object records

MDMS$GROUP_DB.DAT All Group object records

MDMS$JUKEBOX_DB.DAT All Jukebox object records

MDMS$LOCATION_DB.DAT All Location object records

MDMS$MAGAZINE_DB.DAT All Magazine object records

MDMS$MEDIA_DB.DAT All Media Type object records

MDMS$NODE_DB.DAT All Node object records

MDMS$POOL_DB.DAT All Pool object records
MDMS Configuration 17-2

MDMS Configuration
17.1 The MDMS Management Domain
17.1.1.1 Database Performance

If you are familiar with the structure of OpenVMS RMS files, you can tune and maintain them
over the life of the database. You can find File Definition Language (FDL) files in the
MDMS$ROOT:[SYSTEM] directory for each of the database files. Refer to the OpenVMS
Record Management System documentation for more information on tuning RMS files and
using the supplied FDL files.

17.1.1.2 Database Safety

MDMS keeps track of all objects by recording their current state in the database. In the event of
a catastrophic system failure, you would start recovery operations by rebuilding the system, and
then by restoring the important data files in your enterprise. Before restoring those data files, you
would have to first restore the MDMS database files.

Another scenario would be the failure of the storage system on which the MDMS files reside. In
the event of a complete disk or system failure, you would have to restore the contents of the disk
device containing the MDMS database.

The procedures in this section describe ways to create backup copies of the MDMS database.
These procedures use MDMS$SYSTEM:MDMS$COPY_DB_FILES.COM command proce-
dure. This command procedure copies database files with the CONVERT/SHARE command.
The procedure in describes how to copy MDMS database files only. The procedure in describes
how to process the MDMS database files when they are copied as part of an image backup on the
disk device.

To Make Backup Copies of the MDMS Database

The procedure outlined in describes how you can make backup copies of just the MDMS data-
base files using the OpenVMS Backup Utility. This procedure does not account for other files on
the device.

MDMS$VOLUME_DB.DAT All Volume object records

Table 17–1 MDMS Database Files and Their Contents

Table 17–2 How to Back Up the MDMS Database Files

Step... Action...

1. Prepare for making back up copies by finding a disk with enough available space to tem-
porarily hold a copy of each file in the MDMS database.

2. Determine a time of relative inactivity by MDMS clients, ABS or HSM.

For ABS, this could be a few hours after the completion of system backups.

For HSM, this is more difficult to determine because a shelving policy could be activated
at any time.

If necessary, shut down ABS and/or HSM to make sure there are no requests of MDMS.
 MDMS Configuration 17–3

MDMS Configuration
17.1 The MDMS Management Domain
To Process the MDMS Database for an Image Backup of the Device

The procedure in shows how to process the MDMS database files for an image backup. The
image backup could be part of a periodic full backup and subsequent incremental. This proce-
dure also describes how to use the files in case you restore them.

17.1.1.3 Moving the MDMS Database

In the event the disk device on which you keep the MDMS database runs out of space, you have
the option of moving the MDMS database, or moving other files off the device. The procedure
described in this section explains the actions you would have to perform to move the MDMS
database. Use this procedure first as a gauge to decide whether moving the MDMS database
would be easier or more difficult than moving the other files. Secondarily, use this procedure to

3. Note: If you cannot shut down HSM or ABS, when running
MDMS$COPY_DB_FILES.COM, it is possible an update to the data base file can occur
after it has been opened. This can create a possibility that the copy of the database file
will be out of synchronization with other database files.

At the determined time, copy the MDMS database files with the supplied command pro-
cedure MDMS$COPY_DB_FILES.COM.

$ @MDMS$ROOT:[TOOLS]MDMS$COPY_DB_FILES

After the MDMS$COPY_DB_FILES command procedure ends, copies of the
database files reside on the same disk as the original files.

4. Use the OpenVMS Backup Utility to create a back up copy of the database files. You
must have at least one tape device configured to be shared with applications other than
MDMS. The following shows an example BACKUP command:
$BACKUP MDMS$DATABASE_LOCATION:*.DAT_COPY tape_device_name

5. After the OpenVMS Backup Utility operation completes, delete the file copies from the
database directory.

6. Store the copies of the MDMS database in a safe location.

Table 17–2 How to Back Up the MDMS Database Files

Table 17–3 Processing MDMS Database Files for an Image Backup

Step... Action...

1. Create a preprocessing command procedure to execute before the image backup on the
disk. The command procedure must first purge old database file copies from the direc-
tory, then creates a new set of copies.

$PURGE MDMS$DATABASE_LOCATION:*.DAT_COPY
$@MDMS$SYSTEM:MDMS$COPY_DB_FILES

2. Plan the backup operation on the disk containing the MDMS database files, to make sure
that the preprocessing command procedure executes before the actual backup procedure.

3. Run the backup operation. Each time you create a backup copy of the disk, you will get a
consistent copy of the MDMS database files.

4. When you need to restore the data to the device, you need to use the consistent files.
Rename the .DAT_COPY files to become the .DAT files, then purge the .DAT files from
the directory.

$RENAME MDMS$DATABASE:*.DAT_COPY MDMS$DATABASE:*.DAT
$PURGE MDMS$DATABASE
MDMS Configuration 17-4

MDMS Configuration
17.1 The MDMS Management Domain
relocate the MDMS database to another disk device. describes how to move the MDMS data-
base to a new device location.

17.1.2 The MDMS Process

This section describes the MDMS software process, including server availability, interprocess
communication, and start up and shut down operations.

17.1.2.1 Server Availability

Each node in an MDMS domain has one MDMS server process running. Within an MDMS
domain only one server will be serving the database to other MDMS servers. This node is desig-
nated as the MDMS Database Server, while the others become MDMS clients. Of the servers
listed as database servers, the first one to start up tries to open the database. If that node can suc-
cessfully open the database, it is established as the database server. Other MDMS servers will
then forward user requests to the node that has just become the database server.

Subsequently, if the database server fails because of a hardware failure or a software induced
shut down, the clients compete among themselves to become the database server. Whichever cli-
ent is the first to successfully open the database, becomes the new database server. The other cli-
ents will then forward user requests to the new database server. User requests issued on the node
which is the database server, will be processed on that node immediately.

17.1.2.2 The MDMS Account

During installation you create the MDMS user account as shown in . This account is used by
MDMS for every operation it performs.

Table 17–4 How to Move the MDMS Database

Step... Action...

1. Shut down any applications using MDMS: ABS or HSM. Refer to the respective applica-
tion documentation for specific commands.

2. Shut down the MDMS process on all nodes in the domain.

3. Using the OpenVMS Backup Utility, create a copy of the database files. Use the CRC
and VERIFY options to help ensure your copy is valid.

4. Using the OpenVMS Backup Utility, restore the copy of the database files into the new
location. Use CRC and VERIFY options to ensure the restored copy is valid.

5. In every MDMS start up file SYS$MANAGER:MDMS$SYSTARTUP.COM, define the
MDMS$DATABASE_FILES logical to point to the new location.

6. Start up MDMS on a node enabled as a database server.

7. From the node, make sure you can access the database by entering an MDMS SHOW
command to examine a record from each database file.

If you get an error, first check to make sure that the logical assignment for the
MDMS$DATABASE_FILES is correct.

If the logical assignment is correct, then you will have to determine why the files are not
accessible.

8. Start up the remaining MDMS nodes.

9. Keep the previous database files on-line, until you know the new database files are acces-
sible.

10. After you are certain the new database files are accessible, delete the original files.
 MDMS Configuration 17–5

MDMS Configuration
17.1 The MDMS Management Domain
Example 17–1 MDMS User Account

Username: MDMS$SERVER Owner: SYSTEM MANAGER
Account: SYSTEM UIC: [1,4] ([SYSTEM])
CLI: DCL Tables:
Default:SYS$SYSROOT:[SYSMGR]
LGICMD:SYS$LOGIN:LOGIN
Flags: DisForce_Pwd_Change DisPwdHis
Primary days: Mon Tue Wed Thu Fri Sat Sun
Secondary days:
No access restrictions
Expiration: (none) Pwdminimum: 14 Login Fails: 0
Pwdlifetime: 30 00:00 Pwdchange: 1-JUL-1998 12:19
Maxjobs: 0 Fillm: 500 Bytlm: 100000
Maxacctjobs: 0 Shrfillm: 0 Pbytlm: 0
Maxdetach: 0 BIOlm: 10000 JTquota: 4096
Prclm: 10 DIOlm: 300 WSdef: 5000
Prio: 4 ASTlm: 300 WSquo: 10000
Queprio: 0 TQElm: 300 WSextent: 30000
CPU: (none) Enqlm: 2500 Pgflquo: 300000
Authorized Privileges:
DIAGNOSE NETMBX PHY_IO READALL SHARE SYSNAM SYSPRV TMPMBX WORLD
Default Privileges:
DIAGNOSE NETMBX PHY_IO READALL SHARE SYSNAM SYSPRV TMPMBX WORLD

17.1.3 The MDMS Start Up File

MDMS creates the SYS$STARTUP:MDMS$SYSTARTUP.COM command procedure on the
initial installation. This file includes logical assignments that MDMS uses when the node starts
up. The installation process also offers an opportunity to make initial assignments to the logicals.

If you install MDMS once for shared access in an OpenVMS Cluster environment, this file is
shared by all members. If you install MDMS on individual nodes within an OpenVMS Cluster
environment, this file is installed on each node.

In addition to creating node object records and setting domain and node attributes, you must
define logicals in the MDMS start up file. These are all critical tasks to configure the MDMS
domain.

 provides brief descriptions of most of the logical assignments in MDMS$SYSTARTUP.COM.
More detailed descriptions follow as indicated.

Table 17–5 MDMS$SYSTARTUP.COM Logical Assignments

Logical Name Assignment

MDMS$DATABASE_SERVERS List of all nodes that can run as the MDMS database server.
See Section for more information.

MDMS$ROOT Device and directory of MDMS files.

MDMS$LOGFILE_LOCATION Device and directory of the MDMS log file. See Section for
more information.

MDMS$DATABASE_LOCATION Device and directory of the MDMS database files. All instal-
lations in any one domain must define this as a common
location. Section identifies the MDMS database files and
describes how they should be managed.

MDMS$TCPIP_SENDPORTS Range of ports for the node to use for out going connections.
The default range is for privileged ports; 1 through 1023.

MDMS$SUPPORT_PRE_V3 Support for SLS/MDMS Version 2.9x clients. The default
value is FALSE. If you need to support some systems run-
ning SLS/MDMS Version 2.9x, then set this value to TRUE.
MDMS Configuration 17-6

MDMS Configuration
17.1 The MDMS Management Domain
17.1.3.1 MDMS$DATABASE_SERVERS - Identifies Domain Database Servers

Of all the nodes in the MDMS domain, you select those which can act as a database server. Only
one node at a time can be the database server. Other nodes operating at the same time communi-
cate with the node acting as the database server. In the event the server node fails, another node
operating in the domain can become the database server if it is listed in the
MDMS$DATABASE_SERVERS logical.

For instance, in an OpenVMS Cluster environment, you can identify all nodes as a potential
server node. If the domain includes an OpenVMS Cluster environment and some number of
nodes remote from it, you could identify a remote node as a database server if the MDMS data-
base is on a disk served by the Distributed File System software (DECdfs). However, if you do
not want remote nodes to function as a database server, do not enter their names in the list for
this assignment.

The names you use must be the full network name specification for the transports used. shows
example node names for each of the possible transport options. If a node uses both DECnet and
TCP/IP, full network names for both should be defined in the node object

Note

When you specify the use of both DECnet and TCP/IP network transports in the con-
figuration, you should include node names for each transport as appropriate. Specify-
ing only one node name for a specific transport is allowable. However, when that node
attempts to locate a database server on start up, only the transport for which the name
applies will be used, thereby limiting reliability.

17.1.3.2 MDMS$LOGFILE_LOCATION

Defines the location of the Log Files. For each server running, MDMS uses a log file in this
location. The log file name includes the name of the cluster node it logs.
For example, the log file name for a node with a cluster node name NODE_A would be:

MDMS$LOGFILE_LOCATION:MDMS$LOGFILE_NODE_A.LOG

17.1.3.3 MDMS Shut Down and Start Up

How to Shut Down MDMS

To shut down MDMS on the current node enter this command:

$@SYS$STARTUP:MDMS$SHUTDOWN.COM

How to Restart MDMS

To restart MDMS (shut down and immediate restart), enter the shut down command and the
parameter RESTART:

$@SYS$STARTUP:MDMS$SHUTDOWN RESTART

How to Start Up MDMS

To start up MDMS on the current node enter this command:

Table 17–6 Network Node Names for MDMS$DATABASE_NODES

Network Transport Node Name Examples

DECnet NODE_A,NODE_B

DECnet Plus SITE:.NODE_A.SITE,SITE:.NODE_B.SITE

TCP/IP node_a.site.inc.com,node_b.site.inc.com
 MDMS Configuration 17–7

MDMS Configuration
17.1 The MDMS Management Domain

ests.
$@SYS$STARTUP:MDMS$STARTUP.COM

17.1.4 Managing an MDMS Node

The MDMS node object record characterizes the function of a node in the MDMS domain and
describes how the node communicates with other nodes in the domain.

17.1.4.1 Defining a Node’s Network Connection

To participate in an MDMS domain, a node object has to be entered into the MDMS database.
This node object has 4 attributes to describe its connections in a network:

1. If the node is part of a DECnet (Phase IV) network, then the name of the node object must
match exactly with the node’s DECnet node name (i.e. SYS$NODE). Otherwise the name of
the node object may be any character string up to 31 characters.

2. If the node is part of a DECnet-Plus (Phase V) network, the DECnet-Plus full name must be
supplied as an attribute to the node object, using the /DECNET_PLUS_FULLNAME Qual-
ifier or GUI equivalent.

3. If the node is part of an Internet or Intranet using TCP/IP, the TCP/IP full name must be
supplied as an attribute to the node object, using the /TCPIP_FULLNAME Qualifier or GUI
equivalent.

4. Depending on which network or networks are available or should be used, the node’s trans-
port attribute has to be set to either DECNET, TCPIP or both.

When an MDMS server starts up it only has its network node name/s to identify itself in the
MDMS database. Therefore if a node has a network node name but it is not defined in the
node object records of the database, this node will be rejected as not being fully enabled. For
example, a node has a TCP/IP name and TCP/IP is running but the node object record shows the
TCP/IP full name as blank.

There is one situation where an MDMS server is allowed to function even if it does not have a
node object record defined or the node object record does not list all network names. This is in
the case of the node being an MDMS database server. Without this exception, no node entries
can be created in the database. As long as a database server is not fully enabled in the database it
will not start any network listeners.

17.1.4.2 Defining How the Node Functions in the Domain

This section describes how to designate an MDMS node as a database server, enable and disable
the node.

Designating Potential Database Servers

When you install MDMS, you must decide which nodes will participate as potential database
servers. To be a database server, the node must be able to access the database disk device.
Typically, in an OpenVMS Cluster environment, all nodes would have access to the database
disk device, and would therefore be identified as potential database servers.

Set the database server attribute for each node identified as a potential database server. For nodes
in the domain that are not going to act as a database server, negate the database server attribute.

Disabling and Enabling MDMS Nodes

There are several reasons for disabling an MDMS node.

• Preventing the node you are disabling from becoming the database server.

• Preventing applications and users on the node from issuing or processing MDMS requ

Disable the node from the command line or the GUI and restart MDMS.
MDMS Configuration 17-8

MDMS Configuration
17.1 The MDMS Management Domain

or
nt to
For

e
pertain-

s or
 envi-
When you are ready to return the node to service, enable the node.

17.1.4.3 Enabling Interprocess Communication

Nodes in the MDMS domain have two network transport options: one for DECnet, the other for
TCP/IP. When you configure a node into the MDMS domain, you can specify either or both
these transport options by assigning them to the transport attribute. If you specify both, MDMS
will attempt interprocessor communications on the first transport value listed. MDMS will then
try the second transport value if communication fails on the first.

If you are using the DECnet Plus network transport, define the full DECnet Plus node name in
the decnet fullname attribute. If you are using an earlier version of DECnet, leave the
DECnet-Plus fullname attribute blank.

If you are using the TCP/IP network transport, enter the node’s full TCP/IP name in the
TCPIP fullname attribute. You can also specify the receive ports used by MDMS to listen f
incoming requests. By default, MDMS uses the port range of 2501 through 2510. If you wa
specify a different port or range of ports, append that specification to the TCPIP fullname.
example:

node_a.site.inc.com:2511-2521

17.1.4.4 Describing the Node

Describe the function, purpose of the node with the description attribute. Use the location
attribute to identify the MDMS location where the node resides.

17.1.4.5 Communicating with Operators

List the OPCOM classes of operators with terminals connected to this node who will receiv
OPCOM messages. Operators who enable those classes will receive OPCOM messages
ing to devices connected to the node.

For more information about operator communication, see Section .

17.1.5 Managing Groups of MDMS Nodes

MDMS provides the group object record to define a group of nodes that share common drive
jukeboxes. Typically, the group object record represents all nodes in an OpenVMS Cluster
ronment, when drives in the environment are accessible from all nodes.
 MDMS Configuration 17–9

MDMS Configuration
17.1 The MDMS Management Domain

red

ription
main
e man-

 list
des do
Figure 17–2 Figure 10– 2 Groups in the MDMS Domain

Some configurations involve sharing a device between nodes of different OpenVMS Cluster
environments. You could create a group that includes all nodes that have access to the device.

When you create a group to identify shared access to a drive or jukebox assign the group name as
an attribute of the drive or jukebox. When you set the group attribute of the drive or jukebox
object record, MDMS clears the node attribute.

The following command examples create a functionally equivalent drive object records.

$!These commands create a drive connected to a Group object
$MDMS CREATE GROUP CLUSTER_A /NODES=(NODE_1,NODE_2,NODE_3)
$MDMS CREATE DRIVE NODE$MUA501/GROUPS=CLUSTER_A
$!
$!This command creates a drive connected to NODE_1, NODE_2, and NODE_3
$MDMS CREATE DRIVE NODE$MUA501/NODES=(NODE_1,NODE_2,NODE_3)

Figure 17–2 is a model of organizing clusters of nodes in groups and how devices are sha
between groups.

17.1.6 Managing the MDMS Domain

The domain object record describes global attributes for the domain and includes the desc
attribute where you can enter an open text description of the MDMS domain. Additional do
object attributes define configuration parameters, access rights options, and default volum
agement parameters. See Figure 17–1.

17.1.6.1 Domain Configuration Parameters

Operator Communications for the Domain

Include all operator classes to which OPCOM messages should go as a comma separated
value of the OPCOM classes attribute. MDMS uses the domain OPCOM classes when no
not have their classes defined.

CXO6747A

Group
CLU001

TL896_JUKE_B
Jukebox

TL896_JUKE_A
Jukebox

TL896_JUKE_C
Jukebox

Group
CLU002

Group
SHD001

TL896_JUKE_D
Jukebox
MDMS Configuration 17-10

MDMS Configuration
17.1 The MDMS Management Domain
For more information about operator communication, see Section, Managing Operations.

Resetting the Request Identifier Sequence

If you want to change the request identifier for the next request, use the request id attribute.

17.1.6.2 Domain Options for Controlling Rights to Use MDMS

This section briefly describes the attributes of the domain object record that implement rights
controls for MDMS users. Refer to Appendix on MDMS Rights and Privileges for the descrip-
tion of the MDMS rights implementation.

ABS Users

If you use MDMS to support ABS, you can set the ABS rights attribute to allow any user with
any ABS right to perform certain actions with MDMS. This feature provides a short cut to man-
aging rights by enabling ABS users and managers access to just the features they need. Negating
this attribute means users with any ABS rights have no additional MDMS rights.

MDMS Client Applications

MDMS defines default low level rights for the application rights attribute according to what
ABS and HSM minimally require to use MDMS.

Caution

The ABS or HSM processes include the MDMS_APPLICATION_RIGHTS identifier
which assumes the low level rights associated with it. Do not modify the low level rights
for the domain application rights attribute. Changing the values to this attribute can
cause your application to fail.

Default Rights for Various System Users

If you want to grant all users certain MDMS rights without having to modify their UAF records,
you can assign those low level rights to the default rights attribute. Any user without specific
MDMS rights in their UAF file will have the rights assigned to the default rights identifier.

Use the operator rights attribute to identify all low level rights granted to any operator who has
been granted the MDMS_OPERATOR right in their UAF.

Use the SYSPRV attribute to allow any process with SYSPRV enabled the rights to perform any
and all operations with MDMS.

Use the user rights attribute to identify all low level rights granted to any user who has been
granted the MDMS_USER right in their UAF.

17.1.6.3 Domain Default Volume Management Parameters

The MDMS domain includes attributes used as the foundation for volume management. Some of
these attributes provide defaults for volume management and movement activities, others define
particular behavior for all volume management operations. The values you assign to these
attributes will, in part, dictate how your volume service will function. lists brief descriptions of
these attributes.

Table 17–7 Default Volume Management Parameters

Attribute Meaning

Offsite Location MDMS uses this location for the volume and magazine offsite location unless
another location is specified.

Onsite Location MDMS uses this location for the volume and magazine onsite location unless
another location is specified.
 MDMS Configuration 17–11

MDMS Configuration
17.1 The MDMS Management Domain

s in

s.

 the
17.1.7 MDMS Domain Configuration Issues

This section addresses issues that involve installing additional MDMS nodes into an existing
domain, or removing nodes from an operational MDMS domain.

17.1.7.1 Adding a Node to an Existing Configuration

Once you configure the MDMS domain, you might have the opportunity to add a node to the
existing configuration. describes the procedure for adding a node to an existing MDMS domain.

17.1.7.2 Removing a node from an existing configuration

When you remove a node from the MDMS domain, there are several additional activities you
must perform after deleting the node object record.

• If the node was a database server, remove its node names from all MDMS start up file
the MDMS$DATABASE_SERVERS logical assignment.

• Remove any references to the node that might exist in remaining MDMS object record

• Remove any references to the node that might exist in DCL command procedures.

Maximum Scratch
Time

This is the maximum amount of time that can be set as the scratch time on any
volume in the domain.

Mail Users A list of e-mail address for users or accounts to be notified when volumes are
deallocated. Any email address on this list must be in syntax that the OpenVMS
Mail Utility can process.

Deallocate State Specifies whether a volume is immediately freed upon reaching the deallocation
date, or if the volume is put into a transition state for temporary protection before
being set free.

Transition Time The amount of time a volume stays in the transition state.

Scratch Time MDMS uses the time span specified here to set the default scratch date when
MDMS allocates a volume.

Protection The default protection for volumes allocated to ABS and MDMS. The format is
the standard OpenVMS file protection specification format.

Table 17–7 Default Volume Management Parameters

Table 17–8 Adding a Node to an Existing Configuration

Step... Action...

1. Create a node object record with either the CLI or GUI. Set the transport and network name
attributes in accordance with available net work options. For more information, see Section
.

2. Decide if the node will be a database server or will only function as an MDMS client.
• If the node is to be a database server, set the database server attribute (default)
• If the node is not to be a database server, negate the database server attribute.

3. Set the remaining node object attributes, then complete the creation of the node.

4. If the node will not share an existing startup file and database server image, then install
MDMS software with the VMSINSTAL utility.

5. 6. If the new node is a database server, then add the node by its network trans-
port names to the MDMS$DATABASE_SERVERS list in all start up files in
the MDMS domain.
MDMS Configuration 17-12

MDMS Configuration
17.2 Configuring MDMS Drives, Jukeboxes and Locations

t
 is not

age-

drive.
d, you
ot

x
te.

ther

anage.

nVMS

 entity,

s using

type
r
17.2Configuring MDMS Drives, Jukeboxes and Locations
MDMS manages the use of drives for the benefit of its clients, ABS and HSM. You must config-
ure MDMS to recognize the drives and the locations that contain them. You must also configure
MDMS to recognize any jukebox that contains managed drives.

You will create drive, location, and possibly jukebox object records in the MDMS database. The
attribute values you give them will determine how MDMS manages them. The meanings of
some object record attributes are straightforward. This section describes others because they are
more important for configuring operations.

17.2.1 Configuring MDMS Drives

Before you begin configuring drives for operations, you need to determine the following aspects
of drive management:

• How to describe the drive

• Which systems need access to the drive

• How the drive fits into your operations

17.2.1.1 How to Describe an MDMS Drive

You must give each drive a name that is unique within the MDMS domain. The drive objec
record can be named with the OpenVMS device name, if desired, just as long as the name
duplicated elsewhere.

Use the description attribute to store a free text description of anything useful to your man
ment of the drive. MDMS stores this information, but takes no action with it.

The device attribute must contain the OpenVMS allocation class and device name for the
If the drive is accessed from nodes other than the one from which the command was entere
must specify nodes or groups in the /NODE or /GROUP attributes in the drive record. Do n
specify nodes or groups in the drive name or the device attribute.

If the drive resides in a jukebox, you must specify the name of the jukebox with the jukebo
attribute. Identify the position of the drive in the jukebox by setting the drive number attribu
Drives start at position 0.

Additionally, the jukebox that contains the drives must also be managed by MDMS.

17.2.1.2 How to Control Access to an MDMS Drive

MDMS allows you to dedicate a drive solely to MDMS operations, or share the drive with o
users and applications. Specify your preference with the shared attribute.

You need to decide which systems in your data center are going to access the drives you m

Use the groups attribute if you created group object records to represent nodes in an Ope
Cluster environment or nodes that share a common device.

Use the nodes attribute if you have no reason to refer to any collection of nodes as a single
and you plan to manage nodes, and the objects that refer to them, individually.

The last decision is whether the drive serves locally connected systems, or remote system
the RDF software. The access attribute allows you to specify local, remote (RDF) or both.

17.2.1.3 How to Configure an MDMS Drive for Operations

Specify the kinds of volumes that can be used in the drive by listing the associated media
name in the media types attribute. You can force the drive to not write volumes of particula
media types. Identify those media types in the read only attribute.
 MDMS Configuration 17–13

MDMS Configuration
17.2 Configuring MDMS Drives, Jukeboxes and Locations
If the drive has a mechanism for holding multiple volumes, and can feed the volumes sequen-
tially to the drive, but does not allow for random access or you choose not to use the random
access feature, then you can designate the drive as a stacker by setting the stacker attribute.

Set the disabled attribute when you have to exclude the managed drive from operations by
MDMS. If the drive is the only one of its kind (for example if it accepts volumes of a particular
media type that no other drives accept), make sure you have another drive that can take load
requests. Return the drive to operation by setting the enabled attribute.

17.2.1.4 Determining Drive State

Caution

Changing the value of the state attribute could cause MDMS or the applications using
it to fail.

The drive object record state attribute shows the state of managed MDMS drives. MDMS sets
one of four values for this attribute: Empty, Full, Loading, or Unloading.

17.2.1.5 Adding and Removing Managed Drives

The procedure described in describes how to add a drive to the MDMS domain.

The procedure described in describes how to remove a drive from the MDMS domain.

17.2.2 Configuring MDMS Jukeboxes

MDMS manages Media Robot Driver (MRD) controlled jukeboxes and DCSC controlled juke-
boxes. MRD is a software that controls SCSI-2 compliant medium changers. DCSC is software
that controls large jukeboxes manufactured by StorageTek, Inc. This section first describes the
MDMS attributes used for describing all jukeboxes by function. Subsequent descriptions explain
attributes that characterize MRD jukeboxes and DCSC jukeboxes respectively.

17.2.2.1 How to Describe an MDMS Jukebox

Assign unique names to jukeboxes you manage in the MDMS domain. When you create the
jukebox object record, supply a name that describes the jukebox.

Set the control attribute to MRD if the jukebox operates under MRD control. Otherwise, set the
control to DCSC.

Use the description attribute to store a free text description of the drive. You can describe its role
in the data center operation or other useful information. MDMS stores this information for you,
but takes no actions with it.

17.2.2.2 How to Control Access to an MDMS Jukebox

You can dedicate a jukebox solely to MDMS operations, or you can allow other applications and
users access to the jukebox device. Specify your preference with the shared attribute.

You need to decide which systems in the data center are going to access the jukebox.

Use the groups attribute if you created group object records to represent nodes in an OpenVMS
Cluster environment or nodes that share a common device.

Use the nodes attribute if you have no reason to refer to any collection of nodes as a single entity,
and you plan to manage nodes, and the objects that refer to them, individually.

17.2.2.3 How to Configure an MDMS Jukebox for Operations.

Disable the jukebox to exclude it from operations. Make sure that applications using MDMS will
either use other managed jukeboxes, or make no request of a jukebox you disable. Enable the
MDMS Configuration 17-14

MDMS Configuration
17.2 Configuring MDMS Drives, Jukeboxes and Locations

used

of the
placed
jukebox after you complete any configuration changes. Drives within a disabled jukebox cannot
be allocated.

17.2.2.4 Attribute for DCSC Jukeboxes

Set the library attribute to the library identifier of the particular silo the jukebox objects repre-
sents. MDMS supplies 1 as the default value. You will have to set this value according the num-
ber silos in the configuration and the sequence in which they are configured.

17.2.2.5 Attributes for MRD Jukeboxes

Specify the number of slots for the jukebox. Alternatively, if the jukebox supports magazines,
specify the topology for the jukebox (see Section 17.2.2.7 Magazines and Jukebox Topology).

The robot attribute must contain the OpenVMS device name of the jukebox medium changer
(also known as the robotic device).

If the jukebox is accessed from nodes other than the one from which the command was entered,
you must specify nodes or groups in the /NODE or /GROUP attributes in the jukebox record. Do
not specify nodes or groups in the jukebox name or the robot attribute.

17.2.2.6 Determining Jukebox State

Caution

Changing the value of the state attribute could cause MDMS or the applications using
it to fail.

The jukebox object record state attribute shows the state of managed MDMS jukeboxes. MDMS
sets one of three values for this attribute: Available, In use, and Unavailable.

17.2.2.7 Magazines and Jukebox Topology

If you decide that your operations benefit from the management of magazines (groups of vol-
umes moved through your operation with a single name) must set the jukebox object record to
enable it. Set the usage attribute to magazine and define the jukebox topology with the topology
attribute. See Figure 17–4 for a sample overview of how the 11 and 7 slot bin packs can be
as a magazine.

Setting the usage attribute to nomagazine means that you will move volumes into and out
jukebox independently (using separate commands for each volume, regardless if they are
into a physical magazine or not).
 MDMS Configuration 17–15

MDMS Configuration
17.2 Configuring MDMS Drives, Jukeboxes and Locations

Once
ine it

es.
with
Figure 17–3 Jukebox Topology

The following paragraphs explain jukebox topology.

Towers, Faces, Levels, and Slots

Some jukeboxes have their slot range subdivided into towers, faces, and levels. See for an over-
view of how the configuration of Towers, Faces, Levels and Slots constitute Topology. Note that
the topology in comprises 3 towers. In the list of topology characteristics, you should identify
every tower in the configuration. For each tower in the configuration, you must inturn identify:

• the tower by number (starting at zero)

• the number of faces in the tower (starting at one)

• the number of levels per face (starting at one)

• the number of slots per magazine (starting at one)

Restrictions for Using Magazines

You must manually open the jukebox when moving magazines into and out of the jukebox.
in the jukebox, volumes can only be loaded and unloaded relative to the slot in the magaz
occupies.

TL896 Example

While using multiple TL896 jukebox towers you can treat the 11 slot bin packs as magazin
The following command configures the topology of the TL896 jukebox as shown in for use
magazines:

$ MDMS CREATE JUKEBOX JUKE_1/ -
$_ /TOPOLOGY=(TOWERS=(0,1,2), FACES=(8,8,8), -
$_ LEVELS=(3,3,2), SLOTS=(11,11,11))

CXO6748A

Drives

Level 0

Level 1

Level 2

Tower 0 Tower 1 Tower 2

Topology = Tower, Faces, Levels, Slots

0
1
2

3
4
5

6
7
8
9
10
11

Ports

0
1
2
3

0 1

2
34

7

5

6

Slots

Faces
MDMS Configuration 17-16

MDMS Configuration
17.2 Configuring MDMS Drives, Jukeboxes and Locations
Figure 17–4 Magazines

17.2.3 Summary of Drive and Jukebox Issues

This section describes some of the management issues that involve both drives and jukeboxes.

17.2.3.1 10.2.3.1Enabling MDMS to Automatically Respond to Drive and Jukebox Requests

Drive and jukebox object records both use the automatic load reply attribute to provide an addi-
tional level of automation.

When you set the automatic reply attribute to the affirmative, MDMS will poll the drive or juke-
box for successful completion of an operator-assisted operation for those operations where poll-
ing is possible. For example, MDMS can poll a drive, determine that a volume is in the drive,
and cancel the associated OPCOM request to acknowledge a load. Under these circumstances,
an operator need not reply to the OPCOM message after completing the load. To use this feature,
set the automatic reply attribute to the affirmative. When this attribute is set to the negative,
which is the default, an operator must acknowledge each OPCOM request for the drive or juke-
box before the request is completed.

17.2.3.2 Creating a Remote Drive and Jukebox Connection

If you need to make backup copies to a drive in a remote location, using the network, then you
must install the Remote Device Facility software (RDF). The RDF software must then be config-
ured to work with MDMS.

6
7
8
9
10
11

Slots

11-slot TL820
bin pack

CXO6749A

Slots

7-slot TZ887
magazine
 MDMS Configuration 17–17

MDMS Configuration
17.2 Configuring MDMS Drives, Jukeboxes and Locations

to
See for a description of the actions you need to take to configure RDF software.

17.2.3.3 How to Add a Drive to a Managed Jukebox

When you add another drive to a managed jukebox, just specify the name of the jukebox in
which the drive resides, in the drive object record.

17.2.3.4 Temporarily Taking a Managed Device From Service

You can temporarily remove a drive or jukebox from service. MDMS allows you to disable and
enable drive and jukebox devices. This feature supports maintenance or other operations where
you want to maintain MDMS support for ABS or HSM, and temporarily remove a drive or juke-
box from service.

Note

If you remove a jukebox from service, you cannot access any of its volumes. Make sure
you empty the jukebox, or make sure your operations will continue, without the use of
the volumes in any jukebox you disable.

17.2.3.5 Changing the Names of Managed Devices

During the course of management, you might encounter a requirement to change the device
names of drives or jukeboxes under MDMS management, to avoid confusion in naming. When
you have to change the device names, follow the procedure in Table 17–10.

Table 17–9 Actions for Configuring Remote Drives

Stage Action

1. Install the appropriate RDF component on the node.

• Install the RDF Server software on all nodes that are connected to the tape
drives used for remote operations.

• Install the RDF Client software on all nodes that initiate remote operations
those tape drives.

2. For each tape drive served with RDF Server software, make sure there is a drive object
record in the MDMS that describes it.
Take note of each node connected to the drive, even if the drive object record includes a
group definition instead of a node.

3. On each node connected to the tape drive, edit the file TTI_RDEV:CONFIG_node.DAT so
that all tape drives are represented. The syntax for representing tape drives is given in the
file.

Table 17–10 Changing the Names of Managed Devices

Step... Action...

1. Either find a time when ABS or HSM is not using the drive or jukebox device or disable the
device with MDMS.

2. Change the device names at the operating system. Verify the devices respond using operat-
ing system commands or MRU commands for a jukebox device.

3. Change the MDMS drive device name, and/or the jukebox robot name as needed to reflect
the new system device names.

4. If your drive and/or jukebox object records are named according to the operating system
device name, then you should create new object records. If you want to create new object
records, use the inherit feature and specify the previous object record. For GUI operation.
MDMS Configuration 17-18

MDMS Configuration
17.2 Configuring MDMS Drives, Jukeboxes and Locations

oth
17.2.4 Locations for Volume Storage

MDMS allows you to identify locations in which you store volumes. Create a location object
record for each place the operations staff uses to store volumes. These locations are referenced
during move operations, load to, or unload from stand-alone drives.

Figure 17–5 Volume Locations

If you need to divide your location space into smaller, named locations, define locations hierach-
ically. The location attribute of the location object record allows you to name a higher level loca-
tion. For example, you can create location object records to describe separate rooms in a data
center by first creating a location object record for the data center. After that, create object
records for each room, specifying the data center name as the value of the location attribute for
the room locations.

When allocating volumes or drives by location, the volumes and drives do not have to be in the
exact location specified; rather they should be in a compatible location. A location is considered
compatible with another if both have a common root higher in the location hierarchy. For exam-
ple, in Figure 17–6, locations Room_304 and Floor_2 are considered compatible, as they b
have location Building_1 as a common root.

5. If you created new object records, then delete the old object records, and check and modify
any references to the old object records. For more information.

6. Enable the new drive and/or jukebox with MDMS.

Table 17–10 Changing the Names of Managed Devices

CXO6750A

Onsite CXO

Offsite vault
A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

B1

B2

B3

B4

B5

B6

B7

B8

B9

B10

C1

C2

C3

C4-C10
 MDMS Configuration 17–19

MDMS Configuration
17.3 Sample MDMS Configurations
Figure 17–6 Named Locations

Your operations staff must be informed about the names of these locations as they will appear in
OPCOM messages. Use the description attribute of the location object record to describe the
location it represents as accurately as possible. Your operations staff can refer to the information
in the event they become confused about a location mentioned in an OPCOM message.

You can divide a location into separate spaces to identify locations of specific volumes. Use the
spaces attribute to specify the range of spaces in which volumes can be stored. If you do not need
that level of detail in the placement of volumes at the location, negate the attribute.

17.3Sample MDMS Configurations
MDMS provides a configuration procedure to guide you through the configuration process.
Please refer to Appendix "Sample Configuration of MDMS" for how to use this procedure.

CXO6751A

Location

Location
Floor_3

Location
Room_301

Location
Room_302

Location
Room_303

Location
Room_304

Location
Floor_2

Location
Room_201

Location
Room_202

Location
Floor_1

Location
Room_101

Location
Room_102

Location
Room_103
MDMS Configuration 17-20

s
ed to

gical

asis of
MS
18
Basic MDMS Operations

This chapter describes basic MDMS operations and functions that apply to many MDMS
actions.

18.1MDMS User Interfaces
MDMS includes two interfaces: a command line interface (CLI) and a graphic user interface
(GUI). This section describes how these interfaces allow you to interact with MDMS.

18.1.1 Command Line Interface

The CLI is based on the MDMS command. The CLI includes several features that offer flexibil-
ity and control in the way in which you use it. This interface provides for interactive operations
and allows you to run DCL command procedures for customized operations.

Understanding these features help you become a more effective command line interface user and
DCL programmer.

18.1.1.1 Command Structure

The command structure includes the MDMS keyword, the operational verb and an object class
name at a minimum. Optionally the command can include a specific object name and command
qualifiers.

The following example shows the MDMS command structure for most commands:

$MDMS verb object_class [object_name] [/qualifier [,...]]

The Move and Report commands support multiple parameters, as documented in the
Archive/Backup System for OpenVMS (ABS) or Hierarchical Storage Management for Open-
VMS (HSM) Command Reference Guide.

18.1.1.2 Process Symbols and Logical Names for DCL Programming

Some MDMS commands include features for capturing text that can be used to support DCL
programming.

The MDMS SHOW VOLUME command includes a /SYMBOLS qualifier to define a set of
symbols that store the specified volume’s attributes.

Several MDMS commands can involve operator interaction if necessary. These command
includes a /REPLY qualifier to capturing the operator’s reply to the OPCOM message creat
satisfy the request.

The allocate commands can return an allocated object name. You can assign a process lo
name to pick up this object name by using the /DEFINE=logical name qualifier.

18.1.1.3 Creating, Changing, and Deleting Object Records With the CLI

The interactions between the MDMS process and object records in the database form the b
MDMS operations. Most command line interface actions involve the object record verbs MD
 Basic MDMS Operations 18–1

Basic MDMS Operations
18.1 MDMS User Interfaces
CREATE, MDMS SET, MDMS SHOW, and MDMS DELETE. Use the MDMS CREATE verb
to create object records that represent the objects you manage. Use MDMS SHOW and MDMS
SET to view and change object attributes. The MDMS DELETE command removes object
records from the MDMS database.

You do not create all object records with the MDMS CREATE command or with the GUI cre-
ation options. MDMS creates some records automatically. During installation MDMS creates
the Domain object record, and volume object records can be created in response to an inventory
operation.

18.1.1.4 Add and Remove Attribute List Values With the CLI

This section describes the how to add, remove, and change attribute list values.

Command Features

The MDMS CREATE and MDMS SET commands for every object class that has one or more
attributes with list values include /ADD and /REMOVE qualifiers. These qualifiers allow you to
manipulate the attribute lists.

Use the /ADD qualifier to add a new value to the attribute value list with both the MDMS CRE-
ATE/INHERIT and MDMS SET commands.

Use the /REMOVE qualifier to remove an identified value from the attribute value list with both
the MDMS CREATE/INHERIT and MDMS SET commands.

To change an entire attribute value list, specify a list of new values with the attribute qualifier.

Command Examples

The following example shows how these qualifiers work.

This command creates a new drive object record, taking attribute values from an existing drive
object record. In it, the user adds a new media type name to the /MEDIA_TYPE value list.

$MDMS CREATE DRIVE TL8_4 /INHERIT=TL89X_1 /MEDIA_TYPE=(TK9N) /ADD

After being created, the data center management plan requires the jukebox containing drive
TL8_4 to service requests from a different group of nodes. To change the group list values, but
nothing else, the user issues the following SET command.

$MDMS SET DRIVE TL8_4 /GROUPS=(FINGRP,DOCGRP)

Later, the nodes belonging to DOCGRP no longer need drive TL8_4. The following command
removes DOCGRP from the /GROUPS attribute list.

$MDMS SET DRIVE TL8_4 /GROUPS=DOCGRP /REMOVE

18.1.1.5 Operational CLI Commands

The MDMS command line interface includes commands for operations in the MDMS domain.
These commands initiate actions with managed objects. Qualifiers to these commands tailor the
command actions to suit your needs. The following examples show how these qualifiers work:

Table 18–1 Operational CLI Commands

Command Operation

MDMS ALLOCATE DRIVE Allocate a drive for exclusive use of an MDMS
client process, such as ABS or HSM.

MDMS ALLOCATE VOLUME Allocate a volume for exclusive use of an MDMS
user.
Basic MDMS Operations 18-2

Basic MDMS Operations
18.1 MDMS User Interfaces
18.1.1.6 Asynchronous Requests

Many MDMS commands include the /NOWAIT qualifier. These commands start actions that
require some time to complete. Commands entered with /NOWAIT are internally queued by
MDMS as an asynchronous request. The request remains in the queue until the action succeeds
or fails.

To show currently outstanding requests, use the MDMS SHOW REQUESTS command. To can-
cel a request, use the MDMS CANCEL REQUEST command.

18.1.2 Graphic User Interface

MDMS includes a GUI based on Java technology. Through the GUI, you can manage MDMS
from any Java enabled system on your network that is connected to an OpenVMS system run-
ning MDMS.

18.1.2.1 Object Oriented Tasks

Most MDMS operations involve single actions on one or more objects. The basic concept of the
GUI supports this management perspective. The interface allows you to select one or more
objects and enables management actions through point-and-click operations.

MDMS BIND VOLUME Bind a volume to a volume set.

MDMS CANCEL REQUEST Cancel an outstanding request before it is com-
pleted by the MDMS system

MDMS DEALLOCATE DRIVE Free a drive that has been allocated for the exclu-
sive use of an MDMS client process.

MDMS DEALLOCATE VOLUME Deallocate a volume into either the Free or Transi-
tion states, making it available for use by other
users (optionally after a transition interval).

MDMS INITIALIZE VOLUME Initialize a volume, making it ready for writing
and reading.

MDMS INVENTORY JUKEBOX Compare the contents of a jukebox with the
MDMS database and take corrective action as
specified.

MDMS LOAD DRIVE Load a known drive with any compatible volume.

MDMS LOAD VOLUME Load a known volume into any compatible drive.

MDMS MOVE MAGAZINE Move a magazine from one location or jukebox to
another location or jukebox.

MDMS MOVE VOLUME Move a volume from any location, jukebox, or
magazine, to another location, jukebox, or maga-
zine.

MDMS REPORT VOLUME Generate a report of volumes sharing specified
attributes.

MDMS UNBIND VOLUME Remove a volume from a volume set.

MDMS UNLOAD DRIVE Unload any volume from the specified drive.

MDMS UNLOAD VOLUME Unload the specified volume from a drive.

Table 18–1 Operational CLI Commands

Command Operation
 Basic MDMS Operations 18–3

Basic MDMS Operations
18.1 MDMS User Interfaces

u

to the
lumes

nt.
se is
Viewing Object Records with the GUI

To view object records with the GUI, select the class from the icon bar at the top of the screen.
Use the next screen to select the particular records you want to view, then press the Modify or
Delete option. The GUI then displays the object record.

Operational Actions With the GUI

In addition to creating, modifying, and deleting object records, the GUI enables management
actions. Table 18–2 shows the objects and the actions associated with them.

18.1.2.2 Combined Tasks

The graphic user interface also provides guides for combined tasks. These guides take yo
through tasks that involve multiple steps on multiple objects.

Add Devices and Volumes

This task interface first takes you through the procedures to add a new jukebox and drive
MDMS domain. The second part of the procedure takes you through all the steps to add vo
to the MDMS domain. You can use just the second part to add volumes at any time.

Delete Devices and Volumes

Use this task interface to remove a jukebox or drive, and volumes from MDMS manageme
This procedure provides you with the necessary decisions to make sure the MDMS databa

Table 18–2 Operational Actions With the GUI

Object Action Operation

Drive Load Load a known drive with any compatible volume.

Unload Unload any volume from the specified drive.

Jukebox Inventory Compare the contents of jukebox with the MDMS database;
take corrective action as specified.

Volume Allocate Allocate a volume for the exclusive use of an MDMS user.

Bind Bind a volume to a volume set.

Deallocate Deallocate a volume into either FREE or TRANSITION states,
making it available for use by other users (optionally after a
transition interval).

Initialize Initialize a volume, making it ready for writing and reading.

Load Load a known volume into any compatible drive.

Move Move a volume from any location, jukebox, or magazine, to
another location, jukebox, or magazine.

Report Generate a report of volumes sharing specified attributes.

Unbind Remove a volume from a volume set.

Unload Unload the specified volume from a drive.

Magazine Move Move a magazine from one location or jukebox to another loca-
tion or jukebox.

Request Cancel Cancel an outstanding request before it is completed by the
MDMS system.
Basic MDMS Operations 18-4

Basic MDMS Operations
18.2 Access Rights for MDMS Operations
kept current after all necessary object records have been deleted. Without this procedure, you
could likely delete object records, but leave references to them in the attribute fields of remain-
ing records.

Site to Site Rotation

This procedure facilitates moving volumes to an offsite vault location for safe storage. It takes
you through the steps to bring volumes from an offsite location, then gather volumes for move-
ment to the offsite location.

Service a Jukebox

Use this procedure when backup operations use volumes in a jukebox and you need to supply
free volumes for future backup requests. This procedure allows you to gather allocated volumes
from the jukebox, then replace them with free volumes. The procedure also allows you to use the
jukebox vision system.

18.2Access Rights for MDMS Operations
This section describes access rights for MDMS operations. MDMS works with the OpenVMS
User Authorization File (UAF), so you need to understand the Authorize Utility and OpenVMS
security before changing the default MDMS rights assignments.

MDMS rights control access to operations, not to object records in the database.

Knowing the security implementation will allow you to set up MDMS operation as openly or
securely as required.

18.2.1 Description of MDMS Rights

MDMS controls user action with process rights granted to the user or application through low
and high level rights.

18.2.1.1 Low Level Rights

The low level rights are named to indicate an action and the object the action targets. For
instance, the MDMS_MOVE_OWN right allows the user to conduct a move operation on a vol-
ume allocated to that user. The MDMS_LOAD_ALL right allows the user to load any managed
volume.

For detailed descriptions of the MDMS low level rights, refer to the ABS or HSM Command
Reference Guide.

18.2.1.2 High Level Rights

MDMS associates high level rights with the kind of user that would typically need them. Refer
to the ABS or HSM Command Reference Guide for a detailed list of the low level rights associ-
ated with each high level right. The remainder of this section describes the high level rights.

MDMS User

The default MDMS_USER right is for any user who wants to use MDMS to manage their own
tape volumes. A user with the MDMS_USER right can manage only their own volumes. The
default MDMS_USER right does not allow for creating or deleting MDMS object records, or
changing the current MDMS configuration.

Use this right for users who perform non-system operations with ABS or HSM.

MDMS Application

The default MDMS_APPLICATION right is for the ABS and HSM applications. As MDMS cli-
ents using managed volumes and drives, these applications require specific rights.
 Basic MDMS Operations 18–5

Basic MDMS Operations
18.2 Access Rights for MDMS Operations

cess to
 the
The ABS or HSM processes include the MDMS_APPLICATION rights identifier which
assumes the low level rights associated with it. Do not modify the low level rights values for the
Domain application rights attribute. Changing the values to this attribute can cause your applica-
tion to fail.

MDMS Operator

The default MDMS_OPERATOR right supports data center operators. The associated low level
rights allow operators to service MDMS requests for managing volumes, loading and unloading
drives.

The Default Right

The low level rights associated with the MDMS_DEFAULT right apply to any OpenVMS user
who does not have any specific MDMS right granted in their user authorization (SYSUAF.DAT)
file. Use the default right when all users can be trusted with an equivalent level of MDMS rights.

18.2.2 Granting MDMS Rights

The high level rights are defined by domain object record attributes with lists of low level rights.
The high level rights are convenient names for sets of low level rights.

For MDMS users, grant high and/or low level rights as needed with the Authorize Utility. You
can take either of these approaches to granting MDMS rights.

You can ensure that all appropriate low level rights necessary for a class of user are assigned to
the corresponding high level right, then grant the high level rights to users.

You can grant any combination of high level and low level rights to any user.

Use the procedure outlined in Table 18–3 to review and set rights that enable or disable ac
MDMS operations. CLI command examples appear in this process description but can use
GUI to accomplish this procedure as well.

Table 18–3 Reviewing and Setting MDMS Rights

Step... Action...

1. Show the domain object record values for each high level right.
• For all system users, examine the default rights attribute.

• For MDMS operators, examine the operator rights attribute.

• For MDMS users, examine the user rights attribute.

Review the low level rights associated with each high level right. If you have
questions about actions view the list of low level rights and the actions they
enable.

Example

$MDMS SHOW DOMAIN /FULL
Basic MDMS Operations 18-6

Basic MDMS Operations
18.2 Access Rights for MDMS Operations
2. If the low level rights associated with the high level right are not adequate
for a class of user, then add appropriate rights.

If the low level rights associated with the high level right enable inappro-
priate options for a class of user, then remove the inappropriate rights.

Example:

$MDMS SET DOMAIN /OPERATOR_RIGHTS=MDMS_SET_PROTECTED/ADD

or

$MDMS SET DOMAIN /USER_RIGHTS=MDMS_ASSIST/REMOVE

3. If you do not want all system users to have implicit access to MDMS
operations, then negate the domain object record default rights attribute.

$MDMS SET DOMAIN /NODEFAULT_RIGHTS

By default, a user with the OpenVMS SYSPRV privilege is granted all
MDMS rights. If you wish to disable this feature, disable the SYSPRV
privilege in the domain record:.

$MDMS SET DOMAIN /NOSYSPRV

4. If you want any user with ABS privileges to have access to appropriate
MDMS rights to support just ABS operations, set the domain object
record ABS rights attribute.

$MDMS SET DOMAIN /ABS_RIGHTS

For all system user accounts that need access to MDMS, grant the appro-
priate rights.

If a user needs only the rights associated with a class of user, grant that
user the high level right associated with that class only.

UAF> GRANT/IDENTIFIER MDMS_USER DEVUSER

Table 18–3 Reviewing and Setting MDMS Rights

Step... Action...
 Basic MDMS Operations 18–7

Basic MDMS Operations
18.3 Creating, Modifying, and Deleting Object Records

te)
s sur-

ts
ces and

case

is-
18.3Creating, Modifying, and Deleting Object Records
This section describes the basic concepts that relate to creating, modifying, and deleting object
records.

18.3.1 Creating Object Records

Both the CLI and GUI provide the ability to create object records. MDMS imposes rules on the
names you give object records. When creating object records, define as many attribute values as
you can, or inherit attributes from object records that describe similar objects.

18.3.1.1 Naming Objects

When you create an object record, you give it a name that will be used as long as it exists in the
MDMS database. MDMS also accesses the object record when it is an attribute of another object
record; for instance a media type object record named as a volume attribute.

MDMS object names may include any digit (0 through 9), any upper case letter (A through Z),
and any lower case letter (a through z). Additionally, you can include $ (dollar sign) and _
(underscore).

18.3.1.2 Differences Between the CLI and GUI for Naming Object Records

The MDMS CLI accepts all these characters. However, lower case letters are automatically con-
verted to upper case, unless the string containing them is surrounded by the “(double quo
characters. The CLI also allows you to embed spaces in object names if the object name i
rounded by the “ characters.

The MDMS GUI accepts all the allowable characters, but will not allow you to create objec
that use lower case names, or embed spaces. The GUI will display names that include spa
lower case characters if they were created with the CLI.

Compaq recommends that you create all object records with names that include no lower
letters or spaces. If you create an object name with lower case letters, and refer to it as an
attribute value which includes upper case letters, MDMS may fail an operation.

Naming Examples

The following examples illustrate the concepts for creating object names with the CLI.

5. If a user needs a combination of rights, then grant that user the high
and/or low level rights needed to enable the user to do their job with
MDMS. You must issue a separate command for each right granted.

UAF> GRANT/IDENTIFIER MDMS_OPERATOR DCOPER

%UAF-I-GRANTMSG, identifier MDMS_OPERATOR granted to
DCOPER

UAF> GRANT/IDENTIFIER MDMS_LOAD_SCRATCH DCOPER

%UAF-I-GRANTMSG, identifier MDMS_LOAD_SCRATCH granted
to DCOPER

If you do not want a particular user to acquire the default rights, then d
able the user’s ability to operate MDMS with the default rights.

UAF> GRANT/IDENTIFIER MDMS_NO_DEFAULT APPUSER

Table 18–3 Reviewing and Setting MDMS Rights

Step... Action...
Basic MDMS Operations 18-8

Basic MDMS Operations
18.3 Creating, Modifying, and Deleting Object Records

values
 infor-

edia
eate

 any
 the

se.
as it is
tion to
ntions

 par-
r pre-
These commands show the default CLI behavior for naming objects:

$!Volume created with upper case locked
$MDMS CREATE VOLUME CPQ231 /INHERIT=CPQ000 !Standard upper case DCL
$MDMS SHOW VOLUME CPQ231
$!
$!Volume created with lower case letters
$MDMS CREATE VOLUME cpq232 /INHERIT=CPQ000 !Standard lower case DCL
$MDMS SHOW VOLUME CPQ232
$!
$!Volume created with quote-delimited lower case, forcing lower case naming
$MDMS CREATE VOLUME ìcpq233î /INHERIT=CPQ000 !Forced lower case DCL
$!
$!This command fails because the default behavior translates to upper case
$MDMS SHOW VOLUME CPQ233
$!
$!Use quote-delimited lower case to examine the object record
$MDMS SHOW VOLUME ìcpq233î

18.3.2 Inheritance on Creation

This feature allows you to copy the attributes of any specified object record when creating or
changing another object record. For instance, if you create drive object records for four drives in
a new jukebox, you fill out all the attributes for the first drive object record. Then, use the inherit
option to copy the attribute values from the first drive object record when creating the subse-
quent three drive object records.

If you use the inherit feature, you do not have to accept all the attribute values of the selected
object record. You can override any particular attribute value by including the attribute assign-
ment in the command or GUI operation. For CLI users, use the attribute’s qualifier with the
MDMS CREATE command. For GUI users, set the attribute values you want.

Not all attributes can be inherited. Some object record attributes are protected and contain
that apply only to the specific object the record represents. Check the command reference
mation to identify object record attributes that can be inherited.

18.3.3 Referring to Non-Existent Objects

MDMS allows you to specify object record names as attribute values before you create the
records. For example, the drive object record has a media types attribute. You can enter m
type object record names into that attribute when you create the drive object before you cr
the media type object records.

18.3.4 Rights for Creating Objects

The low level rights that enable a user to create objects are MDMS_CREATE_ALL (create
MDMS object record) and MDMS_CREATE_POOL (create volumes in a pool authorized to
user).

18.3.5 Modifying Object Records

Whenever your configuration changes you will modify object records in the MDMS databa
When you identify an object that needs to be changed you must specify the object record
named. If you know an object record exists, but it does not display in response to an opera
change it, you could be entering the name incorrectly. Section 18.3.1.1 describes the conve
for naming object records.

18.3.6 Protected Attributes

Do not change protected attributes if you do not understand the implications of making the
ticular changes. If you change a protected attribute, you could cause an operation to fail o
vent the recovery of data recorded on managed volumes.
 Basic MDMS Operations 18–9

Basic MDMS Operations
18.3 Creating, Modifying, and Deleting Object Records

ecord.
or the

rence
MDMS uses some attributes to store information it needs to manage certain objects. The GUI
default behavior prevents you from inadvertently changing these attributes. By pressing the
Enable Protected button on the GUI, you can change these attributes. The CLI makes no distinc-
tion in how it presents protected attributes when you modify object records. Ultimately, the abil-
ity to change protected attributes is allowed by the MDMS_SET_PROTECTED right and
implicitly through the MDMS_SET_RIGHTS right.

The command reference guide identifies protected attributes

18.3.7 Rights for Modifying Objects

The low level rights that allow you to modify an object by changing its attribute values are
shown below:.

18.3.8 Deleting Object Records

When managed objects, such as drives or volumes, become obsolete or fail, you may want to
remove them from management. When you remove these objects, you must also delete the
object records that describe them to MDMS.

When you remove object records, there are two reviews you must make to ensure the database
accurately reflects the management domain: review the remaining object records and change any
attributes that reference the deleted object records, review any DCL command procedures and
change any command qualifiers that reference deleted object records.

18.3.9 Reviewing Managed Objects for References to Deleted Objects

When you delete an object record, review object records in the database for references to those
objects. Table 18–5 shows which object records to check when you delete a given object r
Use this table also to check command procedures that include the MDMS SET command f
remaining objects.

Change references to deleted object records from the MDMS database. If you leave a refe
to a deleted object record in the MDMS database, an operation with MDMS could fail.

Table 18–4 Low Level Rights

This right Enables you to modify

MDMS_SET_ALL Any MDMS database object record.

MDMS_SET_PROTECTED Protected attributes used internally by
MDMS.

MDMS_SET_OWN Attributes of volumes allocated to the user.

MDMS_SET_POOL Attributes of volumes in pools authorized to
the user.

MDMS_SET_RIGHTS The MDMS domain high level rights defini-
tion

Table 18–5 Reviewing Managed Objects for References to Deleted Objects

When you delete... Review these object records...

Group Drive

Jukebox

Pool (Authorized, Default Users)
Basic MDMS Operations 18-10

Basic MDMS Operations
18.3 Creating, Modifying, and Deleting Object Records

 could

e to a
18.3.10 Reviewing DCL Command Procedures for References to Deleted Objects

When you delete an object record, review any DCL command procedures for commands that
reference those objects. Other than the MDMS CREATE, SET, SHOW, and DELETE commands
for a given object record, Table 18–6 shows which commands to check. These commands
have references to the deleted object record.

Change references to deleted object records from DCL commands. If you leave a referenc
deleted object record in a DCL command, an operation with MDMS could fail.

Jukebox Drive

Jukebox

Magazine (MDMS sets the attribute)

Volume (MDMS sets the attribute)

Location Domain (Offsite, Onsite Location)

Location

Magazine (Offsite, Onsite Location)

Node

Volume (Offsite, Onsite Location)

Media Type Domain

Drive

Volume

Node Drive

Group

Jukebox

Pool (Authorized, Default Users)

Pool Volume

Table 18–5 Reviewing Managed Objects for References to Deleted Objects

When you delete... Review these object records...

Table 18–6 Reviewing DCL Commands for References to Deleted Objects

When you delete... Review these DCL commands...

Drive MDMS ALLOCATE DRIVE

MDMS DEALLOCATE DRIVE

MDMS LOAD DRIVE

MDMS LOAD VOLUME

MDMS UNLOAD DRIVE

Group MDMS ALLOCATE DRIVE
 Basic MDMS Operations 18–11

Basic MDMS Operations
18.3 Creating, Modifying, and Deleting Object Records
MDMS CREATE DRIVE

MDMS CREATE JUKEBOX

MDMS SET DRIVE

MDMS SET JUKEBOX

Jukebox MDMS ALLOCATE DRIVE

MDMS ALLOCATE VOLUME

MDMS CREATE MAGAZINE

MDMS CREATE VOLUME

MDMS INITIALIZE VOLUME

MDMS INVENTORY JUKEBOX

MDMS SET MAGAZINE

MDMS SET VOLUME

MDMS REPORT VOLUME

Location MDMS ALLOCATE DRIVE

MDMS ALLOCATE VOLUME

MDMS CREATE LOCATION (Location attribute)

MDMS CREATE JUKEBOX

MDMS CREATE MAGAZINE (Onsite, Offsite Location)

MDMS CREATE NODE

MDMS CREATE VOLUME (Onsite, Offsite Location)

MDMS MOVE VOLUME

MDMS REPORT VOLUME (Onsite, Offsite Location Fields)

MDMS SET DOMAIN (Onsite, Offsite Location)

MDMS SET JUKEBOX

MDMS SET LOCATION (Location attribute)

MDMS SET MAGAZINE (Onsite, Offsite Location)

MDMS SET NODE

MDMS SET VOLUME (Onsite, Offsite Location)

Media Type MDMS ALLOCATE DRIVE

MDMS ALLOCATE VOLUME

MDMS CREATE DRIVE

MDMS CREATE VOLUME

Table 18–6 Reviewing DCL Commands for References to Deleted Objects

When you delete... Review these DCL commands...
Basic MDMS Operations 18-12

Basic MDMS Operations
18.3 Creating, Modifying, and Deleting Object Records
18.3.11Rights for Deleting Objects

The low level rights that enable a user to delete objects are MDMS_DELETE_ALL (delete any
MDMS object record) and MDMS_DELETE_POOL (delete volumes in a pool authorized to the
user).

MDMS INITITALIZE VOLUME

MDMS INVENTORY JUKEBOX

MDMS LOAD DRIVE

MDMS REPORT VOLUME

MDMS SET DOMAIN

MDMS SET VOLUME

Node MDMS ALLOCATE DRIVE

MDMS CREATE DRIVE

MDMS CREATE GROUP

MDMS CREATE JUKEBOX

MDMS CREATE POOL (Authorized, Default Users)

MDMS SET DRIVE

MDMS SET GROUP

MDMS SET JUKEBOX

MDMS SET POOL (Authorized, Default Users)

Pool MDMS ALLOCATE VOLUME

MDMS LOAD DRIVE

MDMS REPORT VOLUME

MDMS SET VOLUME

Volume MDMS ALLOCATE DRIVE

MDMS ALLOCATE VOLUME/LIKE_VOLUME

Volume Set MDMS BIND VOLUME/TO_SET

Table 18–6 Reviewing DCL Commands for References to Deleted Objects

When you delete... Review these DCL commands...
 Basic MDMS Operations 18–13

on-
19
Connecting and Managing Remote Devices

This chapter explains how to configure and manage remote devices Remote Device Facility
(RDF). Media and Device Management Services (MDMS) and RDF allow you to manage
remote devices.

19.1The RDF Installation
When you install Media and Device Management Services (MDMS) you are asked whether you
want to install the RDF software.

During the installation you place the RDF client software on the nodes with disks you want to
backup. You place the RDF server software on the systems to which the tape backup devices are
connected. This means that when using RDF, you serve the tape backup device to the systems
with the client disks.

All of the files for RDF are placed in TTI_RDF: for your system. There will be separate loca-
tions for VAX or Alpha.

Note

RDF is not available if you are running ABS/MDMS with the ABS-OMT license.

19.2Configuring RDF
After installing RDF you should check the TTI_RDEV:CONFIG_nodename.DAT file to make
sure it has correct entries.

This file:

• is located on the RDF server node with the tape device

• is created initially during installation

• is a text file

• includes the definition of each device accessible by the RDF software. This definition c
sists of a physical device name and an RDF characteristic name.

Example:

Device 1MIA0 MIAO

Verify:

Check this file to make sure that all RDF characteristic names are unique to this node.
 Connecting and Managing Remote Devices 19–1

Connecting and Managing Remote Devices
19.3 Using RDF with MDMS
19.3Using RDF with MDMS
The following sections describe how to use RDF with MDMS.

19.3.1 Starting Up and Shutting Down RDF Software

Starting up RDF software:

RDF software is automatically started up along with then MDMS software when you enter the
following command:

$ @SYS$STARTUP:MDMS$STARTUP

Shutting down RDF software:

To shut down the RDF software, enter the following command:

$ @SYS$STARTUP:MDMS$SHUTDOWN

19.3.2 The RDSHOW Procedure

Required privileges:

The following privileges are required to execute the RDSHOW procedure: NETMBX, TMP-
MBX.

In addition, the following privileges are required to show information on remote devices allo-
cated by other processes: SYSPRV,WORLD.

19.3.3 Command Overview

You can run the RDSHOW procedure any time after the MDMS software has been started. RDF
software is automatically started at this time.

Use the following procedures:

$ @TTI_RDEV:RDSHOW CLIENT
$ @TTI_RDEV:RDSHOW SERVER node_name
$ @TTI_RDEV:RDSHOW DEVICES

node_name is the node name of any node on which the RDF server software is running.

19.3.4 Showing Your Allocated Remote Devices

To show remote devices that you have allocated, enter the following command from the RDF
client node:

$ @TTI_RDEV:RDSHOW CLIENT

Result:

RDALLOCATED devices for pid 20200294, user DJ, on node OMAHA::
Local logical Rmt node Remote device
TAPE01 MIAMI:: MIAMI$MUC0

DJ is the user name and OMAHA is the current RDF client node.

19.3.5 Showing Available Remote Devices on the Server Node

The RDSHOW SERVER procedure shows the available devices on a specific SERVER node.
To execute this procedure, enter the following command from any RDF client or RDF server
node:

$ @TTI_RDEV:RDSHOW SERVER MIAMI
Connecting and Managing Remote Devices 19-2

Connecting and Managing Remote Devices
19.4 Monitoring and Tuning Network Performance

ic net-
pre-

owl-
 sixth
MIAMI is the name of the server node whose devices you want shown.

Result:

Available devices on node MIAMI::
Name Status Characteristics/Comments
MIAMI$MSA0 in use msa0
...by pid 20200246, user CATHY (local)
MIAMI$MUA0 in use mua0
...by pid 202001B6, user CATHY, on node OMAHA::
MIAMI$MUB0 -free- mub0
MIAMI$MUC0 in use muc0
...by pid 2020014C, user DJ, on node OMAHA::

This RDSHOW SERVER command shows any available devices on the server node MIAMI,
including any device characteristics. In addition, each allocated device shows the process PID,
username, and RDF client node name.

The text (local) is shown if the device is locally allocated.

19.3.6 Showing All Remote Devices Allocated on the RDF Client Node

To show all allocated remote devices on an RDF client node, enter the following command from
the RDF client node:

$ @TTI_RDEV:RDSHOW DEVICES

Result:

Devices RDALLOCATED on node OMAHA::
RDdevice Rmt node Remote device User name PID
RDEVA0: MIAMI:: MIAMI$MUC0 DJ 2020014C
RDEVB0: MIAMI:: MIAMI$MUA0 CATHY 202001B6

This command shows all allocated devices on the RDF client node OMAHA. Use this command
to determine which devices are allocated on which nodes.

19.4Monitoring and Tuning Network Performance
This section describes network issues that are especially important when working with remote
devices.

19.4.1 DECnet Phase IV

The Network Control Program (NCP) is used to change various network parameters. RDF (and
the rest of your network as a whole) benefits from changing two NCP parameters on all nodes in
your network. These parameters are:

• PIPELINE QUOTA

• LINE RECEIVE BUFFERS

Pipeline quota

The pipeline quota is used to send data packets at an even rate. It can be tuned for specif
work configurations. For example, in an Ethernet network, the number of packet buffers re
sented by the pipeline quota can be calculated as approximately:

buffers = pipeline_quota / 1498

Default:

The default pipeline quota is 10000. At this value, only six packets can be sent before ackn
edgment of a packet from the receiving node is required. The sending node stops after the
packet is sent if an acknowledgment is not received.
 Connecting and Managing Remote Devices 19–3

Connecting and Managing Remote Devices
19.4 Monitoring and Tuning Network Performance

ta.

 run-

ECnet-

P line
Recommendation:

The PIPELINE QUOTA can be increased to 45,000 allowing 30 packets to be sent before a
packet is acknowledged (in an Ethernet network). However, performance improvements have
not been verified for values higher than 23,000. It is important to know that increasing the value
of PIPELINE QUOTA improves the performance of RDF, but may negatively impact perfor-
mance of other applications running concurrently with RDF.

Line receive buffers

Similar to the pipeline quota, line receive buffers are used to receive data at a constant rate.

Default:

The default setting for the number of line receive buffers is 6.

Recommendation:

The number of line receive buffers can be increased to 30 allowing 30 packets to be received at a
time. However, performance improvements have not been verified for values greater than 15 and
as stated above, tuning changes may improve RDF performance while negatively impacting
other applications running on the system.

19.4.2 DECnet-Plus (Phase V)

As stated in DECnet-Plus(Phase V), (DECnet/OSI V6.1) Release Notes, a pipeline quota is not
used directly. Users may influence packet transmission rates by adjusting the values for the
transport’s characteristics MAXIMUM TRANSPORT CONNECTIONS, MAXIMUM
RECEIVE BUFFERS, and MAXIMUM WINDOW. The value for the transmit quota is deter-
mined by MAXIMUM RECEIVE BUFFERS divided by Actual TRANSPORT CONNEC-
TIONS.
This will be used for the transmit window, unless MAXIMUM WINDOW is less than this quo
In that case, MAXIMUM WINDOW will be used for the transmitter window.

The DECnet-Plus defaults (MAXIMUM TRANSPORT CONNECTIONS = 200 and MAXI-
MUM RECEIVE BUFFERS = 4000) produce a MAXIMUM WINDOW of 20. Decreasing
MAXIMUM TRANSPORT CONNECTIONS with a corresponding increase of MAXIMUM
WINDO may improve RDF performance, but also may negatively impact other applications
ning on the system.

19.4.3 Changing Network Parameters

This section describes how to change the network parameters for DECnet Phase IV and D
PLUS.

19.4.4 Changing Network Parameters for DECnet (Phase IV)

The pipeline quota is an NCP executor parameter. The line receive buffers setting is an NC
parameter.
Connecting and Managing Remote Devices 19-4

Connecting and Managing Remote Devices
19.4 Monitoring and Tuning Network Performance
The following procedure shows how to display and change these parameters in the permanent
DECnet database. These changes should be made on each node of the network.

Requirement:

For the changed parameters to take effect, the node must be rebooted or DECnet must be shut
down.

19.4.5 Changing Network Parameters for DECnet-Plus(Phase V)

The Network Control Language (NCL) is used to change DECnet-Plus network parameters. The
transport parameters MAXIMUM RECEIVE BUFFERS, MAXIMUM TRANSPORT CON-
NECTIONS and MAXIMUM WINDOW can be adjusted by using NCL’s SET OSI TRANS-
PORT command. For example:

Table 19–1 How to Change Network Parameters

 Step Action

 1 Enter:

$ run sys$system:NCP
NCP>show executor characteristics

Result:

Node Permanent Characteristics as of 24-MAY-1991 10:10:58
Executor node = 20.1 (DENVER)
Management version = V4.0.0
.
.
.
Pipeline quota = 10000

 2 Enter:

NCP>define executor pipeline quota 45000
NCP>show known lines

Result:

Known line Volatile Summary as of 24-MAY-1991 10:11:13
Line State
SVA-0 on

 3 Enter:

NCP>show line sva-0 characteristics

Result:

Line Permanent Characteristics as of 24-MAY-1991 10:11:31
Line = SVA-0
Receive buffers = 6 <-- value to change
Controller = normal
Protocol = Ethernet
Service timer = 4000
Hardware address = 08-00-2B-0D-D0-5F
Device buffer size = 1498

4 Enter:

NCP>define line sva-0 receive buffers 30
NCP>exit
 Connecting and Managing Remote Devices 19–5

Connecting and Managing Remote Devices
19.4 Monitoring and Tuning Network Performance

is not
s. This
 list.

locate

r is
was

UNT
fect of
om-
NCL> SET OSI TRANSPORT MAXIMUM RECEIVE BUFFERS = 4000 !default value
NCL> SET OSI TRANSPORT MAXIMUM TRANSPORT CONNECTIONS = 200 !default value
NCL> SET OSI TRANSPORT MAXIMUM WINDOWS = 20 !default value

To make the parameter change permanent, add the NCL command(s) to the SYS$MAN-
AGER:NET$OSI_TRANSPORT_STARTUP.NCL file. Refer to the DENET-Plus (DEC-
net/OSI) Network Management manual for detailed information.

19.4.6 Resource Considerations

Changing the default values of line receive buffers and the pipeline quota to the values of 30 and
45000 consumes less than 140 pages of nonpaged dynamic memory.

In addition, you may need to increase the number of large request packets (LRPs) and raise the
default value of NETACP BYTLM.

Large request packets

LRPs are used by DECnet to send and receive messages. The number of LRPs is governed by
the SYSGEN parameters LRPCOUNT and LRPCOUNTV.

Recommendation:

A minimum of 30 free LRPs is recommended during peak times. Show these parameters and the
number of free LRPs by entering the following DCL command:

 $ SHOW MEMORY/POOL/FULL

Result:

System Memory Resources on 24-JUN-1991 08:13:57.66
Large Packet (LRP) Lookaside List Packets Bytes
Current Total Size 36 59328
Initial Size (LRPCOUNT) 25 41200
Maximum Size (LRPCOUNTV) 200 329600
Free Space 20 32960

In the LRP lookaside list, this system has:

• Current Total Size of 36

The SYSGEN parameter LRPCOUNT (LRP Count) has been set to 25. The Current Size
the same as the Initial Size. This means that OpenVMS software has to allocate more LRP
causes system performance degradation while OpenVMS is expanding the LRP lookaside

The LRPCOUNT should have been raised to at least 36 so OpenVMS does not have to al
more LRPs.

Recommendation:

Raise the LRPCOUNT parameter to a minimum of 50. Because the LRPCOUNT paramete
set to only 25, the LRPCOUNT parameter is raised on this system even if the current size
also 25.

• Free Space is 20

This is below the recommended free space amount of 30. This also indicates that LRPCO
should be raised. Raising LRPCOUNT to 50 (when there are currently 36 LRPs) has the ef
adding 14 LRPs. Fourteen plus the 20 free space equals over 30. This means that the rec
mended value of 30 free space LRPs is met after LRPCOUNT is set to 50.

• The SYSGEN parameter LRPCOUNTV (LRP count virtual) has been set to 200.
Connecting and Managing Remote Devices 19-6

Connecting and Managing Remote Devices
19.4 Monitoring and Tuning Network Performance

ugh
The LRPCOUNTV parameter should be at least four times LRPCOUNT. Raising LRPCOUNT
may mean that LRPCOUNTV has to be raised. In this case, LRPCOUNTV does not have to be
raised because 200 is exactly four times 50 (the new LRPCOUNT value).

Make changes to LRPCOUNT or LRPCOUNTV in both:

– SYSGEN (using CURRENT)

– SYS$SYSTEM:MODPARAMS.DAT file (for when AUTOGEN is run with
REBOOT)

Example: Changing LRPCOUNT to 50 in SYSGEN

Username: SYSTEM
Password: (the system password)
$ SET DEFAULT SYS$SYSTEM
$ RUN SYSGEN
SYSGEN> USE CURRENT
SYSGEN> SH LRPCOUNT
Parameter Name Current Default Minimum Maximum
LRPCOUNT 25 4 0 4096
SYSGEN> SET LRPCOUNT 50
SYSGEN> WRITE CURRENT
SYSGEN> SH LRPCOUNT
Parameter Name Current Default Minimum Maximum
LRPCOUNT 50 4 0 4096

Requirement:

After making changes to SYSGEN, reboot your system so the changes take effect.

Example: Changing the LRPCOUNT for AUTOGEN

Add the following line to MODPARAMS.DAT:

$ MIN_LRPCOUNT = 50 ! ADDED {the date} {your initials}

Result:

This ensures that when AUTOGEN runs, LRPCOUNT is not set below 50.

NETACP BYTLM

The default value of NETACP is a BYTLM setting of 65,535. Including overhead, this is eno
for only 25 to 30 line receive buffers. This default BYTLM may not be enough.

Recommendation:

Increase the value of NETACP BYTLM to 110,000.

How to increase NETACP BYTLM:

Before starting DECnet, define the logical NETACP$BUFFER_ LIMIT by entering:

$ DEFINE/SYSTEM/NOLOG NETACP$BUFFER_LIMIT 110000
$ @SYS$MANAGER:STARTNET.COM

19.4.7 Controlling RDF’s Effect on the Network

By default, RDF tries to perform I/O requests as fast as possible. In some cases, this can cause
the network to slow down. Reducing the network bandwidth used by RDF allows more of the
network to become available to other processes.

The RDF logical names that control this are:

RDEV_WRITE_GROUP_SIZE
RDEV_WRITE_GROUP_DELAY
 Connecting and Managing Remote Devices 19–7

Connecting and Managing Remote Devices
19.4 Monitoring and Tuning Network Performance

re.
n-

tes a
Default:

The default values for these logical names is zero. The following example shows how to define
these logical names on the RDF client node:

$ DEFINE/SYSTEM RDEV_WRITE_GROUP_SIZE 30
$ DEFINE/SYSTEM RDEV_WRITE_GROUP_DELAY 1

Further reduction:

To further reduce bandwidth, the RDEV_WRITE_GROUP_DELAY logical can be increased to
two (2) or three (3).

Note

Reducing the bandwidth used by RDF causes slower transfers of RDF’s data across
the network.

19.4.8 Surviving Network Failures

Remote Device Facility (RDF) can survive network failures of up to 15 minutes long. If the net-
work comes back within the 15 minutes allotted time, the RDCLIENT continues processing
WITHOUT ANY INTERRUPTION OR DATA LOSS. When a network link drops while RDF
is active, after 10 seconds, RDF creates a new network link, synchronizes I/Os between the
RDCLIENT and RDSERVER, and continues processing.

The following example shows how you can test the RDF’s ability to survive a network failu
(This example assumes that you have both the RDSERVER and RDCLIENT processes ru
ning.)

$ @tti_rdev:rdallocate tti::mua0:
RDF - Remote Device Facility (Version 4.1) - RDALLOCATE Procedure
Copyright (c) 1990, 1996 Touch Technologies, Inc.
Device TTI::TTI$MUA0 ALLOCATED, use TAPE01 to reference it
$ backup/rewind/log/ignore=label sys$library:*.* tape01:test

from a second session:

$ run sys$system:NCP
NCP> show known links

Known Link Volatile Summary as of 13-MAR-1996 14:07:38
Link Node PID Process Remote link Remote user
24593 20.4 (JR) 2040111C MARI_11C_5 8244 CTERM
16790 20.3 (FAST) 20400C3A -rdclient- 16791 tti_rdevSRV
24579 20.6 (CHEERS) 20400113 REMACP 8223 SAMMY
24585 20.6 (CHEERS) 20400113 REMACP 8224 ANDERSON
NCP> disconnect link 16790
.
.
.

Backup pauses momentarily before resuming. Sensing the network disconnect, RDF crea
new -rdclient- link. Verify this by entering the following command:

NCP> show known links
Known Link Volatile Summary as of 13-MAR-1996 16:07:00

Link Node PID Process Remote link Remote user
24593 20.4 (JR) 2040111C MARI_11C_5 8244 CTERM
24579 20.6 (CHEERS) 20400113 REMACP 8223 SAMMY
24585 20.6 (CHEERS) 20400113 REMACP 8224 ANDERSON
24600 20.3 (FAST) 20400C3A -rdclient- 24601 tti_rdevSRV
Connecting and Managing Remote Devices 19-8

Connecting and Managing Remote Devices
19.5 Controlling Access to RDF Resources
NCP> exit

19.5Controlling Access to RDF Resources
The RDF Security Access feature allows storage administrators to control which remote devices
are allowed to be accessed by RDF client nodes.

19.5.1 Allow Specific RDF Clients Access to All Remote Devices

You can allow specific RDF client nodes access to all remote devices.

Example:

For example, if the server node is MIAMI and access to all remote devices is granted only to
RDF client nodes OMAHA and DENVER, then do the following:

1. Edit TTI_RDEV:CONFIG_MIAMI.DAT

2. Before the first device designation line, insert the /ALLOW qualifier

Edit TTI_RDEV:CONFIG_MIAMI.DAT
CLIENT/ALLOW=(OMAHA,DENVER)
DEVICE 1MUA0: MUAO, TK50
DEVICE MSA0: TU80, 1600bpi

OMAHA and DENVER (the specific RDF CLIENT nodes) are allowed access to all remote
devices (MUA0, TU80) on the server node MIAMI.

Requirements:

If there is more than one RDF client node being allowed access, separate the node names by
commas.

19.5.2 Allow Specific RDF Clients Access to a Specific Remote Device

You can allow specific RDF client nodes access to a specific remote device.

Example:

If the server node is MIAMI and access to MUA0 is allowed by RDF client nodes OMAHA and
DENVER, then do the following:

1. Edit TTI_RDEV:CONFIG_MIAMI.DAT

2. Find the device designation line (for example, DEVICE 1MUA0:)

3. At the end of the device designation line, add the /ALLOW qualifier:

$ Edit TTI_RDEV:CONFIG_MIAMI.DAT
DEVICE 1MUA0: MUA0, TK50/ALLOW=(OMAHA,DENVER)
DEVICE MSA0: TU80, 1600bpi

OMAHA and DENVER (the specific RDF client nodes) are allowed access only to device
MUA0. In this situation, OMAHA is not allowed to access device TU80.

19.5.3 Deny Specific RDF Clients Access to All Remote Devices

You can deny access from specific RDF client nodes to all remote devices. For example, if the
server node is MIAMI and you want to deny access to all remote devices from RDF client nodes
OMAHA and DENVER, do the following:

1. Edit TTI_RDEV:CONFIG_MIAMI.DAT

2. Before the first device designation line, insert the /DENY qualifier:
 Connecting and Managing Remote Devices 19–9

Connecting and Managing Remote Devices
19.6 RDserver Inactivity Timer
$ Edit TTI_RDEV:CONFIG_MIAMI.DAT
CLIENT/DENY=(OMAHA,DENVER)
DEVICE 1MUA0: MUA0, TK50
DEVICE MSA0: TU80, 16700bpi

OMAHA and DENVER are the specific RDF client nodes denied access to all the remote
devices (MUA0, TU80) on the server node MIAMI.

19.5.4 Deny Specific RDF Clients Access to a Specific Remote Device

You can deny specific client nodes access to a specific remote device.

Example:

If the server node is MIAMI and you want to deny access to MUA0 from RDF client nodes
OMAHA and DENVER, do the following:

1. Edit TTI_RDEV:CONFIG_MIAMI.DAT

2. Find the device designation line (for example, DEVICE 1MUA0:)

3. At the end of the device designation line, add the /DENY qualifier:

$ Edit TTI_RDEV:CONFIG_MIAMI.DAT
DEVICE 1MUA0: MUA0, TK50/DENY=(OMAHA,DENVER)
DEVICE MSA0: TU80, 16700bpi

OMAHA and DENVER RDF client nodes are denied access to device MUA0 on the server node
MIAMI.

19.6RDserver Inactivity Timer
One of the features of RDF is the RDserver Inactivity Timer. This feature gives system manag-
ers more control over rdallocated devices.

The purpose of the RDserver Inactivity Timer is to rddeallocate any rdallocated device if NO I/O
activity to the rdallocated device has occurred within a predetermined length of time. When the
RDserver Inactivity Timer expires, the server process drops the link to the client node and deal-
locates the physical device on the server node. On the client side, the client process deallocates
the RDEVn0 device.

The default value for the RDserver Inactivity Timer is 3 hours.

The RDserver Inactivity Timer default value can be manually set by defining a system wide log-
ical on the RDserver node prior to rdallocating on the rdclient node. The logical name is
RDEV_SERVER_INACTIVITY_TIMEOUT.

To manually set the timeout value:

$ DEFINE/SYSTEM RDEV_SERVER_INACTIVITY_TIMEOUT seconds

For example, to set the RDserver Inactivity Timer to 10 hours, you would execute the following
command on the RDserver node:

$ DEFINE/SYSTEM RDEV_SERVER_INACTIVITY_TIMEOUT 36000

19.7RDF Error Messages

CLIDENY Access from this CLIENT to the SERVER is not allowed. Check for "CLI-
ENT/ALLOW" in the RDserver’s configuration file.

CLIENTSBUSY All 16 pesudo-devices are already in use.
Connecting and Managing Remote Devices 19-10

Connecting and Managing Remote Devices
19.7 RDF Error Messages

as
n

 the

.

DEVDENY Client is not allowed to the Device or to the Node. This error message is depen-
dent on the "CLIENT/ALLOW", "/ALLOW" or "CLIENT/DENY", "/DENY"
qualifiers in the configuration file. Verify that the configuration file qualifier is
used appropriately.

EMPTYCFG The RDserver’s configuration file has no valid devices or they are all com-
mented out.

LINKABORT The connection to the device was aborted. For some reason the connection w
interrupted and the remote device could not be found. Check the configuratio
file as well as the remote device.

NOCLIENT The RDdriver was not loaded. Most commonly the
RDCLIENT_STARTUP.COM file was not executed for this node.

NOREMOTE This is a RDF status message. The remote device could not be found. Verify
configuration file as well as the status of the remote device.

SERVERTMO The RDserver did not respond to the request. Most commonly the
RDSERVER_ STARTUP.COM file was not executed on the server node. Or,
the server has too many connections already to reply in time to your request

CLIDENY Access from this CLIENT to the SERVER is not allowed. Check for "CLI-
ENT/ALLOW" in the RDserver’s configuration file.
 Connecting and Managing Remote Devices 19–11

e life
20
MDMS Management Operations

20.1 Managing Volumes
MDMS manages volume availability with the concept of a life cycle. The primary purpose of the
life cycle is to ensure that volumes are only written when appropriate, and by authorized users.
By setting a variety of attributes across multiple objects, you control how long a volume, once
written, remains safe. You also set the time and interval for a volume to stay at an offsite loca-
tion for safe keeping, then return for re-use once the interval passes.

This section describes the volume life cycle, relating object attributes, commands and life cycle
states. This section also describes how to match volumes with drives by creating media type
object records.

20.1.1 Volume Life Cycle

The volume life cycle determines when volumes can be written, and controls how long they
remain safe from being overwritten. Table 20–1 describes operations on volumes within th
cycle.

Figure 20–1 Volume States

Allocate Deallocate

Retain

Release

Deallocate

Create

Available
Unavailable

TransitionFreeUnitialized

Allocated

Unavailable

CXO6756A
 MDMS Management Operations 20–1

MDMS Management Operations
20.1 Managing Volumes
Each row describes an operation with current and new volume states, commands and GUI actions that
cause volumes to change states, and if applicable, the volume attributes that MDMS uses to cause volumes
to change states. Descriptions following the table explain important aspects of each operation.

20.1.2 Volume States by Manual and Automatic Operations

This section describes the transitions between volume states. These processes enable you to
secure volumes from unauthorized use by MDMS client applications, or make them available to
meet continuing needs. Additionally, in some circumstances, you might have to manually force a
volume transition to meet an operational need.

Understanding how these volume transitions occur automatically under MDMS control, or take
place manually will help you manage your volumes effectively.

20.1.2.1 Creating Volume Object Records

You have more than one option for creating volume object records. You can create them explic-
itly with the MDMS CREATE VOLUME command: individually, or for a range of volume
identifiers.

Table 20–1 MDMS Volume State Transitions

Current State Transition to New State New State

Blank MDMS CREATE VOLUME
Volume Create

UNINTIALIZED

Blank MDMS CREATE VOLUME/PREINIT FREE

UNINITIALIZED MDMS INITIALIZE VOLUME
Volume Initialize

FREE

FREE MDMS INITIALIZE VOLUME
Volume Initialize

FREE

FREE MDMS ALLOCATE VOLUME
Volume Allocate

ALLOCATED

ALLOCATED MDMS DEALLOCATE VOLUME
Volume Deallocate
or automatically on
the volume scratch date

TRANSITION

ALLOCATED MDMS DEALLOCATE VOLUME
Volume Deallocate
or automatically on
the volume scratch date

FREE

TRANSITION MDMS SET VOLUME /RELEASE
Volume Release
or automatically on
the volume transition time

FREE

Any State MDMS SET VOLUME /UNAVAILABLE
Volume Unavailable

UNINITIALIZED

UNINITIALIZED MDMS SET VOLUME /AVAILABLE
Volume Available

Previous State

UNINITIALIZED MDMS DELETE VOLUME
Volume Delete

BLANK

FREE MDMS DELETE VOLUME
Volume Delete

BLANK
MDMS Management Operations 20-2

MDMS Management Operations
20.1 Managing Volumes

.

trol-

e to a
 may

n
n their
lease
You can create the volumes implicitly as the result of an inventory operation on a jukebox. If an
inventory operation finds a volume that is not currently managed, a possible response (as you
determine) is to create a volume object record to represent it.

You can also create volume object records for large numbers of volumes by opening the juke-
box, loading the volumes into the jukebox slots, then running an inventory operation.

Finally, it is possible to perform scratch loads on standalone or stacker drives using the MDMS
LOAD DRIVE /CREATE command. If the volume that is loaded is does not exist in the data-
base, MDMS will create it.

You must create volumes explicitly through the MDMS CREATE VOLUME command, or
implicitly through the inventory or load operations.

20.1.2.2 Initializing a Volume

Caution

MDMS expects the internally initialized volume label on the physical medium will
match the printed label. Always initialize volumes so the recorded volume labels match
the printed labels. If the recorded volume label on the tape does not match the printed
label on the cartridge, MDMS operations will fail.

Use the MDMS initialize feature to make sure that MDMS recognizes volumes as initialized.
Unless you acquire preinitialized volumes, you must explicitly initialize them MDMS before
you can use them. If your operations require, you can initialize volumes that have just been
released from allocation.

When you initialize a volume or create a volume object record for a preinitialized volume,
MDMS records the date in the initialized date attribute of the volume object record.

20.1.2.3 Allocating a Volume

Typically, applications request the allocation of volumes. Only in rare circumstances will you
have to allocate a volume to a user other than ABS or HSM. However, if you use command pro-
cedures for customized operations that require the use of managed media, you should be familiar
with the options for volume allocation. Refer to the ABS or HSM Command Reference Guide
for more information on the MDMS ALLOCATE command.

Once an application allocates a volume, MDMS allows read and write access to that volume
only by that application. MDMS sets volume object record attributes to control transitions
between volume states. Those attributes include:

• the allocated date attribute contains the date and time MDMS allocates the volume.

• the scratch date attribute contains the date and time MDMS will deallocate the volume

The application requesting the volume can direct MDMS to set additional attributes for con
ling how long it keeps the volume and how it releases it. These attributes include:

• the scratch date attributes indicates the date when MDMS automatically sets the volum
non-allocated state. A volume reaching the scratch date may be either free for use, or
be placed in a transition state.

• the transition time attribute contains the time interval a volume remains in the transitio
state. The transition state allows you to buffer, or stage, the release of volumes betwee
allocation (for keeping data safe) and their subsequent re-use (overwriting data). To re
volumes directly to a free state, negate the attribute.
 MDMS Management Operations 20–3

MDMS Management Operations
20.1 Managing Volumes

ion.

e

iately

N

nce

e by

s

ia
ributes

ll take

clude

ume
pe.

for sin-
lar car-
20.1.2.4 Holding a Volume

MDMS allows no other user or application to load or unload a volume with the state attribute
value set to ALLOCATED, unless the user has MDMS_LOAD_ALL rights. This volume state
allows you to protect your data. Set the amount of time a volume remains allocated according to
your data retention requirements.

During this time, you can choose to move the volume to an offsite location.

20.1.2.5 Freeing a Volume

When a volume’s scratch date passes, MDMS automatically frees the volume from allocat

If the application or user negates the volume object record scratch date attribute, the volum
remains allocated permanently.

Use this feature when you need to retain the data on the volume indefinitely.

After the data retention time has passed, you have the option of making the volume immed
available, or you can elect to hold the volume in a TRANSITION state. To force a volume
through the TRANSITION state, negate the volume object record transition time attribute.

You can release a volume from transition with the DCL command MDMS SET VOLUME
/RELEASE. Conversely, you can re-allocate a volume from either the FREE or TRANSITIO
states with the DCL command MDMS SET VOLUME /RETAIN.

Once MDMS sets a volume’s state to FREE, it can be allocated for use by an application o
again.

20.1.2.6 Making a Volume Unavailable

You can make a volume unavailable if you need to prevent ongoing processing of the volum
MDMS. MDMS retains the state from which you set the UNAVAILABLE state. When you
decide to return the volume for processing, the volume state attribute returns to its previou
value.

The ability to make a volume unavailable is a manual feature of MDMS.

20.1.3 Matching Volumes with Drives

MDMS matches volumes with drives capable of loading them by providing the logical med
type object. The media type object record includes attributes whose values describe the att
of a type of volume.

The domain object record names the default media types that any volume object record wi
if none is specified.

Create a media type object record to describe each type of volume. Drive object records in
an attribute list of media types the drive can load, read, and write.

Volume object records for uninitialized volumes include a list of candidate media types. Vol
object records for initialized volumes include a single attribute value that names a media ty
To allocate a drive for a volume, the volume's media type must be listed in the drive object
record's media type field, or its read-only media-type field for read-only operations.

20.1.4 Magazines for Volumes

Use magazines when your operations allow you to move and manage groups of volumes
gle users. Create a magazine object record, then move volumes into the magazine (or simi
rier) with MDMS. All the volumes can now be moved between locations and jukeboxes by
moving the magazine to which they belong.
MDMS Management Operations 20-4

MDMS Management Operations
20.2 Managing Operations
Figure 20–2 Magazines

The jukeboxes must support the use of magazines; that is, they must use carriers that can hold
multiple volumes at once. If you choose to manage the physical movement of volumes with
magazines, then you may set the usage attribute to MAGAZINE for jukebox object records of
jukeboxes that use them. You may also define the topology attribute for any jukebox used for
magazine based operations.

If your jukebox does not have ports, and requires you to use physical magazines, you do not have
to use the MDMS magazine object record. The jukebox can still access volumes by slot number.
Single volume operations can still be conducted by using the move operation on individual vol-
umes, or on a range of volumes.

20.1.5 Symbols for Volume Attributes

MDMS provides a feature that allows you to define a series of OpenVMS DCL symbols that
describe the attributes of a given volume. By using the /SYMBOLS qualifier with the MDMS
SHOW VOLUME command, you can define symbols for all the volume object record attribute
values. Use this feature interactively, or in DCL command procedures, when you need to gather
information about volumes for subsequent processing.

Refer to the ABS or HSM Command Reference Guide description of the MDMS SHOW VOL-
UME command.

20.2Managing Operations
MDMS manages volumes and devices as autonomously as possible. However, it is sometimes
necessary - and perhaps required - that your operations staff be involved with moving volumes
or loading volumes in drives. When MDMS cannot conduct an automatic operation, it sends a
message through the OpenVMS OPCOM system to an operator terminal to request assistance.

6
7
8
9
10
11

Slots

11-slot TL820
bin pack

CXO6749A

Slots

7-slot TZ887
magazine
 MDMS Management Operations 20–5

MDMS Management Operations
20.2 Managing Operations

de in

t
oose
ode.

ay,
erators

ses.
to

tor
ses,
to-
 list of
Understanding this information will help you set up effective and efficient operations with
MDMS.

20.2.1 Setting Up Operator Communication

This section describes how to set up operator communication between MDMS and the Open-
VMS OPCOM facility. Follow the steps in Table 20–2 to set up operator communication.

20.2.1.1 Set OPCOM Classes by Node

Set the domain object record OPCOM attribute with the default OPCOM classes for any no
the MDMS management domain.

Each MDMS node has a corresponding node object record. An attribute of the node objec
record is a list of OPCOM classes through which operator communication takes place. Ch
one or more OPCOM classes for operator communication to support operations with this n

20.2.1.2 Identify Operator Terminals

Identify the operator terminals closest to MDMS locations, drives and jukeboxes. In that w
you can direct the operational communication between the nodes and terminals whose op
can respond to it.

20.2.1.3 Enable Terminals for Communication

Make sure that the terminals are configured to receive OPCOM messages from those clas
Use the OpenVMS REPLY/ENABLE command to set the OPCOM class that corresponds
those set for the node or domain.

$REPLY/ENABLE=(opcom_class,[...])

Where opcom_class specifications are those chosen for MDMS communication.

20.2.2 Activities Requiring Operator Support

Several commands include an assist feature where you can either require or forego opera
involvement. Other MDMS features allow you to communicate with particular OPCOM clas
making sure that specific operators get messages. You can configure jukebox drives for au
matic loading, and stand alone drives for operator supported loading. See Table 20–3 for a
operator communication features and your options for using them.

Table 20–2 Setting Up Operator Communication

Step... Action...

1. Check or set OPCOM classes for each MDMS node.

2. Identify the operator terminals nearest to MDMS locations, drives, and jukeboxes.

3. Enable the operator terminals to receive communication through the OPCOM classes set.

Table 20–3 Operator Management Features

Use These Features... To Manage These Operations...

Domain and node object records,
OPCOM classes attribute

Use this attribute of the node and domain object records to iden-
tify the operator terminals to receive OPCOM messages.
The domain OPCOM classes apply if none are specified for any
node.
MDMS Management Operations 20-6

MDMS Management Operations
20.3 Serving Clients of Managed Media

20.3Serving Clients of Managed Media
Once configured, MDMS serves ABS and HSM with uninterrupted access to devices and vol-
umes for writing data. Once allocated, MDMS catalogs volumes to keep them safe, and makes
them available when needed to restore data.

To service ABS and HSM, you must supply volumes for MDMS to make available, enable
MDMS to manage the allocation of devices and volumes, and meet client needs for volume
retention and rotation.

20.3.1 Maintaining a Supply of Volumes

To create and maintain a supply of volumes, you must regularly add volumes to MDMS man-
agement, and set volume object record attributes to allow MDMS to meet ABS and HSM needs.

20.3.1.1 Preparing Managed Volumes

To prepare volumes for use by MDMS, you must create volume object records for them and ini-
tialize them if needed. MDMS provides different mechanisms for creating volume object
records: the create, load, and inventory operations. When you create volume object records, you
should consider these factors:

Drive and jukebox object records,
automatic reply attribute

Use this attribute to control whether operator acknowledgments
are required for certain drive and jukebox operations. The
default (negated) value requires operator acknowledgment for
all operations.
Setting the attribute to the affirmative will result in MDMS poll-
ing the devices for most operations, and completing the request
without specific operator acknowledgment.
The operator should observe the OPCOM message and look for
one of two phrases:
• "and reply when completed" - this means that the

OPCOM message must be acknowledged before the
request will continue

• "(auto-reply enabled)" - this means that the OPCOM
message will be automatically cancelled and the
request will continue after the requested action has
been performed

Assist or noassist options and the
reply option for these commands or
actions:

– Allocate drive
– Initialize volume
– Load drive
– Load volume
– Move magazine
– Move volume
– Unload drive
– Unload volume

For all listed commands, you can either request or forego opera-
tor assistance. When you use the assist option, MDMS will com-
municate with the operators specified by the OPCOM classes set
in the domain object record. Using the noassist option directs
MDMS not to send operator messages.
You must be granted the MDMS_ASSIST right to use the assist
option.
The reply option allows you to capture the operator reply to the
command. This feature facilitates the use of DCL command pro-
cedures to manage interaction with operators.

The message option for these com-
mands:

– Load drive
– Load volume

For load operations, use the message option to pass additional
information to the operator identified to respond to the load
request.

Table 20–3 Operator Management Features

Use These Features... To Manage These Operations...
 MDMS Management Operations 20–7

MDMS Management Operations
20.3 Serving Clients of Managed Media

nge

m-
mes
y oper-

stem,

ault
ol-
l-

ou
name

l-

tection
e to

infor-

e, his-

at
• The situational demands under which you create the volume object records.

• The application needs of the volumes for which you create object records.

• Those additional aspects of the volume for which you will have little, if any, need to cha
later on.

The following sections provide more detailed information.

Meeting Situational Demands

If you create volume object records with the use of a vision equipped jukebox, you must co
mand MDMS to use the jukebox vision system and identify the slots in which the new volu
reside. These two operational parameters must be supplied to either the create or inventor
ation.

For command driven operations, these two commands are functionally equivalent.

$MDMS INVENTORY JUKEBOX jukebox_name /VISION/SLOTS=slot_range /CREATE
$MDMS CREATE VOLUME /JUKEBOX=jukebox_name /VISION/SLOTS=slot_range

If you create volume object records with the use of a jukebox that does not have a vision sy
you must supply the range of volume names as they are labelled and as they occupy the slot
range.

If you create volume object records for volumes that reside in a location other than the def
location (as defined in the domain object record), you must identify the placement of the v
umes and the location in the onsite or offsite attribute. Additionally, you must specify the vo
ume name or range of volume names.

If you create volume object records for volumes that reside in the default onsite location, y
need not specify the placement or onsite location. However, you must specify the volume
or range of volume names.

Meeting Application Needs

If you acquire preinitialized volumes for MDMS management, and you want to bypass the
MDMS initialization feature, you must specify a single media type attribute value for the vo
ume.

Select the format to meet the needs of your MDMS client application. For HSM, use the
BACKUP format. For ABS, use BACKUP or RMUBACKUP.

Use a record length that best satisfies your performance requirements. Set the volume pro
using standard OpenVMS file protection syntax. Assign the volume to a pool you might us
manage the consumption of volumes between multiple users.

Static Volume Attributes

Static volume attributes rarely, if ever, need to be changed. MDMS provides them to store
mation that you can use to better manage your volumes.

The description attribute stores up to 255 characters for you to describe the volume, its us
tory, or any other information you need.

The brand attribute identifies the volume manufacturer.

Use the record length attribute to store the length or records written to the volume, when th
information is needed.
MDMS Management Operations 20-8

MDMS Management Operations
20.3 Serving Clients of Managed Media

mated
n, and

ntage.
eans.
her

e.
e rea-

f the
lots

ach
20.3.2 Servicing a Stand Alone Drive

If you use a stand alone drive, enable MDMS operator communication on a terminal near the
operator who services the drive. MDMS signals the operator to load and unload the drive as
needed.

You must have a ready supply of volumes to satisfy load requests. If your application requires
specific volumes, they must be available, and the operator must load the specific volumes
requested.

To enable an operator to service a stand alone drive during MDMS operation, perform the
actions listed in Table 20–4.

20.3.3 Servicing Jukeboxes

MDMS incorporates many features that take advantage of the mechanical features of auto
tape libraries and other medium changers. Use these features to support lights-out operatio
effectively manage the use of volumes.

Jukeboxes that use built-in vision systems to scan volume labels provide the greatest adva
If the jukebox does not have a vision system, MDMS has to get volume names by other m
For some operations, the operator provides volume names individually or by range. For ot
operations, MDMS mounts the volume and reads the recorded label.

20.3.3.1 Inventory Operations

The inventory operation registers the contents of a jukebox correctly in the MDMS databas
You can use this operation to update the contents of a jukebox whenever you know, or hav
son to suspect the contents of a jukebox have changed without MDMS involvement.

Note

Changing the contents of a jukebox without using MDMS move or inventory features,
and not updating the MDMS database, will cause subsequent operations to fail.
Always use the MDMS INVENTORY operation to make sure the MDMS database
accurately reflects the contents of the jukebox whenever you know, or have reason to
suspect the contents of a jukebox has changed.

Inventory for Update

When you need to update the database in response to unknown changes in the contents o
jukebox, use the inventory operation against the entire jukebox. If you know the range of s
subject to change, then constrain the inventory operation to just those slots.

If you inventory a jukebox that does not have a vision system, MDMS loads and mounts e
volume, to read the volume’s recorded label.

Table 20–4 Configuring MDMS to Service a Stand Alone Drive

Stage... Action...

1. Enable operator communication between nodes and terminals.

2. Stock the location where the drive resides with free volumes.

3. For all subsequent MDMS actions involving the drive, use the assist feature.
 MDMS Management Operations 20–9

MDMS Management Operations
20.3 Serving Clients of Managed Media

hat
es to

re

l-

ged.
Note

Running an inventory on a large number of slots without a vision system can take from
tens of minutes to several hours.

When you inventory a subset of slots in the jukebox, use the option to ignore missing volumes.

If you need to manually adjust the MDMS database to reflect the contents of jukebox, use the
nophysical option for the MDMS move operation. This allows you to perform a logical move for
to update the MDMS database.

Inventory to Create Volume Object Records

If you manage a jukebox, you can use the inventory operation to add volumes to MDMS man-
agement. The inventory operation includes the create, preinitialized, media types, and inherit
qualifiers to support such operations.

Take the steps in Table 20–5 to use a vision jukebox to create volume object records.

20.3.4 Managing Volume Pools

To assist with accounting for volume use by data center clients, MDMS provides features t
allow you to divide the volumes you manage by creating volume pools and assigning volum
them.

Table 20–5 How to Create Volume Object Records with INVENTORY

Step... Action...

1. If you plan to open the jukebox for this operation, disable the jukebox and all drives
inside it.

2. Empty as many slots as necessary to accommodate the volumes.

If you cannot open the jukebox, use the MDMS MOVE command to keep the MDMS
database synchronized with the actual location of volumes removed.

If you open the jukebox and manually remove managed volumes, place the volumes in
the location specified by the volumes’ onsite location.

3. Place labelled volumes in the open jukebox slots.

If you cannot open the jukebox to expose the slots, use the Media Robot Utility softwa
or front panel controls to move volumes to the slots.

4. Perform the MDMS inventory operation.

Use the create option to signal MDMS to create volume object records.

If volumes are initialized specify the preinitialized option and a single media
type name for the media types attribute, otherwise, just specify all possible media
types to which the volume could relate.

Use the inherit option to identify a volume object record from which to inherit other vo
ume attribute values.

Use the slots option to specify the range of slots occupied by the volumes to be mana

If the jukebox does not have a vision system, use the volume range and novision
options.
MDMS Management Operations 20-10

MDMS Management Operations
20.3 Serving Clients of Managed Media

 pools

nd

to allo-

ill be
ed

d or
sary.

Select
ol-
Figure 20–3 Pools and Volumes

Use MDMS to specify volume pools. Set the volume pool options in ABS or HSM to specify
that volumes be allocated from those pools for users as needed. Figure 20–3 identifies the
respective to a designated group of users. Note that ‘No Pool’ is for use by all users.

20.3.4.1 Volume Pool Authorization

The pool object record includes two attributes to assign pools to users: authorized users, a
default users.

Set the authorized users list to include all users, by node or group name, who are allowed
cate volumes from the pool.

Set the default users list to include all users, by node or group name, for whom the pool w
the default pool. Unless another pool is specified during allocation, volumes will be allocat
from the default pool for users in the default users list.

Because volume pools are characterized in part by node or group names, anytime you ad
remove nodes or groups, you must review and adjust the volume pool attributes as neces

20.3.4.2 Adding Volumes to a Volume Pool

After you create a volume pool object record, you can associate managed volumes with it.
the range of volumes you want to associate with the pool and set the pool attribute of the v
umes to the name of the pool.

This can be done during creation or at any time the volume is under MDMS management.

20.3.4.3 Removing Volumes from a Volume Pool

There are three ways to remove volumes from a volume pool.

CXO6755A

Pool
ABS_POOL

Pool
HSM_POOL

Pool
SMS_USERS

 No Pool
 MDMS Management Operations 20–11

MDMS Management Operations
20.3 Serving Clients of Managed Media

ool

ribute.

nd

e

users

lar

al
 pool
ll refer-

o-
if they

age-

ot be
loca-
• You can delete the volume object records.

• You can set the pool attribute of selected volume object records to a different volume p
name.

• You can negate the pool attribute of selected volume object records.

20.3.4.4 Changing User Access to a Volume Pool

To change access to volume pools, modify the membership of the authorized users list att

If you are using the command line to change user access to volume pools, use the /ADD a
/REMOVE command qualifiers to modify the current list contents. Use the
/NOAUTHORIZED_USERS qualifier to erase the entire user list for the volume pool.

If you are using the GUI to change user access to volume pools, just edit the contents of th
authorized users field.

You can also authorize users with the /DEFAULT_USERS attribute, which means that the
are authorized, and that this pool is the pool for which allocation requests for volumes are
applied if no pool is specified in the allocation request. You should ensure that any particu
user has a default users entry in only one pool.

20.3.4.5 Deleting Volume Pools

You can delete volume pools. However, deleting a volume pool may require some addition
clean up to maintain the MDMS database integrity. Some volume records could still have a
attribute that names the pool to be deleted, and some DCL command procedures could sti
ence the pool.

If volume records naming the pool exist after deleting the pool object record, find them and
change the value of the pool attribute.

The MDMS CREATE VOLUME and MDMS LOAD DRIVE commands in DCL command pr
cedures can specify the deleted pool. Change references to the delete pool object record,
exist, to prevent the command procedures from failing.

20.3.5 Taking Volumes Out of Service

You might want to remove volumes from management for a variety of reasons:

• You need to retain the information recorded on a volume, and remove any MDMS man
ment access to it.

• The volume cartridge has broken.

• The volume has become unreliable.

20.3.5.1 Temporary Volume Removal

To temporarily remove a volume from management, set the volume state attribute to
UNAVAILABLE. Any volume object record with the state set to UNAVAILABLE remains
under MDMS management, but is not processed though the life cycle. These volumes will n
set to the TRANSITION or FREE state. However, these volumes can be moved and their
tion maintained.

20.3.5.2 Permanent Volume Removal

Caution

Before you remove a volume from the MDMS database, MAKE SURE the volume is
not storing information for ABS or HSM. If you remove a volume from MDMS man-
MDMS Management Operations 20-12

MDMS Management Operations
20.4 Rotating Volumes from Site to Site
agement that is referenced from ABS or HSM, you will not be able to restore the data
stored on it.

To permanently remove a volume from management, delete the volume object record describing
it.

20.4Rotating Volumes from Site to Site
Volume rotation involves moving volumes to an off-site location for safekeeping with a sched-
ule that meets your needs for data retention and retrieval. After a period of time, you can retrieve
volumes for re-use, if you need them. You can rotate volumes individually, or you can rotate
groups of volumes that belong to magazines.

20.4.1 Required Preparations for Volume Rotation

The first thing you have to do for a volume rotation plan is create location object records for the
on-site and off-site locations. Make sure these location object records include a suitable descrip-
tion of the actual locations. You can optionally specify hierarchical locations and/or a range of
spaces, if you want to manage volumes by actual space locations.

You can define as many different locations as your management plan requires.

Once you have object records that describe the locations, choose those that will be the domain
defaults (defined as attributes of the domain object record). The default locations will be used
when you create volumes or magazines and do not specify onsite and/or offsite location names.
You can define only one onsite location and one offsite location as the domain default at any one
time.

20.4.2 Sequence of Volume Rotation Events

Manage the volume rotation schedule with the values of the offsite and onsite attributes of the
volumes or magazines you manage. You set these values. In addition to setting these attribute
values, you must check the schedule periodically to select and move the volumes or magazines.
 MDMS Management Operations 20–13

MDMS Management Operations
20.4 Rotating Volumes from Site to Site

d GUI

n

ed
a-

a
no
ime

 be

es
Table 20–6 shows the sequence of volume rotation events and identifies the commands an
actions you issue.

Table 20–6 Sequence of Volume Rotation Events

Stage... Action...

1. Set the volume object record onsite and offsite attributes.
• Typically, once ABS has allocated a volume you will remove it until it is

about to reach the scratch date. Set the onsite location and date based o
when it will be freed.

Set the offsite location and date based on when it will be ready to be mov
offsite. However, make sure that the volume is not part of an ABS continu
tion set and still needed for subsequent ABS operation.

• For HSM, identify volumes to go offsite based on the last access date. If
volume has not been accessed for a long period of time, there has been
need to unshelve the files stored on it. Set the offsite date based for any t
after the last access.

If multiple archive classes are used, the secondary archive class(es) can
removed off site as soon as a volume is filled.

Set the onsite date for any time you might want to archive or delete the fil
on the volume.

2. Identify the volumes or magazines to be moved offsite by selecting the offsite schedule
option. You can use the MDMS report or show volume features, or the show magazine
feature. The following CLI examples illustrate this:

$MDMS SHOW VOLUME/SCHEDULE=OFFSITE

$MDMS SHOW MAGAZINE/SCHEDULE=OFFSITE

3. Move the volumes offsite. With the GUI, you can move the volumes selected from the
display.

With the CLI, (interactive or command procedure) use the MDMS MOVE command
with the /SCHEDULE qualifier. For example:

$MDMS MOVE VOLUME /SCHEDULE=OFFSITE [location_name]

$MDMS MOVE MAGAZINE /SCHEDULE=OFFSITE [location_name]

MDMS communicates with operators through OPCOM, providing a list of volume iden-
tifiers for the volumes to be gathered and moved.

4. If you need to retrieve volumes or magazines to service a restore or unshelve request, you
must physically move them back to the onsite location.

Use the MDMS GUI move feature for the selected volumes or magazines or use the CLI
MOVE command. For example:

$MDMS MOVE VOLUME volume_id location_name

$MDMS MOVE MAGAZINE magazine_id location_name
MDMS Management Operations 20-14

MDMS Management Operations
20.5 Scheduled Activities

g files,
 below.

-

eive
20.5Scheduled Activities
MDMS starts three scheduled activities at 1AM, by default, to do the following:

• Deallocate all volumes in the database that have exceeded their scratch date.

• Release all volumes in the database that have exceeded their transition time.

• Schedule all volumes that have exceeded their onsite or offsite date.

• Schedule all magazines that have exceeded their onsite or offsite date.

These three activities are controlled by a logical, are separate jobs with names, generate lo
and notify users when volumes are deallocated. These things are described in the sections

20.5.1 Logical Controlling Scheduled Activities

The start time for scheduled activities is controlled by the logical:

MDMS$SCHEDULED_ACTIVITIES_START_HOUR

By default, the scheduled activities start a 1AM which is defined as:

$ DEFINE/SYSTEM/NOLOG MDMS$SCHEDULED_ACTIVITIES_START_HOUR 1

You can change when the scheduled activities start by changing this logical in SYS$STAR
TUP:MDMS$SYSTARTUP.COM. The hour must be an integer between 0 and 23.

20.5.2 Job Names of Scheduled Activities

When these scheduled activities jobs start up, they have the following names:

• MDMS$DEALVOL - deallocates and releases volumes

• MDMS$MOVVOL - moves scheduled volumes

• MDMS$MOVMAG - moves scheduled magazines

If any volumes are deallocated, the users in the Mail attribute of the Domain object will rec
notification by VMS mail.

Operators will receive Opcom requests to move the volumes or magazines.

5. To return volumes to the onsite location based on their scheduled return date, use the GUI
to select and move volumes and magazines based on their onsite schedule. With the GUI,
you can move the volumes selected from the display.

With the CLI, (interactive or command procedure) use the MDMS MOVE command
with the /SCHEDULE qualifier. For example:

$MDMS MOVE VOLUME /SCHEDULE=ONSITE volume_id location_name

$MDMS MOVE MAGAZINE /SCHEDULE=ONSITE -
$_ magazine_name location_name

6. Once the volumes and magazines arrive at the onsite location, negate the offsite and
onsite schedules. This prevents the volumes from showing up in subsequent reports. With
the GUI, remove the location date values associated with the offsite and onsite attributes.

With the CLI, use the /NOONSITE and /NOOFFSITE qualifiers. For example:

SET VOLUME volume_id /NOONSITE /NOOFFSITE

Table 20–6 Sequence of Volume Rotation Events

Stage... Action...
 MDMS Management Operations 20–15

MDMS Management Operations
20.5 Scheduled Activities

 com-

 the
age
quest.

ore vol-

ng the

te of
20.5.3 Log Files for Scheduled Activities

These scheduled activities generate log files. These log files are located in
MDMS$LOGFILE_LOCATION and are named:

– MDMS$DEALVOL.LOG - for deallocating and releasing volumes

– MDMS$MOVVOL - for moving of scheduled volumes

– MDMS$MOVMAG - for moving of scheduled magazines

These log files do not show which volumes or magazines were acted upon. They show the
mand that was executed and whether it was successful or not.

If the Opcom message is not replied to by the time the next scheduled activities is started,
activity is cancel and a new activity is scheduled. For example, nobody replied to the mess
from Saturday at 1AM, so on Sunday MDMS canceled the request and generated a new re
The log file for Saturday night would look like this:

$ SET VERIFY
$ SET ON
$ MDMS MOVE VOL */SCHEDULE
%MDMS-E-CANCELED, request canceled by user
MDMS$SERVER job terminated at 25-APR-1999 01:01:30.48

Nothing is lost because the database did not change, but this new request could require m
umes or magazines to be moved.

The following shows an example that completed successfully after deallocating and releasi
volumes:

$ SET VERIFY
$ SET ON
$ MDMS DEALLOCATE VOLUME /SCHEDULE/VOLSET
MDMS$SERVER job terminated at 25-APR-1999 01:03:31.66

Note

The number of these log files could grow to a large number. You may want to set the
version on these scheduled activities to 10 or so.

20.5.4 Notify Users When Volumes are Deallocated

To notify users when the volumes are deallocated, place the user names in the Mail attribu
the Domain object. For example:

$ MDMS show domain
Description: Smith’s Special Domain
Mail: SYSTEM,OPERATOR1,SMITH
Offsite Location: JOHNNY_OFFSITE_TAPE_STORAGE
Onsite Location: OFFICE_65
Def. Media Type: TLZ09M
Deallocate State: TRANSITION
Opcom Class: TAPES
Request ID: 496778
Protection: S:RW,O:RW,G:R,W
DB Server Node: DEBBY
DB Server Date: 26-APR-1999 14:20:08
Max Scratch Time: NONE
Scratch Time: 365 00:00:00
Transition Time: 1 00:00:00
Network Timeout: NONE
$
MDMS Management Operations 20-16

MDMS Management Operations
20.5 Scheduled Activities
In the above example, users SYSTEM, OPERATOR1, and SMITH will receive VMS mail when
any volumes are deallocated during scheduled activities or when some one issues the following
command:

$ MDMS DEALLOCATE VOLUME /SCHEDULE/VOLSET

If you delete all users in the Mail attribute, nobody will receive mail when volumes are deallo-
cated by the scheduled activities or the DEALLOCATE VOLUME /SCHEDULE command.
 MDMS Management Operations 20–17

MDMS Management Operations
20.5 Scheduled Activities
MDMS Management Operations 20-18

m

alifier
 the

igure a
21
MDMS High Level Tasks

MDMS GUI users have access to features that guide them through complex tasks. These features
conduct a dialog with users, asking them about their particular configuration and needs, and then
provide the appropriate object screens with information about setting specific attribute values.

The features support tasks that accomplish the following:

• Configuring a new drive or jukebox and/or add new volumes for management.

• Removing drives or jukeboxes and/or deleting volumes from management.

• Servicing a jukebox when it is necessary to remove allocated volumes and replace the
with scratch volumes.

• Rotating volumes from the onsite location to an offsite location, and back.

The procedures outlined in this section include command examples with recommended qu
settings shown. If you choose to perform these tasks with the command line interface, use
MDMS command reference for complete command details.

21.1Creating Jukeboxes, Drives, and Volumes
This task offers the complete set of steps for configuring a drive or jukebox to an MDMS
domain and adding new volumes used by those drives. This task can be performed to conf
new drive or jukebox that can use managed volumes.

Figure 21–1 Configuring Volumes and Drives

TZ85_DRIVE TZ86_DRIVE TZ87_DRIVE TZ88_DRIVE

TK85_COMP
Media Type

Compaction

"CompacTape III"

TK86_COMP
Media Type

Compaction

"CompacTape III"

TK87_COMP
Media Type

Compaction

"CompacTape III"

TK88_COMP
Media Type

Compaction

"CompacTape IV"

CXO6754A
 MDMS High Level Tasks 21–1

MDMS High Level Tasks
21.1 Creating Jukeboxes, Drives, and Volumes
This task can also be performed to add new volumes into management that can use managed
drives and jukeboxes.

Table 21–1 Creating Devices and Volumes

Step Action

Create Jukebox and/or Drive

1. Verify that the drive is on-line and available.

$SHOW DEVICE device_name /FULL

Verify that the jukebox is online and available.

$SHOW DEVICE device_name /FULL

2. If you are connecting the jukebox or drive to a set of nodes which do not already share access
to a common device, then create a group object record.

$MDMS CREATE GROUP group_name /NODES=(node_1,...)

3. If you are configuring a new jukebox into management, then create a jukebox object record.

$MDMS CREATE JUKEBOX jukebox_name /DISABLED

4. If the drive you are configuring uses a new type of volume, then create a media type object
record.

$MDMS CREATE MEDIA_TYPE media_type

5. If you need to identify a new place for volume storage near the drive, then create a
location object record.

$MDMS CREATE LOCATION location_name

6. Create the drive object record for the drive you are configuring into MDMS management.

$MDMS CREATE DRIVE drive_name /DISABLED

7. Enable the drive (and if you just added a jukebox, enable it too).

$MDMS SET DRIVE drive_name /ENABLED
$MDMS SET JUKEBOX jukebox_name /ENABLED

8. If you are adding new volumes into MDMS management, then continue with Step
10.

9. If you have added a new media type to complement a new type of drive, and you plan to use
managed volumes, set the volumes to use the new media type.

$MDMS SET VOLUME /MEDIA_TYPE=media_type_name

Process New Volumes

10. Make sure all new volumes have labels.
MDMS High Level Tasks 21-2

MDMS High Level Tasks
21.1 Creating Jukeboxes, Drives, and Volumes
11. If the volumes you are processing are of a type you do not presently manage, complete the
actions in this step. Otherwise, continue with Step 12.
Create a media type object record.

$MDMS CREATE MEDIA_TYPE media_type

If the drives you manage do not accept the new media type, then set the drives to accept vol-
umes of the new media type.

$MDMS SET DRIVE /MEDIA_TYPE=media_type

12. If you are using a jukebox with a vision system to create volume object records, then continue
with Step 13. Otherwise, continue with Step 16 to create volume records.

Jukebox Inventory to Create Volume Object Records

13. If you use magazines in your operation, then continue with this step. Otherwise, continue with
Step 14.

If you do not have a managed magazine that is compatible with the jukebox, then create a
magazine object record.
$MDMS CREATE MAGAZINE magazine_name

Place the volumes in the magazine.
Move the magazine into the jukebox.

$MDMS MOVE MAGAZINE magazine_name jukebox_name /START_SLOT=n
or
$MDMS MOVE MAGAZINE magazine_name jukebox_name/START_SLOT=(n,n,n)

14. Place the volumes in the jukebox. If you are not using all the slots in the jukebox, note the slots
you are using for this operation.

Inventory the jukebox, or just the slots that contain the new volumes.
If you are processing pre-initialized volumes, use the /PREINITIALIZED qualifier, then your
volumes are ready for use.

$MDMS INVENTORY JUKEBOX jukebox_name /CREATE /VOLUME_RANGE=range

15. Initialize the volumes in the jukebox if they were not created as preinitialized.

$MDMS INITIALIZE VOLUME /JUKEBOX=jukebox_name /SLOTS=range

After you initialize volumes, you are done with this procedure.

Create Volume Object Records Explicitly

16. Create volume object records for the volumes you are going to manage.
If you are processing preinitialized volumes, use the /PREINITIALIZED qualifier, then your
volumes are ready for use.

$MDMS CREATE VOLUME volume_id

17. Initialize the volumes. This operation will direct the operator when to load and unload the vol-
umes from the drive.

$MDMS INITIALIZE VOLUME volume_range /ASSIST

Table 21–1 Creating Devices and Volumes

Step Action
 MDMS High Level Tasks 21–3

MDMS High Level Tasks
21.2 Deleting Jukeboxes, Drives, and Volumes
21.2Deleting Jukeboxes, Drives, and Volumes
This task describes the complete set of decisions and actions you could take in the case of
removing a drive from management. That is, when you have to remove the last drives of a partic-
ular kind, and take with it all associated volumes, then update any remaining MDMS object
records that reference the object records you delete. Any other task of removing just a drive (one
of many to remain) or removing and discarding volumes involves a subset of the activities
described in this procedure.

Table 21–2 Deleting Devices and Volumes

Step Action

1. If there is a volume in the drive you are about to remove from management, then unload the
volume from the drive.

$MDMS UNLOAD DRIVE drive_name

2. Delete the drive from management.

$MDMS DELETE DRIVE drive_name

3. If you have media type object records to service only the drive you just deleted, then complete
the actions in this step. Otherwise, continue with Step 4.

Delete the media type object record.

$MDMS DELETE MEDIA TYPE media_type

If volumes remaining in management reference the media type, then set the volume attribute
value for those volumes to reference a different media type value. Use the following command
for uninitialized volumes:

$MDMS SET VOLUME /MEDIA_TYPE=media_type /REMOVE

Use the following command for initialized volumes:

$MDMS SET VOLUME /MEDIA TYPE=media_type

4. If the drives you have deleted belonged to a jukebox, then complete the actions in this step.
Otherwise, continue with Step 5.

If the jukebox still contains volumes, move the volumes (or magazines, if you manage the
jukebox with magazines) from the jukebox to a location that you plan to keep under MDMS
management.

$MDMS MOVE VOLUME volume_id location

or

$MDMS MOVE MAGAZINE magazine_name location

5. If a particular location served the drives or jukebox, and you no longer have a need to manage
it, then delete the location.

$MDMS DELETE LOCATION location_name

6. Move all volumes, the records of which you are going to delete, to a managed location.

$MDMS MOVE VOLUME volume_id location
MDMS High Level Tasks 21-4

MDMS High Level Tasks
21.3 Rotating Volumes Between Sites

 no

 mag-
21.3Rotating Volumes Between Sites
This procedure describes how to gather and rotate volumes from the onsite location to an offsite
location. Use this procedure in accordance with your data center site rotation schedule to move
backup copies of data (or data destined for archival) to an offsite location. Additionally, this pro-
cedure processes volumes from the offsite location into the onsite location.

7. If the volumes to be deleted exclusively use a particular media type, and that media type has a
record in the MDMS database, then take the actions in this step. Otherwise, continue with Step
8.
Delete the media type object record.

$MDMS DELETE MEDIA_TYPE media_type

If drives remaining under MDMS management reference the media type you just deleted, then
update the drives’ media type list accordingly.

$MDMS SET DRIVE /MEDIA_TYPE media_type /REMOVE

8. If the volumes to be deleted are the only volumes to belong to a volume pool, and there is
longer a need for the pool, then delete the volume pool.

$MDMS DELETE POOL pool_name

9. If the volumes to be deleted exclusively used certain managed magazines, then delete the
azines.

$MDMS DELETE MAGAZINE magazine_name

10. Delete the volumes.

$MDMS DELETE VOLUME volume_id

Table 21–2 Deleting Devices and Volumes

Step Action
 MDMS High Level Tasks 21–5

MDMS High Level Tasks
21.3 Rotating Volumes Between Sites
Figure 21–2 Volume Rotation

Table 21–3 Rotating Volumes Between Sites

Step Action

1. Prepare a report listing the offsite volumes or magazines due for rotation to your onsite loca-
tion.

$MDMS REPORT VOLUME/SCHEDULE=ONSITE

or,

$MDMS SHOW MAGAZINE/SCHEDULE=ONSITE

Provide this information to the people responsible for shuttling volumes and magazines.

2. Identify the volumes and/or magazines to move offsite.

$MDMS SHOW VOLUME /SCHEDULE=OFFSITE

or,

$MDMS SHOW MAGAZINE /SCHEDULE=OFFSITE

3. Gather the volumes into your location. If you have to retrieve magazines and/or volumes from
a jukebox, then move those volumes and/or magazines out of the jukebox. Move them to an
onsite location from which they will be shipped offsite.

$MDMS MOVE VOLUME /SCHEDULE=OFFSITE location

or,

$MDMS MOVE MAGAZINE /SCHEDULE=OFFSITE location

0
1
2

0
1
2

Offsite
location

Onsite
location

Offsite
location

Onsite
location

Jukebox

Move

Move

Move

Move

CXO6753A

Magazine

Drive

Load and
Unload

Move
MDMS High Level Tasks 21-6

MDMS High Level Tasks
21.4 Servicing Jukeboxes Used for Backup Operations
21.4Servicing Jukeboxes Used for Backup Operations
This procedure describes the steps you take to move allocated volumes from a jukebox and
replace them with scratch volumes. This procedure is aimed at supporting backup operations, not
operations that involve the use of managed media for hierarchical storage management.

Figure 21–3 Magazine Placement

4. As the volumes are picked up for transportation, or when otherwise convenient, update the
volume and/or magazine records in the database. Specify the offsite location name in this com-
mand.

$MDMS MOVE VOLUME /SCHEDULE=OFFSITE location

or,

$MDMS MOVE MAGAZINE /SCHEDULE=OFFSITE location

5. With MDMS, move the volumes and/or magazines to the onsite location.

$MDMS MOVE VOLUME /SCHEDULE=ONSITE location

or,

$MDMS MOVE MAGAZINE /SCHEDULE=ONSITE location

6. Prepare spaces for the incoming volumes and magazines. This can be accomplished by mov-
ing volumes and magazines into jukeboxes, or placing them in other locations to support oper-
ations.

Table 21–3 Rotating Volumes Between Sites

Step Action

0
1
2

Onsite
location

Offsite
location

Jukebox

MoveMove

CXO6752A
 MDMS High Level Tasks 21–7

MDMS High Level Tasks
21.4 Servicing Jukeboxes Used for Backup Operations
Note

This procedure supports backup operations. Do not remove volumes allocated to HSM
unless a response to a load request can be tolerated when moving the volume to the
jukebox.

Table 21–4 Servicing Jukeboxes

Step Action

1. Report on the volumes to remove from the jukebox.

$MDMS REPORT VOLUME ALLOCATED /USER=ABS

2. If you manage the jukebox on a volume basis, perform this step with each volume, otherwise
proceed with Step 3 with instructions for magazine management.

$MDMS MOVE VOLUME volume_id location

3. Identify the magazines to which the volumes belong, then move the magazines from the juke-
box.

$MDMS SHOW VOLUME /MAGAZINE volume_id

then

$MDMS MOVE MAGAZINE magazine_name location_name

4. If you manage the jukebox on a volume basis, perform this step, otherwise proceed with Step 5
for magazine management.

$MDMS MOVE MAGAZINE magazine_name location

5. Move free volumes to the magazine, and move the magazine to the jukebox.

$MDMS MOVE VOLUME volume_id magazine_name

then

$MDMS MOVE MAGAZINE magazine_name jukebox_name
MDMS High Level Tasks 21-8

ster

d for a
A
Preparing For Disaster Recovery

In the event of a disaster, it is essential to know how to get your system up and running as
quickly as possible. So that you are prepared for a disaster situation, this section contains the fol-
lowing information:

• The most efficient way to configure your system to ease the recovery process

• The best method of backing up those systems to ensure quick recovery

• The steps involved to actually recover the devices that have been affected by the disa

Note

The information about this recovery process is intended only for OpenVMS VAX or
Alpha systems. If you are recovering other types of systems, see the platform specific
documentation for recovery information.

A.1 Efficiently Configuring Your System
To ease the recovery process, you should configure your system as recommended in Archive
Backup System for OpenVMS Installation Guide.

The information in Section A.2 describes the preparations you need to make to be prepare
disaster situation.
Preparing For Disaster Recovery A–1

Preparing For Disaster Recovery
A.2 Preparing for Disaster Recovery

nt of a
A.2 Preparing for Disaster Recovery
Table A–1 describes the tasks you must perform to make sure you are prepared in the eve
disaster situation.

Table A–1 Disaster Recovery Tasks

Step Action

1. Create a save request named DISASTER_SAVE for the nodes and disks (other than the system
disks or the disks that contain ABS software) that contain any ABS catalogs. This is necessary
only if you have moved any ABS catalogs to other disks.

This save request must:

• Be a full save request

• Be done on a daily basis

• Use the storage policy named DISASTER_RECOVERY (this storage policy
must use the catalog named DISASTER_RECOVERY_CATALOG)

Example:
$ ABS SAVE/NAME=DISASTER_SAVE
_$ ABS$DISK2:ABS$CATALOG:*.*;*,ABS$DISK3:ABS$CATALOG:*.*;*
_$ /FULL/INTERVAL=DAILY/START=00:00:00/STORAGE_CLASS=DISASTER_RECOVERY

Requirement:
For each node that has ABS installed, be sure that node has a catalog named
DISASTER_RECOVERY_CATALOG located in ABS$CATALOG directory.

Note:
The distinction between a typical daily system save request and this save request is that this
save request only saves ABS catalogs on each disk. This save request is intended for disaster
recovery only.
Preparing For Disaster Recovery A–2

Preparing For Disaster Recovery
A.2 Preparing for Disaster Recovery

to

y
Figure A–1 shows an illustrated view of the special save requests that you need to create
ensure quick recovery from a disaster situation.

2. Create a save request named SYSTEM_DISASTER_SAVE that specifies the following disks:

• The system disk

• The disk that contains ABS software

• The disk that contains MDMS software

• The disk that contains other products required by ABS, such as your 3rd part
scheduler product and Motif.

Note:
It is recommend that all of these components reside on one disk in the system.

This save request must:

• Be one save request that specifies multiple disks (each of the previously
described disks)

• Be a full save request

• Be done on a daily basis

• Use the storage policy named DISASTER_RECOVERY (this storage policy
must use the catalog named DISASTER_RECOVERY_CATALOG)

Example:
$ ABS SAVE/NAME=SYSTEM_DISASTER_SAVE SYS$SYSDEVICE:,ABS$DISK1: -
_$/FULL/INTERVAL=DAILY/START=00:00:00/STORAGE_CLASS=DISASTER_RECOVERY

Result:
This save request backs up the system disk and the disk that contains ABS software, MDMS
software, and any dependent products.

3. Produce a report using ABS REPORT SAVE_LOG command, using the /FULL qualifier:

$ ABS REPORT SAVE_LOG/REQUEST=SYSTEM_DISASTER_SAVE/FULL

Make a note of the following fields:

• Save set name

• Save set position

• Volume name list

• Backup agent (such as VMS or RMU)

• Disk or file names

Note:
Be sure to manually enter the date you generated the report on the report itself. This enables
you to quickly locate the most recent report.

4. Place the reports in a safe location. Choose a location that is protected against fire, floods, and
so forth. You will need to retrieve the reports in the case of a disaster situation.

Table A–1 Disaster Recovery Tasks

Step Action
Preparing For Disaster Recovery A–3

Preparing For Disaster Recovery
A.3 Recovering ABS From A Disaster Situation

or-
Figure A–1 Special Save Request

A.3 Recovering ABS From A Disaster Situation
To recover ABS, follow the procedure in Table A–2.

Other disk

Other disk

Other disk

CXO6014A

System disk

Tape drive
compatible
with media

OpenVMS system

SYS$SYSDEVICE:

ABS$DISK1:

ABS$DISK2:

ABS$DISK3:

Daily, full save request to
DISASTER_RECOVERY
Storage Class

Daily, full save request of
ABS$CATALOG:*.*;*
to DISASTER_RECOVERY
Storage Class

Daily, full save request to
DISASTER_RECOVERY
Storage Class

Table A–2 Recovering ABS

Step Action

1. Get the report stored in safekeeping.

2. Determine which save set is the most current.

3. Mount the volume that contains the save set.

$ MOUNT tape_device: volume_name

4. Boot standalone backup. Refer to Open VMS System Manager’s Manual for detailed inf
mation about performing a standalone backup operation.
Preparing For Disaster Recovery A–4

Preparing For Disaster Recovery
A.3 Recovering ABS From A Disaster Situation

 the

sup-
5. Issue the restore command:

$ BACKUP tape_device: input_specifier -
$ output_specifier/LABEL=(volume_name,,,)

Where:

• tape_device is the name of the drive that holds the volume that contains the
save set.

• input_specifier is the name of the save set.

• output_specifier is the name of the system disk that you are restoring.

• /LABEL=(volume_name,...) is the name of the volume or volumes that contain
the save set. Specify the volumes in the order listed in the report.

6. Perform a minimum boot backup operation on the system disk. See OpenVMS System Man-
ager’s Manual for detailed information about performing a minimum boot backup opera-
tion.

• If you have additional disks to restore, go to Step 7.

• If you have any incrementals that you need to apply, go to Step 7a.

• Otherwise, go to Step 8.

7. Repeat Steps 1 through 6 (except Step 4) for ABS disk, MDMS disk, and any other disks
that contain dependent layered products. Instead of Step 4, mount the output device by issu-
ing the following command:

$ MOUNT/FOREIGN output_device

7a. If you need to restore any incremental backup operations (you should not have to do this
step if you created the save requests as previously described), follow these steps:

Step Action
1. Mount the volumes from the most recent to the least recent, determined by

report.

2. Dismount the restore disk:

$ DISMOUNT output_device

3. Mount the restore disk Files-11:

$ MOUNT output_device volume_name

4. Mount the tape drive foreign:

$ MOUNT/FOREIGN tape_device:

5. Skip to the position on the save set where the incremental backup resides (
plied in report):

$ SET MAGTAPE/SKIP=files:n tape_device

6. Issue the backup command using the /INCREMENTAL qualifier:

$ BACKUP tape_device: save_set_name output_device/INCREMENTAL

Table A–2 Recovering ABS

Step Action
Preparing For Disaster Recovery A–5

Preparing For Disaster Recovery
A.4 Recovering ABS Client Nodes
A.4 Recovering ABS Client Nodes
To recover any OpenVMS client nodes, all ABS client nodes must have access to a tape device
or disk device that is compatible with the volume that contains the save set for that node. The
recovery procedure is same as described in Section A.3.

8. Perform a system shutdown and startup on the disk using OpenVMS shutdown and startup
command procedures. See OpenVMS System Manager’s Manual for information about
shutdown and startup procedures.

9. Use ABS to restore other ABS catalogs that have been affected.

10. Restore any remaining disks using ABS.

Table A–2 Recovering ABS

Step Action
Preparing For Disaster Recovery A–6

B
ABS Time Formats

For scheduling purposes, Archive Backup System for OpenVMS (ABS) uses OpenVMS
date/time formats. The following sections describe the date/time formats used by ABS.

B.1 Start Time Format
When creating a save or restore request, you can specify the exact time that you want the request
to begin. Table B–1 lists the valid formats that you can use and defines each format listed.

Table B–1 Start Time Formats

Valid Entry Format Definition

dd-mmm-yyyy hh:mmm:ss Specifies the absolute starting time. If you omit the year (yyyy), the
default is the current calendar year. If you omit all or part of the
time (hh:mmm:ss), the omitted portion is set to 0 (zero) by default.

Restriction:
You can enter the date or time without quotation marks. If you want
to enter the date and time, the syntax must be enclosed within quo-
tation marks.

Examples:
1. 01-JAN-1997

2.12:00:00

3.”01-JAN-1997 12:00:00”

+dddd hh:mmm:ss Specifies a delta time, based on the current date and time. You must
specify the days (+dddd) even if you use 0 (zero).

Example:
“+3 4:45”

Result:
Starts the request 3 days, 4 hours, and 45 minutes from the present
time.

TOMORROW+hh:mm:ss Specifies to start the request tomorrow plus the number of hours
and minutes.

Example:
“TOMORROW 4:45”

Result:
Starts the request tomorrow at 04:45 a.m.
ABS Time Formats B–1

ABS Time Formats
B.2 Explicit Interval
B.2 Explicit Interval
When creating an ABS save request, you can specify an explicit interval at which to repeat the
save request. Modifying the explicit interval option does not change the next scheduled start
time for the save request. If you are using the INT_QUEUE_MANAGER or
EXT_QUEUE_MANAGER scheduler interface option this interval is ignored. For
EXT_SCHEDULER and DECSCHEDULER please refer to the description of interval specifica-
tion for the 3rd party scheduler product being used.

The explicit interval is passed as a string to the scheduler interface being used. It is not used for
the default scheduler interface option INT_QUEUE_MANAGER.
ABS Time Formats B–2

ore

efault

 that
S pol-
e

se
ully. It
r data-

cuted
S data-

s as
 data-

ed
o
C
ABS Cleanup Utilities

Archive Backup System for OpenVMS (ABS) provides the following cleanup utilities:

• A Database Cleanup Utility - This cleanup utility removes one-time-only save and rest
requests from ABS policy database that are no longer necessary.

• A Catalog Cleanup Utility - This cleanup utility periodically searches ABS catalogs and
removes any expired entries from those catalogs.

This information presented in this appendix describes how to start, stop, and change the d
behavior of ABS cleanup utilities.

C.1 Database Cleanup Utility
ABS provides the Database Cleanup Utility so that one-time-only save or restore requests
have successfully completed and are not scheduled to run again will be removed from AB
icy database. Review the following descriptions to understand the criteria that the Databas
Cleanup Utility uses:

• Removing save requests

The Database Cleanup Utility removes any save request records from the ABS databa
after 72 hours that were scheduled to run one time only and have completed successf
also removes the save request’s corresponding DECscheduler entry from the schedule
base.

• Removing restore requests

ABS immediately executes a restore request upon creation. If the restore request exe
successfully, the database cleanup utility removes the restore request record from AB
base after 72 hours.

C.1.1 Starting Up the Database Cleanup Utility

The Database Cleanup Utility is started when you run the file ABS$STARTUP.COM. It run
an OpenVMS batch job and resubmits itself every night at midnight. You can also start the
base cleanup utility by executing command procedure ABS$SYS-
TEM:ABS$START_DB_CLEANUP.COM anytime.

C.1.2 Changing the Database Cleanup Utility Default Behavior

If you wish to change the start time, modify the start_time symbol in command procedure
ABS$SYSTEM:ABS$START_DB_CLEANUP.COM.

The default behavior of the Database Cleanup Utility is to remove any successfully execut
one-time-only job records from ABS policy database after 72 hours. However, if you wish t
change the cleanup delay, modify the symbol cleanup_delay in the command procedure
ABS$SYSTEM:ABS$START_DB_CLEANUP.COM.
ABS Cleanup Utilities C–1

ABS Cleanup Utilities
C.2 Catalog Cleanup Utility

 from
tility
 then it

nning
fault
 fol-

ry

.
n
 The
C.1.3 Database Cleanup Utility Log File

ABS database cleanup utility creates a new log file named
ABS$LOG:ABS_CLEAN_DB_UTIL.LOG each time the cleanup utility is started. This log file
contains the information about the records that are removed and any associated error messages.

Recommendation:
For maintenance purposes, periodically check this log file and purge the older versions.

C.1.4 Shutting Down the Database Cleanup Utility

To shut down the database cleanup utility job and to manually prevent the future scheduling, use
one of the methods in Table C–1.

Note

When you shut down ABS software using the shutdown command procedure
SYS$MANAGER:ABS$SHUTDOWN.COM,database cleanup utility is automatically
deleted.

C.2 Catalog Cleanup Utility
ABS provides a Catalog Cleanup Utility that removes the references to expired data objects
ABS catalog. This feature helps maintain the size of the catalogs. The Catalog Cleanup U
searches ABS catalogs for any entries that have expired on or before yesterday’s date, and
removes those entries from the catalogs.

C.2.1 Starting Up the Catalog Cleanup Utility

ABS creates an OpenVMS batch job for the Catalog Cleanup Utility on each node that is ru
ABS. If multiple nodes access and use the same catalogs, you may want to change the de
behavior of the Catalog Cleanup Utility. Multiple nodes may access the same catalog if the
lowing conditions are present:

• ABS is installed in an OpenVMS Cluster with a common disk.

• ABS is set up so that all catalogs from different installations reside in the same directo
location.

The catalog cleanup utility is started automatically in SYS$STARTUP:ABS$STARTUP.COM
Command procedure ABS$SYSTEM:ABS$START_CATALOG_CLEANUP.COM is called i
the startup procedure to create an OpenVMS batch job which is scheduled to run at noon.
job resubmitts itself for noon every day.

C.2.2 Changing the Catalog Cleanup Utility Default Behavior

If you wish to change the start time, modify the start_time symbol in command procedure
ABS$SYSTEM: ABS$START_CATALOG_CLEANUP.COM. The next time the catalog
cleanup utility will resubmit itself with the new start time.

Table C–1 Shutting Down the Database Cleanup Utility

Method Action

Delete the Queue Manager job entry $ SHOW ENTRY ABS_CLEAN_DB_UTIL /USER=ABS
$ DELETE/ENTRY=<number>
ABS Cleanup Utilities C–2

ABS Cleanup Utilities
C.2 Catalog Cleanup Utility

 file

G.

gical
file

g
mes-

l-
S

BS
C.2.3 Catalog Cleanup Utility Log File

The Catalog Cleanup Utility creates the following log files:

• Each time the Catalog Cleanup Utility batch job starts, a new log file is created. This log
is called ABS$LOG:ABS_CATALOG_ CLEANUP.LOG. This file contains all informa-
tional and debug level information.

• ABS also creates a process log file named ABS$LOG:ABS_CLEAN_CATLG_ node.LO
This file contains process information.

To record all expired data object entries found in the ABS catalog, define the system lo
name ABS_CATALOG_CLEANUP_DEBUG as described in Table C–2. Note that log
may become large if there is a lot of expired entries.

The ABS catalog cleanup utility creates a new log file named
ABS$LOG:ABS_CATALOG_DB_UTIL.LOG each time the cleanup utility is started. This lo
file contains the information about the records that are removed and any associated error
sages.

Recommendation:
For maintenance purposes, periodically check this log file and purge the older versions

C.2.4 Shutting Down the Catalog Cleanup Utility

The file SYS$MANAGER:ABS$SHUTDOWN.COM will shutdown the Catalog Cleanup Uti
ity. This is the recommended method of shutting down ABS and any of the utilities that AB
invokes.

If you need to shut down the catalog cleanup utility without shutting down the rest of the A
software, deassign ABS_CATALOG_CLEANUP logical name:

$ SHOW LOG/FULL ABS_CATALOG_CLEANUP “ABS_CATALOG_CLEANUP” -
_$ [exec] = “1” (LNM$SYSTEM_TABLE)

$ DEASSIGN/SYSTEM/EXECUTIVE ABS_CATALOG_CLEANUP

$ SHOW LOG/FULL ABS_CATALOG_CLEANUP
%SHOW-S-NOTRAN, no translation for logical name ABS_CATALOG_CLEANUP

Table C–2 Defining the Catalog Cleanup Utility Logical Names

Logical Name When to Define the Logical Name

ABS_CATALOG_CLEANUP ABS automatically defines this logical name in the file
ABS$STARTUP.COM. If you have performed a shutdown
of the Catalog Cleanup Utility (described in Section C.2.5),
you must redefine this logical name to be able to restart the
Catalog Cleanup Utility:

$ DEFINE/SYSTEM ABS_CATALOG_CLEANUP 1

ABS_CATALOG_CLEANUP_DEBUG Define this logical name if it is important to have this infor-
mation for debugging or historical purposes. Enter the fol-
lowing command from the system prompt:

$ DEFINE/SYSTEM ABS_CATALOG_CLEANUP_DEBUG 1

Do not define this logical name if this information is not
important, or if disk space is an issue.
ABS Cleanup Utilities C–3

ABS Cleanup Utilities
C.2 Catalog Cleanup Utility

atic

n.

.2.4),
Once this logical name is deassigned, ABS performs an orderly shut down of the Catalog
Cleanup Utility. Running SYS$MANAGER:ABS$SHUTDOWN.COM deletes the Catalog
Cleanup Utility batch job.

Note

Do not use any other method to shut down the Catalog Cleanup Utility. Using another
method could leave a catalog in an inconsistent or unusable state.

C.2.4.1 Restarting the Catalog Cleanup Utility

If you have previously shutdown the Catalog Cleanup Utility by deassigning the logical name
ABS_CATALOG_CLEANUP, you must redefine the logical in order for the Catalog Cleanup
Utility to perform a cleanup operation. Failing to do so would allow the Catalog Cleanup Utility
to continue to run, but the cleanup operation would not take place.

$ DEFINE/SYSTEM ABS_CATALOG_CLEANUP 1

C.2.5 ABS Catalog Cleanup Utility Process

There are two pieces that are required for the Catalog Cleanup Utility to run correctly:

1. A OpenVMS batch job. This job runs each day to perform catalog cleanups and is invoked
by SYS$STARTUP:ABS$STARTUP.COM. This is started either by the system’s autom
startup files or by a user if the Catalog Cleanup Utility has been manually shut down.

2. The logical name ABS_CATALOG_CLEANUP. How this logical is defined determines
whether the currently running Catalog Cleanup Utility job will continue or will shut dow

If a Catalog Cleanup Utility batch executes, the first thing it does is check if
ABS_CATALOG_CLEANUP logical is defined.

If this logical is not defined (the logical has been deassigned as described in Section C
the Catalog Cleanup Utility batch job resubmits itself without performing any cleanup.

To make sure that the cleanup operations resume, be sure to redefine the logical.
ABS Cleanup Utilities C–4

D
Log– n Backup Schedules

Archive Backup System for OpenVMS (ABS) provides a set of backup schedules that ease the
burden of restore operations. These schedules are illustrated in Figure D–1.

Figure D–1 Log– n Backup Schedules

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

Full Backup =
/FULL

Incremental =
/SINCE=BACKUP

Since:Date =
/SINCE=dd-mmm-yyyy

Day

Traditional Backup A
Mean Restore Burden = 4.0
Mean Save Burden = 3.7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Day

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

1 2 2 3 2 3 3 4 2 3 3 4 3 4 4 5 2 3 3 4 3 4 4 5 4 5 5 6

Day

4 5 6

Log 3 Backup
Mean Restore Burden = 3.6
Mean Save Burden = 3.6

3 4 4 5

1 2 3 2 3 4 3 2 3 4 2 3 43 4 5 4 3 4 5 3 4 5 5 4 5 6 5

Log 2 Backup
Mean Restore Burden = 3.5
Mean Save Burden = 3.1

WEEKLY FULL, DAILY INCREMENTAL

LOG_2

LOG_3

CXO4208B
Log–n Backup Schedules D–1

 poli-
e copy.
E
ABS Worksheets

The worksheets in this appendix are provided to assist you in planning and creating ABS poli-
cies. Use the worksheets as scratch areas and keep them on file for future reference to maintain
ABS software.

The following worksheets are designed to be used along with ABS graphical user interface
(GUI).

E.1 Storage Policy Worksheet
The worksheet provided in Table E–1 is designed to help you configure your ABS storage
cies. To reuse this worksheet, make a copy of the worksheet and record your entries on th

Reference:
For detailed information about storage policies, refer to Chapter 7, Creating Storage Policies.

Table E–1 Storage Policy Worksheet

GUI Options Entry

Storage Policy Name _____________________________________

Save Data To

Disk Options _____________________________________

Tape Options _____________________________________

MDMS Options

Media Type _____________________________________

Pool _____________________________________

Drives _____________________________________

Location _____________________________________

Criteria Under Which ABS Creates New Volume Sets

Days before Creating a New Volume Set _____________________________________

Save Sets Per Volume Set _____________________________________

Volumes Per Volume Set _____________________________________

Retain Data For

Days _____________________________________

Expire On _____________________________________
ABS Worksheets E–1

ABS Worksheets
E.2 Environment Policy Worksheet

poli-
on the
E.2 Environment Policy Worksheet
The worksheet provided in Table E–2 is designed to help you configure your environment
cies. To reuse this worksheet, make a copy of the worksheet and record your configuration
copy.

Reference:
For detailed information about environment policies, refer to Chapter 8, Creating Environment
Policies.

Catalog and Execution Node

Write History Information To (Catalog Name) _____________________________________

Execute Save Operation on (Node Name) _____________________________________

Number of Streams

Maximum Number of Simultaneous Save Operations _____________________________________

Access Control

Owner _____________________________________

Node _____________________________________

User Name _____________________________________

Rights _____________________________________

Table E–1 Storage Policy Worksheet

GUI Options Entry

Table E–2 Environment Policy Worksheet

GUI Options Entry

Environment Policy Name _____________________________________

Save and Restore Environment Options

How and Who To Notify _____________________________________

When To Notify _____________________________________

Type of Notification _____________________________________

Data Verification _____________________________________

Listing Options _____________________________________

Preprocessing Command _____________________________________

Postprocessing Command _____________________________________

Original File Option _____________________________________

Retry Options _____________________________________

User Profile (ABS, Requester, Specific User) _____________________________________

Open Files _____________________________________
ABS Worksheets E–2

ABS Worksheets
E.3 Save Request Worksheet

To
e cop-
E.3 Save Request Worksheet
The worksheet provided in Table E–3 is designed to help you configure your save requests.
reuse the worksheet, make a copies of the worksheets and record your configuration on th
ies.

Reference:
For detailed information about save requests, refer to Chapter 9, Creating Save Requests.

Number of Tape Drives _____________________________________

Compression (UNIX only) _____________________________________

Links Option (UNIX only) _____________________________________

Span File Systems (UNIX only) _____________________________________

Access Control

Owner _____________________________________

Node _____________________________________

User Name _____________________________________

Rights _____________________________________

Table E–2 Environment Policy Worksheet

GUI Options Entry

Table E–3 Save Request Worksheet

GUI Options Entry

Save Request Name _____________________________________

What Data To Save

Type of Data _____________________________________

Node Where Data Resides _____________________________________

Disk or File name (or names) _____________________________________

File name to Exclude _____________________________________

Preprocessing Command _____________________________________

Postprocessing Command _____________________________________

Agent Qualifiers _____________________________________

When to Save Data

Start Time _____________________________________

Scheduling Option _____________________________________

Where and How

Storage Policy to Use _____________________________________

Environment Policy to Use _____________________________________
ABS Worksheets E–3

ABS Worksheets
E.3 Save Request Worksheet
Access Control

Owner _____________________________________

Node _____________________________________

User Name _____________________________________

Rights _____________________________________

Table E–3 Save Request Worksheet

GUI Options Entry
ABS Worksheets E–4

F
Troubleshooting

F.1 Logical Names Provide Additional Tracing
Two logical names have been defined to provide additional module tracing information. Typi-
cally, these logical names will not be useful to the customer, but they may assist ABS engineer-
ing team in tracking problems.

The following logical names are provided in ABS:

Note

Do not set these logical names unless specifically told to do so by ABS engineering.
These logicals will produce a potentially large log file named
ABS_DEBUG_TRACE.LOG.

F.2 Troubleshooting Assistance for NT Clients
Should you encounter problems when saving or restoring data using ABS for an NT client sys-
tem, ABS provides way to help you troubleshoot the problem. Assign a system variable on the
NT client system that, in turn, creates log files about the NT client system during ABS backup
operations. These log files will assist you during the troubleshooting process.

Note

Assign this system variable only when you need troubleshooting assistance. Deassign
the system variable when it is no longer needed. Do not leave the system variable
assigned during normal, day-to-day operations. Because the log files can become
extremely large, leaving the system variable assigned could cause performance prob-
lems.

To assign the system variable, use the procedure in Table F–1.

Logical Name Description

POLICY_ABS_DEBUG_FLAG Enables tracing for the server policy engine only.

ABS_DEBUG_FLAG Enables tracing for all ABS components. When this logi-
cal name is set to “TRUE”, it will provide information
about the modules executed by the policy engine (client
and server).
Troubleshooting F–1

Troubleshooting
F.3 Verifying NT and UNIX Client Quotas

irec-
e:

f
Table F–1 Assigning a System Variable for NT Troubleshooting

F.3 Verifying NT and UNIX Client Quotas
If you are supporting NT or UNIX clients, to ensure successful save and restore operations, set
the quotas to the following values on ABS OpenVMS server node:

UCX> SET PROTOCOL TCP /QUOTA=(SEND:50000,RECEIVE:50000)

Note

If you have to reboot the machine, make sure that you reset these values after reboot-
ing.

F.4 Considerations for Saving Large Disks on UNIX and NT Clients
ABS stores data on tape based on ANSI Standard X3.27-1987, File Structure and Labeling of
Magnetic Tapes for Information Exchange. This standard requires that the block length (number
of bytes per block for a file) be stored in the header section and the block count (number of
blocks in a file) be stored in the end of file section. Together these fields determine the maxi-
mum number of bytes that the file contains on tape. So, in theory the following formula is imple-
mented:

block length * block count = number of bytes

Step Action

1. Log into the administrator account on the NT client node.

2. Bring up the registry editor (for example, regedt32 from command line)

3. Go to the window for the following location:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\ -
ABSClient\Parameters

4. From the EDIT menu select “Add Value...”, enter ABSGtarLog as the value name.

5. Select the data type as REG_DWORD.

6. Enter a one (1) as the data in the DWORD window; select decimal.

7. Click OK, exit from the registry.

8. Run your save and restore requests as usual.

Result:
The log files generated during the save or restore operation will be located in the system d
tory. For example, on a NT Version 4.0 server system, the directory system name would b

c:\Winnt40S\system32

The log files are named as follows:
• abs_log_file.txt - This log file contains information about the execution of the

file absgtar.exe.

• absclient_log_file.txt - This log file contains information about the execution o
the file absclient.exe.

9. When the log files are no longer needed, go to the same registry window and delete the entry.
Do this by highlighting the entry; select Delete from the EDIT menu.
Troubleshooting F–2

Troubleshooting
F.4 Considerations for Saving Large Disks on UNIX and NT Clients

a-

wing

ugh
These fields on tape are stored in an ASCII format with the block length being five digits, and
the block count being six digits. This allows for a maximum save request disk size of 99999 *
999999 = 99,998,900,001bytes (approximately 99 gigabytes (GB)).

ABS uses a default block length of 10240 bytes/block when it stores data to tape. As a result, the
maximum disk size by default is 10240* 999999 = 10,239,989,760 (approximately 10 GB). If
the actual number of bytes exceeds this amount, then ABS$UBS will raise the following asser-
tion and the save request will fail:

assert error: expression = section_block_count <= 999999

The value of the block length is specified to the underlying gtar backup engine as a blocking fac-
tor. The blocking factor is defined as a multiple of 512 bytes. The default block length passed to
gtar is “-b20”. To determine an appropriate blocking factor or block length for a specific situ
tion, follow these steps:

Step 1. Divide the size of the disk (in bytes) by 99999

Step 2. Divide the resulting number by 512

Step 3. Round up to the next whole number

For example, if the disk size is approximately 30,000,000,000 bytes (30 GB), use the follo
formula:

30,000,000,000 / 999999 / 512 = 58.59 or 59

This results in a blocking factor of “-b59”.

You can modify the default block length from the GUI for an NT or UNIX save or restore
request on the Agent Qualifiers window (see Section or Section). Specify this value in the
Agent Qualifiers window.

Restriction:
ABS will not produce the correct results if the value exceeds “-b63”. If the disk is large eno
to exceed this amount, create more than one save request for that particular disk.

To modify the blocking factor, use the procedure described in Table F–2.

Table F–2 Modifying the Blocking Factor

Restore requirement:
When restoring data from a save request where the blocking factor has been modified, you must

Step Action

1. Invoke ABS GUI as described in Chapter Emphasis

2. Click Modify or Delete Requests & Policies

3. Click Save Request

4. Double-Click the save request name

5. Double-Click on the file name in the Data To Save area

6. Click Agent Qualifiers

7. Click Backup Agent-Specific Qualifiers and enter the value of -bnn

Where nn is a numeric value multiplied by 512 bytes
Troubleshooting F–3

Troubleshooting
F.5 Using The Same Volume Set For Multiple Types of ABS Clients

.

specify the same blocking factor that was specified on the save request. Otherwise, the restore
request will fail due to an invalid block size on the tape. As a default, ABS uses 10240.

F.5 Using The Same Volume Set For Multiple Types of ABS Clients
If you want to back up multiple types of ABS clients to the same volume set, use the same stor-
age policy for those save requests. A single storage policy always uses the same volume set,
whether the data comes from an OpenVMS, UNIX, or NT client.

To save data from multiple types of ABS clients to the same volume set, create save requests
similar to the following examples:

$ ABS CREATE SAVE/NAME=VMS_SYSTEM/STORAGE=SYSTEM_BACKUPS -
_$/START=00:00 DISK$USER1: /OBJECT_TYPE=VMS_FILES

$ ABS CREATE SAVE/NAME-UNIX_SYSTEM/STORAGE=SYSTEM_BACKUPS -
_$/START=01:00 /abs /OBJECT_TYPE=UNIX_FILES

$ ABS CREATE SAVE/NAME=NT_SYSTEM/STORAGE=SYSTEM_BACKUPS -
_$/START=02:00 c:\ /OBJECT_TYPE=NT_FILES

By using the same storage policy, each save request uses the same volume set.

F.6 ABS Log Files
ABS generates a set of log files that contains information about ABS operations. Two of the log
files shown in are policy engine log files. These log files contain information about ABS trans-
actions and remain open to record ABS transactions. The third log file is a save or restore request
log file that is generated when you execute a save or restore request using either the GUI or
DCL.

Table F–3 describes the log file location, log file name, and contents of the specific log file

Table F–3 ABS Log Files

Recommendation:
Do not delete these log files. They contain important information that will assist ABS Engineer-
ing with any troubleshooting process. However, if the log files are consuming too much disk
space, you can delete previous versions of the log files and keep only the most recent log files:

$ PURGE ABS$LOG:filename.log/KEEP=5 ! keeps the latest five versions
$ DELETE ABS$LOG:filename.log/BEFORE=date ! deletes any version before the
specified date

Location Log File Name Contents

ABS$LOG: ABS$POLICY_<node_name>a.LOG

a. The node name where ABS policy server is executing.

Audit information about ABS operations that
includes a sequence number and an ABS com-
mand.

ABS$LOG: <request_name>b.LOG

b. The name of the save or restore request

Log information about the execution of a save
or restore request. A new log file is created
each time a save or restore request is executed.

ABS$LOG: ABS$POLICY_ENGINE_<node_na
me>.LOG

Error information from ABS policy engine.
Troubleshooting F–4

Troubleshooting
F.7 New Logical Name Added To Increase Stack Size On Alpha Systems
F.7 New Logical Name Added To Increase Stack Size On Alpha
Systems

A new logical name, ABS$COORD_ALPHA_STACKSIZE, has been added to ABS that can be
used to increase the stack size on Alpha systems. ABS now sets the default stack size to 65536,
(8 * 8192 = 65536). This corrected several ACCVIO and CMA-F-EXCCOP errors, especially at
the end of a tape.

F.8 Additional Error Messages
Additional error messages have been added and may show up in
ABS$LOG:ABS$POLICY_ENGINE_<node_name>.LOG and
ABS$LOG:ABS$POLICY_<node_name>.LOG files. These messages have been added prima-
rily to aid engineering and the support organizations with diagnosing problems.

F.9 Upgrading ABS
After upgrading ABS, it may appear that ABS has incorrectly recreated ABS database. This
could be caused if your OpenVMS system was rebooted and ABS was not restarted before start-
ing the upgrade installation procedure. This may cause ABS logicals not to be defined. The
upgrade procedure requires certain logicals to be present on the OpenVMS system.

If you are upgrading ABS, make sure ABS has been running before you start the upgrade instal-
lation procedure. Follow these steps:

Step 1. Start up ABS using @SYS$STARTUP:ABS$STARTUP.COM

Step 2. Shut down ABS using @SYS$MANAGER:ABS$SHUTDOWN.COM

Step 3. Upgrade ABS using @SYS$UPDATE:VMSINSTAL

F.10 Logical To Assist with Server Connection Problems
If you receive the following error during a save or restore request
ABS_NET_CONN_ACCEPT_FAILED, network accept connection request failed you may set
a logical name to help eliminate the problem.

$ DEFINE/SYSTEM ABS$MAX_IO_ACCESS_WAIT n

Where n is the number of 5 second increments for the server to wait for connections to be estab-
lished. The default value is 4.

F.11 AUDIT Flags in ABS$POLICY_CONFIG.DAT
There are AUDIT flags in the ABS$SYSTEM:ABS$POLICY_ENGINE_CONFIG.DAT file
which enable additional tracing for ABS (for example, ABS$AUDIT_SHOW_EXEC_ENV).

Do NOT change the values of these flags unless specifically told to by ABS support or engineer-
ing. These symbols will produce a potentially large amount of data to the ABS policy engine log
files, or create additional log files.

F.12 Troubleshooting MDMS Related Problems
If you see delays in allocating, loading, mounting or dismounting volumes for use by ABS, it is
helpful to enable an OPCOM TAPE operator on your terminal window. MDMS sends helpful
OPCOM message to the TAPE operator when it is having difficulty executing the request.

To enable OPCOM, type:

$ REPLY/ENABLE = TAPES
Troubleshooting F–5

Troubleshooting
F.13 Information Required When Reporting Problems

ro-

e-
e
To disable OPCOM, type:

$ REPLY/DISABLE

F.13 Information Required When Reporting Problems
If you report a problem to your COMPAQ support organization, the following information
should be included.

• If the problem is related to a save request:

– ABS SHOW SAVE/FULL save_policy

– ABS SHOW STORAGE/FULL storage_policy

– ABS SHOW ENVIRONMENT/FULL environment_policy

– The log file of the save request

• If the problem is related to a restore request:

– ABS SHOW RESTORE/FULL restore_policy

– ABS SHOW STORAGE/FULL storage_policy

– ABS SHOW ENVIRONMENT/FULL environment_policy

– The log file of the restore request

– The log file for a corresponding save request which saved the data

– ABS LOOKUP of the data being requested in the restore request

• If the problem is related to the policy engine process, or other ABS process (cleanup p
cesses, etc):

– The log for the process, for example the ABS$LOG:ABS$POLICY_ENGINE_<nod
name>.LOG file and the ABS$LOG:ABS$POLICY_<nodename>.LOG file would b
required for a policy engine problem.

• If the problem is related to MDMS:

– MDMS SHOW output of the related volumes, drives, etc

– Output from OPCOM messages issued by MDMS

– Pertinent information from the MDMS server log

• Other information may be required, but will be addressed as needed.
Troubleshooting F–6

G
ABS Error Messages

This appendix presents Archive Backup System for OpenVMS (ABS) error messages and pro-
vides descriptions and User Actions for each.

ABS_ACCESS_DENIED,

Explanation: The requested access is denied. The user does not have the proper access con-
trols set to be granted access to the object.

User Action: Ask the owner of the object or the storage administrator to grant access to the
object.

ABS_ACTIONNOSENDER,

Explanation: The coordinator received a service request with no data mover designated as
the sender.

User Action: ABS internal error. Submit an SPR.

ABS_AFS_DISMOUNT_UNSUPPORTED,

Explanation: An attempt to dismount a volume failed because the archive File system asso-
ciated with the storage policy does not support dismount operations. The backup agent
information erroneously interpreted an output message as entering the DISMOUNT state.

User Action: ABS internal error. Submit an SPR.

ABS_AFS_EXTEND_UNSUPPORTED,

Explanation: An attempt to extend a save operation failed because the archive file system
associated with the storage policy does not support extend operations. The backup agent
information erroneously interpreted an output message as entering the NEW_VOLUME
state.

User Action: ABS internal error. Submit an SPR.

ABS_AGENT_ABORTED,

Explanation: The backup agent moving data was aborted.

User Action: Check the log file for more specific information associated with the error, cor-
rect the indicated error, and retry the save or restore request.

ABS_AGENT_CONTEXT_EXITED,

Explanation: The backup subprocess was stopped externally to ABS and the scheduler in
use.

User Action: Retry the data movement operation.

ABS_AGENT_LOOKUP_FAILED,

Explanation: An explicitly named backup agent does not exist, or the backup agent infor-
mation used during a save operation was deleted.
ABS Error Messages G–1

ABS Error Messages

User Action: Specify an existing backup agent.

ABS_AOE_INSNC_NOT_FOUND,

Explanation: An archive object entry instance was not found.

User Action: ABS internal error. Submit an SPR.

ABS_AOE_LIST_NULL,

Explanation: An ABS internal archive object entry list is corrupt.

User Action: ABS internal error. Submit an SPR.

ABS_AOE_NOT_FOUND,

Explanation: An archive object entry was not found in the catalog.

User Action: Use a wildcard specification in the catalog reporting facility to verify the
archive object name and specify the correct data object name. If using the wildcard specifi-
cation does not find the correct data object, no valid save operations of the object have been
performed.

ABS_AOE_ON_LIST,

Explanation: The archive object entry is already on ABS internal AOE return list.

User Action: ABS internal error. Submit an SPR.

ABS_AOE_SHOW_CONTEXT,

Explanation: AOE Show Context is not NULL

User Action: ABS internal error. Submit an SPR.

ABS_AOE_VALIDATE_FAIL,

Explanation: Common AOE information specified does not match the catalog.

User Action: ABS internal error. Submit an SPR.

ABS_API_EXCEPTION,

Explanation: An unexpected exception occurred in the API.

User Action: If you are using the GUI, submit an SPR. If you are using the API, validate the
parameters you specified to the API. If error still occurs, submit an SPR.

ABS_ARCH_ACCESS_FAILED,

Explanation: An attempt to access archive resources such as tape drives, tape pools, or disk
directories failed.

User Action: Check the transaction log file, repair the error, and retry the operation. Note
that you may need to check the MDMS log files for access failures to MDMS archive
resources.

ABS_ARCH_CLASS_NOT_FOUND,

Explanation: The specified storage policy was not found in ABS policy database.

User Action: Use a wildcard show operation to determine a valid storage policy name and
specify the correct storage policy name.

ABS_ARCH_CLOSE_FAILED,

Explanation: An attempt to release archive resources such as tape drives, media sets or disk
directories failed.
ABS Error Messages G–2

ABS Error Messages

ra-
User Action: Check the transaction log file, repair the error, and retry the operation. Note
that you may need to check the MDMS log files for deaccess failures to MDMS archive
resources.

ABS_ARCH_EXTEND_FAILED,

Explanation: An attempt to extend a media set failed.

User Action: Check the transaction log file, repair the error, and retry the operation. Note
that you may need to check the MDMS log files for deaccess failures to MDMS archive
resources.

ABS_ARCH_REQ_NOT_FOUND,

Explanation: A save request matching the specified name, name and version, or UID was
not found. Specify a valid restore request name, name and version, or UID.

User Action: Use a wildcard show operation to determine a valid save request name; spec-
ify the correct save request name.

ABS_ARCH_TRANS_NOT_FOUND,

Explanation: The specified archive transaction was not found in ABS policy database.

User Action: ABS internal error. Submit an SPR.

ABS_BADSTATE,

Explanation: The backup agent state machine entered a bad state.

User Action: ABS internal error. Submit an SPR.

ABS_BAD_PLATFORM_ERROR,

Explanation: An attempt to translate a platform-specific error failed.

User Action: ABS internal error. Submit an SPR.

ABS_BAD_TYPE_FOR_AGENT,

Explanation: The specified backup agent does not support the specified movement type.

User Action: The backup agent information is incorrect. Submit an SPR.

ABS_BAD_XN_ARCH_CLASS,

Explanation: The transaction added to a session specified a storage policy other than the
session’s storage policy.

User Action: ABS internal error. Submit an SPR.

ABS_CLOSE_CATALOG_FAILURE,

Explanation: An attempt to close the catalog failed.

User Action: ABS internal error. Submit an SPR.

ABS_CMDERR,

Explanation: There is a syntax error on ABS command line

User Action: Correct the syntax and retry the command.

ABS_CONTINUING,

Explanation: The transaction coordinator encountered an error, but is retrying the ope
tion.

User Action: None.
ABS Error Messages G–3

ABS Error Messages

t.

i-
 the

i-
 the
ABS_COORD_EXCEPTION,

Explanation: An unexpected exception occurred in the coordinator.

User Action: ABS internal error. Submit an SPR.

ABS_COORD_NOUID,

Explanation: No transaction UID was found on the coordinator command line.

User Action: Specify a valid transaction UID on the coordinator command line.

ABS_CREATEEERR,

Explanation: An attempt to create an ABS environment policy failed.

User Action: Additional information should follow this error. Evaluate the additional infor-
mation to determine the problem. Correct the problem and retry the command.

ABS_CREATESERR,

Explanation: An attempt to create an ABS storage policy has failed.

User Action: Additional information should follow this error. Evaluate the additional infor-
mation to determine the problem. Correct the problem and retry the command.

ABS_CREPRCERR,

Explanation: An attempt to create a subprocess to house the backup agent failed.

User Action: Check the transaction log file, correct the indicated error, and retry the opera-
tion.

ABS_DATA_MOVER_EXCEPTION,

Explanation: An unexpected exception occurred in the data mover.

User Action: ABS internal error. Submit an SPR.

ABS_DB_ATTACH_ERROR,

Explanation: ABS policy engine’s attempt to access ABS policy database failed.

User Action: Check to see if ABS account can access to ABS policy database that is
pointed to by the logical ABSDATABASE. If this is true, ABS policy database is corrup
Restore ABS policy database.

ABS_DELERR,

Explanation: An attempt to delete a record from ABS database failed.

User Action: Additional information should follow the error message. Evaluate the add
tional information to determine the specific problem with ABS policy database. Correct
problem and retry the command.

ABS_DB_DELETE_FAILURE,

Explanation: An attempt to delete a record from persistent store failed.

User Action: Additional information should follow this error message. Evaluate the add
tional information to determine the specific problem with ABS policy database. Correct
problem and retry the operation.

ABS_DB_INSERT_FAILURE,

Explanation: An attempt to insert a record from persistent store failed.
ABS Error Messages G–4

ABS Error Messages
User Action: Additional information should follow this error message. Evaluate the addi-
tional information to determine the specific problem with ABS policy database. Correct the
problem and retry the operation.

ABS_DB_SELECT_FAILURE,

Explanation: An attempt to select a record from persistent store failed.

User Action: Additional information should follow this error message. Evaluate the addi-
tional information to determine the specific problem with ABS policy database. Correct the
problem and retry the operation.

ABS_DB_TRANS_FAILURE,

Explanation: A transaction could not be started on ABS policy database.

User Action: Additional information should follow this error message. Evaluate the addi-
tional information to determine the specific problem with ABS policy database. Correct the
problem and retry the operation.

ABS_DB_UPDATE_FAILURE,

Explanation: An attempt to update a record from persistent store failed.

User Action: Additional information should follow this error message. Evaluate the addi-
tional information to determine the specific problem with ABS policy database. Correct the
problem and retry the operation.

ABS_DELPRCERR,

Explanation: An attempt to delete a backup agent subprocess failed.

User Action: Check the transaction log file for more information and correct any errors.
The transaction should have completed.

ABS_DIRECTORY_CREATE_ERROR,

Explanation: An attempt to create an on-disk directory for a Files-11 storage policy failed.

User Action: Make sure the primary archive Location specified has a valid Files-11 format.
If it does, check the transaction log file for more specific information, correct the indicated
error, and retry the operation.

ABS_DRIVE_RVN_MISMATCH,

Explanation: ABS found an unexpected relative volume number (RVN) mounted on a
drive.

User Action: ABS internal error. Submit an SPR.

ABS_DRIVE_RVN_NOT_FOUND,

Explanation: ABS could not find a drive with the specified relative volume number (RVN)
mounted on it.

User Action: ABS internal error. Submit an SPR.

ABS_DUPLICATE_ARCH_CLASS,

Explanation: An attempt to create an storage policy failed because the storage policy
already exists.

User Action: Specify a different storage policy name, or modify the existing storage policy
to meet your needs.

ABS_DUPLICATE_ARCH_REQ,
ABS Error Messages G–5

ABS Error Messages

Explanation: An attempt to create a save request failed because the save request already
exists.

User Action: Specify a different save request name, or modify the existing save request to
meet your needs.

ABS_DUPLICATE_EXECUTION_ENV,

Explanation: An attempt to create a request environment policy failed because the request
environment policy already exists.

User Action: Specify a different request environment policy name, or modify the existing
request environment policy to meet your needs.

ABS_DUPLICATE_REST_REQ,

Explanation: An attempt to create a restore request failed because the restore request
already exists.

User Action: Specify a different restore request name, or modify the existing restore request
to meet your needs.

ABS_ELEMENT_NOT_FOUND,

Explanation: The specified element was not found in the list.

User Action: ABS internal error. Submit an SPR.

ABS_EXEC_ENVIR_NOT_FOUND,

Explanation: The specified environment policy was not found in ABS policy database.

User Action: Use a wildcard show operation to determine a valid request environment pol-
icy name. Specify the valid request environment policy name.

ABS_EXPIRED,

Explanation: The check for media set consolidation interval failed.

User Action: ABS internal error. Submit an SPR.

ABS_EXTEND_SUBSTATE_FINISHED,

Explanation: One step in the archive extend operation has completed.

User Action: ABS internal error. Submit an SPR.

ABS_FAILURE,

Explanation: A failure occurred.

User Action: ABS internal error. Submit an SPR.

ABS_FATAL_ERROR_DETECTED,

Explanation: A fatal error was detected in the data mover.

User Action: Additional information should follow this error message. Evaluate the addi-
tional information to determine the specific problem with ABS policy database. Correct the
problem and retry the operation.

ABS_FIND_HELD_FAILED,

Explanation: SYS$FIND_HELD service failed.

User Action: ABS internal error. Submit an SPR.

ABS_GET_JPI_FAILED,
ABS Error Messages G–6

ABS Error Messages
Explanation: SYS$GETJPI(W) call failed.

User Action: ABS internal error. Submit an SPR.

ABS_GET_NODENAME_FAIL,

Explanation: An attempt to get cluster node names failed.

User Action: ABS internal error. Submit an SPR.

ABS_GET_PID_FAILED,

Explanation: An attempt to get the current process ID failed.

User Action: ABS internal error. Submit an SPR.

ABS_GET_UAI_FAILED,

Explanation: SYS$GETUAI service failed.

User Action: ABS internal error. Submit an SPR.

ABS_GET_UIC_FAILED, Failed to get current process UIC

Explanation: An attempt to get the current UIC failed.

User Action: ABS internal error. Submit an SPR.

ABS_IDTOASC_FAILED,

Explanation: SYS$IDTOASC service failed.

User Action: ABS internal error. Submit an SPR.

ABS_IMAGEACT_FAILED,

Explanation: An attempt to activate ABS$USSSHR failed.

User Action: Additional information should follow this error. Evaluate the additional infor-
mation, correct any indicated errors, and retry the operation.

ABS_INSUFF_ARCH_RESOURCES,

Explanation: Some archive resources such as tape drives, media sets, or disk directories
were allocated, but not all requested resources could be allocated.

User Action: None. The operation continues with the limited resources.

ABS_INTERNAL_ERROR,

Explanation: An internal error occurred.

User Action: ABS internal error. Submit an SPR.

ABS_INT_TOO_BIG,

Explanation: A value being parsed from the backup agent output is too large to be con-
tained in a 32-bit integer.

User Action: ABS internal error. Submit an SPR. The backup agent information is probably
trying to parse an incorrect item.

ABS_INVLD_ACCESS,

Explanation: Invalid catalog access was specified.

User Action: ABS internal error. Submit an SPR.

ABS_INVLD_ACCESS_IDENTIFIER,
ABS Error Messages G–7

ABS Error Messages

Explanation: Invalid access identifier parameter. The access identifier parameter exceeds
the maximum length.

User Action: Specify a valid length parameter.

ABS_INVLD_ACCESS_LIST,

Explanation: Invalid access rights list parameter was specified.

User Action: Specify a valid access rights list parameter.

ABS_INVLD_ACCESS_RIGHT,

Explanation: Invalid access rights string was specified.

User Action: Specify a valid access rights string.

ABS_INVLD_AGENT_DATA,

Explanation: Invalid backup agent ID data was specified.

User Action: Agent_ID_Data parameter exceeds the maximum valid length. Specify a valid
length Agent_ID_Data parameter.

ABS_INVLD_AGENT_FS_ROOT,

Explanation: Invalid agent file system root parameter was specified.

User Action: Correct the agent file system root parameter.

ABS_INVLD_AGENT_IND,

Explanation: Invalid backup agent indicator was specified.

User Action: Specify a valid backup agent indicator.

ABS_INVLD_AGENT_INFO,

Explanation: The specified backup agent information is invalid.

User Action: The backup agent information is incorrect. If you have modified the template
information, restore the original template information from ABS distribution kit. If you
have not modified the template information, submit an SPR.

ABS_INVLD_AGENT_NAME,

Explanation: Specified backup agent name is too long.

User Action: Either the backup agent name is too long or contains invalid characters. Spec-
ify a valid backup agent name.

ABS_INVLD_AGENT_ROOT,

Explanation: The backup agent file system root is invalid.

User Action: The agent_filesystem_root is too long. Specify a shorter
agent_filesystem_root.

ABS_INVLD_AGENT_SELECTION,

Explanation: Invalid backup agent selection criteria.

User Action: Specify a valid backup agent selection criteria.

ABS_INVLD_AGENT_UID_STRING,

Explanation: The UID string in the backup agent information is invalid.
ABS Error Messages G–8

ABS Error Messages
User Action: If you have made changes to the backup agent information, restore the origi-
nal backup agent information from ABS distribution kit. If you have not changed the backup
agent information, submit an SPR.

ABS_INVLD_ARCH_ATTR,

Explanation: An invalid archive attributes structure or value was specified.

User Action: Specify a valid archive attributes structure or value.

ABS_INVLD_ARCH_CLASS,

Explanation: An invalid storage policy name was specified.

User Action: The storage policy name is either too long or contains invalid characters.
Specify a valid storage policy name.

ABS_INVLD_ARCH_DATE,

Explanation: An invalid archive date format was specified.

User Action: Specify a valid archive date format.

ABS_INVLD_ARCH_INTERVAL,

Explanation: An invalid archive interval value was specified.

User Action: Specify a valid archive interval value.

ABS_INVLD_ARCH_OBJ_LOC,

Explanation: Invalid archive object location structure.

User Action: Use ABS_Set_archv_object_location routine to set up a valid archive object
location.

ABS_INVLD_ARCH_REQMNTS,

Explanation: An invalid archive requirements structure was specified.

User Action: Use ABS add_archive_reqmnts utility routine to set up a correct archive
requirements structure.

ABS_INVLD_ARCH_STATUS,

Explanation: Invalid object archived status.

User Action: Archive object status is too long. Specify a shorter string.

ABS_INVLD_ARCH_TIME,

Explanation: Catalog date archived is invalid.

User Action: Specify a valid date archived parameter.

ABS_INVLD_ARCH_TRANS_UID,

Explanation: The transaction UID is invalid and is specified only in internal routines.

User Action: ABS internal error. Submit an SPR.

ABS_INVLD_BACKUP_DATE,

Explanation: Invalid backup date format.

User Action: ABS internal error. Submit an SPR.

ABS_INVLD_CATALOG,

Explanation: An invalid catalog was specified.
ABS Error Messages G–9

ABS Error Messages

User Action: ABS internal error. Submit an SPR.

ABS_INVLD_CATALOG_TYPE,

Explanation: Invalid catalog type.

User Action: ABS internal error. Submit an SPR.

ABS_INVLD_COLLECTION,

Explanation: A nonexistent scratch collection was specified.

User Action: Specify a valid scratch collection when you create or modify the storage pol-
icy.

ABS_INVLD_COMPOUND_OBJECT,

Explanation: An invalid compound object set structure or value was specified.

User Action: Specify a valid compound object set structure or value. Use
theABS_Set_compound_object_set utility routine to set up a valid structure.

ABS_INVLD_CONNECTIONID,

Explanation: Catalog ConnectionId argument is invalid.

User Action: ABS internal error. Submit an SPR.

ABS_INVLD_CONSOLIDATION,

Explanation: An invalid consolidation interval criteria structure or value was specified.

User Action: Specify a valid consolidation interval criteria structure or value.

ABS_INVLD_CREATE_DATE,

Explanation: Invalid creation date format.

User Action: ABS internal error. Submit an SPR.

ABS_INVLD_DATA_MOVEMENT,

Explanation: An invalid movement type structure or value was specified.

User Action: Specify a valid movement type structure or value.

ABS_INVLD_DATE_FORMAT,

Explanation: Unable to format a binary date to an ASCII date format.

User Action: ABS internal error. Submit an SPR.

ABS_INVLD_DATE_MATCH,

Explanation: An invalid date match criteria was specified.

User Action: A valid date match criteria was specified.

ABS_INVLD_DEFAULT_FLAG,

Explanation: Specified an invalid default flag.

User Action: Specify a valid default flag on ABS_SET_COMPOUND_OBJECT_SET util-
ity routine.

ABS_INVLD_DESTINATION,

Explanation: An invalid archive destination indicator structure or value was specified.

User Action: Specify a valid archive destination indicator structure or value.
ABS Error Messages G–10

ABS Error Messages
ABS_INVLD_DEVICE_NAME,

Explanation: Invalid device name.

User Action: ABS internal error. Submit an SPR.

ABS_INVLD_DIAG_BLOCK,

Explanation: Missing the diagnostic block parameter.

User Action: Specify a valid diagnostic block address.

ABS_INVLD_DISK_NAME,

Explanation: An invalid disk name was specified in the include specification.

User Action: Specify a valid disk name on the include specification.

ABS_INVLD_DRIVE_LIST,

Explanation: An invalid drive name list structure or value was specified.

User Action: Specify a valid drive name list structure or value.

ABS_INVLD_DRIVE_NAME,

Explanation: An invalid drive name structure or value was specified.

User Action: Specify a valid MDMS drive name.

ABS_INVLD_EE_NAME,

Explanation: An invalid request environment policy name was specified.

User Action: The specified request environment policy name is either too long or contains
invalid characters. Specify a valid request environment policy name.

ABS_INVLD_ENTITY_NAME,

Explanation: An invalid object name was specified.

User Action: Specify a valid object name.

ABS_INVLD_EPILOGUE,

Explanation: An invalid epilogue structure or value was specified.

User Action: Specify a valid epilogue structure or value.

ABS_INVLD_EXECUTION_ENV,

Explanation: Specified an invalid request environment policy name.

User Action: The specified request environment policy does not exist. Perform a wildcard
show operation to find the valid request environment policy names. Specify a valid request
environment policy.

ABS_INVLD_EXPIRE_DATE,

Explanation: Invalid expiration date format.

User Action: ABS internal error. Submit an SPR

ABS_INVLD_EXP_INTERVAL,

Explanation: Invalid explicit interval.

User Action: Specify a valid explicit interval.

ABS_INVLD_FILE_NAME,
ABS Error Messages G–11

ABS Error Messages

Explanation: Invalid archive file system filename.

User Action: Check the archive file system filename. If it contains valid characters, submit
an SPR.

ABS_INVLD_FILE_SYSTEM,

Explanation: An invalid archive file system structure or value was specified.

User Action: Specify a valid archive file system structure or value.

ABS_INVLD_FORMAT_PARAMETER,

Explanation: Invalid parameter for tag formatting.

User Action: ABS internal error. Submit an SPR.

ABS_INVLD_IDLE_RETAIN_FLAG,

Explanation: An invalid idle retain flag structure or value was specified.

User Action: Specify a idle retain flag valid structure or value.

ABS_INVLD_INST_CHAR,

Explanation: Invalid instance characteristics.

User Action: ABS internal error. Submit an SPR

ABS_INVLD_LISTING_OPTION,

Explanation: An invalid listing option was specified.

User Action: Specify a valid listing option.

ABS_INVLD_LOG_HANDLE,

Explanation: An invalid log file handle in an open log file was specified.

User Action: ABS internal error. Submit an SPR.

ABS_INVLD_LOGGING_OPTION,

Explanation: An invalid logging option was specified.

User Action: Specify a valid logging option.

ABS_INVLD_MEDIA_SET_NAME,

Explanation: A nonexistent volume set name was specified.

User Action: Specify a valid volume set name.

ABS_INVLD_METHOD,

Explanation: Invalid method parameter.

User Action: The backup agent information is incorrect. If you have modified the template
information, restore the original template information from ABS distribution kit. If you
have not modified the template information, submit an SPR.

ABS_INVLD_METHOD_STRING,

Explanation: Invalid method string parameter.

User Action: The backup agent information is incorrect. If you have modified the template
information, restore the original template information from ABS distribution kit. If you
have not modified the template information, submit an SPR.

ABS_INVLD_MODIF_DATE,
ABS Error Messages G–12

ABS Error Messages
Explanation: Invalid revision date format.

User Action: ABS internal error. Submit an SPR

ABS_INVLD_NEWVOL_PROTOCOL,

Explanation: New volume protocol for backup agent is invalid.

User Action: The backup agent information is incorrect. If you have modified the template
information, restore the original template information from ABS distribution kit. If you
have not modified the template information, submit an SPR.

ABS_INVLD_NODE_LIST,

Explanation: An invalid node list structure or value was specified.

User Action: Specify a valid node list structure or value.

ABS_INVLD_NODE_NAME,

Explanation: An invalid node name was specified.

User Action: Specify a valid node name.

ABS_INVLD_OBJECT_NAME,

Explanation: Invalid object name.

User Action: ABS internal error. Submit an SPR

ABS_INVLD_OBJECT_UID,

Explanation: An invalid UID for the object was specified.

User Action: Specify a valid object UID.

ABS_INVLD_OBJECT_VERSION,

Explanation: An object version was specified without an object name.

User Action: You must specify object name when you specify an object version.

ABS_INVLD_OPTIONS_LIST,

Explanation: An invalid options list parameter was specified.

User Action: Specify an options list parameter.

ABS_INVLD_ORIG_DISP,

Explanation: An invalid original disposition structure or value was specified.

User Action: Specify a valid original disposition structure or value.

ABS_INVLD_OUTPUT_SPEC,

Explanation: An invalid output specification pointer was specified.

User Action: Specify a valid output specification pointer.

ABS_INVLD_OWNER,

Explanation: An invalid owner name was specified.

User Action: The owner parameter is too long. Specify a valid owner.

ABS_INVLD_PARAM_MASK,

Explanation: An invalid parameter mask was specified.

User Action: Specify a valid parameter mask to set on the set call.
ABS Error Messages G–13

ABS Error Messages

ABS_INVLD_PARSE_PARAMETER,

Explanation: Invalid parameter for tag parsing.

User Action: ABS internal error. Submit an SPR.

ABS_INVLD_PRIVILEGES,

Explanation: An invalid privileges parameter was specified, or the parameter exceeded the
maximum length.

User Action: Specify a valid length privileges parameter.

ABS_INVLD_PROLOGUE,

Explanation: An invalid prologue structure or value was specified.

User Action: Specify a valid prologue structure or value.

ABS_INVLD_REASON,

Explanation: Invalid reason parameter.

User Action: Specify a valid notification reason.

ABS_INVLD_REPVOL_PROTOCOL,

Explanation: The backup agent information is incorrect.

User Action: The backup agent information is incorrect. If you have modified the template
information, restore the original template information from ABS distribution kit. If you
have not modified the template information, submit an SPR.

ABS_INVLD_REQ_LOG_NAME,

Explanation: Invalid requestor logical name.

User Action: ABS internal error. Submit an SPR.

ABS_INVLD_REQMNTS_LIST,

Explanation: An invalid requirements list head pointer structure or value was specified.

User Action: Specify a valid requirements list head pointer structure or value.

ABS_INVLD_REQUEST_NAME,

Explanation: An invalid request name was specified.

User Action: The specified request name is either too long or contains invalid characters.
Specify a valid request name.

ABS_INVLD_RESTART_INTERVAL,

Explanation: An invalid restart interval structure or value was specified.

User Action: Specify a valid restart interval structure or value.

ABS_INVLD_RESTORE_INFO,

Explanation: Invalid restore information parameter.

User Action: Specify a valid alternate restore information structure. Normally, the alternate
restore information is not specified, but is retrieved from the catalog.

ABS_INVLD_RESTORE_LEVEL,

Explanation: Invalid incremental restore level.

User Action: ABS internal error. Submit an SPR.
ABS Error Messages G–14

ABS Error Messages
ABS_INVLD_RETENTION_CRITERIA,

Explanation: An invalid retention criteria structure was specified.

User Action: You must specify a retention criteria parameter.

ABS_INVLD_RETENTION_CRITERIA,

Explanation: An invalid retention criteria was specified.

User Action: Specify a valid retention criteria.

ABS_INVLD_RETENT_IND,

Explanation: An invalid retention indicator was specified.

User Action: Specify a valid retention indicator.

ABS_INVLD_RETURN_BLOCK,

Explanation: Invalid return block parameter.

User Action: Specify a valid return_block address on a show call.

ABS_INVLD_ROOT_LOCATION,

Explanation: An invalid root archive location was specified.

User Action: The specified primary archive location is too long. Specify a valid primary
archive location.

ABS_INVLD_ROS_NAME,

Explanation: Invalid ReferenceObjectSetName.

User Action: ABS internal error. Submit an SPR.

ABS_INVLD_ROS_UID,

Explanation: Invalid reference object set UID.

User Action: ABS internal error. Submit an SPR

ABS_INVLD_SCHEDULE_INFO,

Explanation: An invalid schedule_info structure value was specified.

User Action: Use ABS_Set_schedule_info utility routine to create a valid schedule_info
structure.

ABS_INVLD_SEGMENT,

Explanation: An invalid template segment was specified.

User Action: ABS internal error. Submit an SPR.

ABS_INVLD_SELECT_CRITERIA,

Explanation: Invalid selection criteria structure.

User Action: ABS internal error. Submit an SPR.

ABS_INVLD_SERVICE_INFO,

Explanation: Invalid agent service information.

User Action: ABS internal error. Submit an SPR.

ABS_INVLD_SIMPLE_OBJECT,

Explanation: An invalid simple object set was specified.
ABS Error Messages G–15

ABS Error Messages

User Action: Use ABS add_simple_object_set to add at least one simple object set to the
compound object set.

ABS_INVLD_SIZE_ATTR,

Explanation: Invalid size attributes structure.

User Action: ABS internal error. Submit an SPR.

ABS_INVLD_SPECIAL_DAY,

Explanation: An invalid special day parameter was specified.

User Action: The special day parameter is too long. Specify a valid special day class name.

ABS_INVLD_SS_NAME,

Explanation: Invalid save set name.

User Action: ABS internal error. Submit an SPR.

ABS_INVLD_SS_SIZE,

Explanation: Invalid save set size format.

User Action: ABS internal error. Submit an SPR.

ABS_INVLD_SS_UID,

Explanation: Invalid save set UID.

User Action: ABS internal error. Submit an SPR.

ABS_INVLD_STAGING_OPTION,

Explanation: An invalid staging option was specified.

User Action: Specify a valid staging option.

ABS_INVLD_STARTUP_PROTOCOL,

Explanation: Backup agent startup protocol is invalid.

User Action: The backup agent information is incorrect. If you have modified the template
information, restore the original template information from ABS distribution kit. If you
have not modified the template information, submit an SPR.

ABS_INVLD_START_TIME,

Explanation: The start time string is too long.

User Action: The start time string is either too long or contains invalid characters. Specify a
valid start time string.

ABS_INVLD_STATUS_PROTOCOL,

Explanation: Backup agent status return protocol is invalid.

User Action: The backup agent information is incorrect. If you have modified the template
information, restore the original template information from ABS distribution kit. If you
have not modified the template information, submit an SPR.

ABS_INVLD_STATUS_VALUE,

Explanation:

User Action: Specify a valid ABS status_t value to ABS GetMessageText routine.

ABS_INVLD_SYS_LOG_NAME,
ABS Error Messages G–16

ABS Error Messages
Explanation: Invalid system logical name.

User Action: ABS internal error. Submit an SPR.

ABS_INVLD_TAG,

Explanation: Invalid tag.

User Action: The backup agent information is incorrect. If you have modified the template
information, restore the original template information from ABS distribution kit. If you
have not modified the template information, submit an SPR.

ABS_INVLD_TAG_FORMAT,

Explanation: Invalid tag format in tag template.

User Action: The backup agent information is incorrect. If you have modified the template
information, restore the original template information from ABS distribution kit. If you
have not modified the template information, submit an SPR.

ABS_INVLD_TEMPLATE,

Explanation: Invalid tag template.

User Action: The backup agent information is incorrect. If you have modified the template
information, restore the original template information from ABS distribution kit. If you
have not modified the template information, submit an SPR.

ABS_INVLD_TEMPLATE_LIST,

Explanation: An invalid template list was specified.

User Action: ABS internal error. Submit an SPR.

ABS_INVLD_TEMPLATE_SEVERITY,

Explanation: Invalid severity in tag template.

User Action: The backup agent information is incorrect. If you have modified the template
information, restore the original template information from ABS distribution kit. If you
have not modified the template information, submit an SPR.

ABS_INVLD_TEMPLATE_STATE,

Explanation: An invalid state was specified in tag template.

User Action: The backup agent information is incorrect. If you have modified the template
information, restore the original template information from ABS distribution kit. If you
have not modified the template information, submit an SPR.

ABS_INVLD_TIME,

Explanation: An invalid time format was specified.

User Action: Specify a valid time on the API call or from the graphical user interface
(GUI).

ABS_INVLD_TRANSACTION_STATUS,

Explanation: An invalid parameter was passed to an internal ABS routine.

User Action: ABS internal error. Submit an SPR.

ABS_INVLD_USER_NAME,

Explanation: An invalid user name parameter was specified, or the user name parameter
exceeds the maximum length.
ABS Error Messages G–17

ABS Error Messages

User Action: Specify a valid length user name parameter.

ABS_INVLD_USER_PROFILE,

Explanation: Specified an invalid user_profile structure.

User Action: Specify a valid user profile structure.

ABS_INVLD_WAIT_FLAG,

Explanation: An invalid wait flag value was specified.

User Action: Specify either TRUE or FALSE.

ABS_INVLD_WORK_PROTOCOL,

Explanation: Agent work request protocol is invalid.

User Action: The backup agent information is incorrect. If you have modified the template
information, restore the original template information from ABS distribution kit. If you
have not modified the template information, submit

ABS_INVLD_XN,

Explanation: Invalid transaction UID.

User Action: The save or restore request was tried to execute with a deleted transaction.
Delete the job from OpenVMS Queue Manager or scheduler database being used and, if
necessary, recreate the operation.

ABS_INVLD_XN_SEVERITY,

Explanation: Transaction severity is invalid.

User Action: ABS internal error. Submit an SPR.

ABS_INVLD_XN_STATUS,

Explanation: Invalid archive transaction status.

User Action: ABS internal error. Submit an SPR.

ABS_INVLD_XN_SUMMARY,

Explanation: Invalid transaction summary string parameter.

User Action: Correct the summary string parameter.

ABS_INVLD_XN_TYPE,

Explanation: Invalid transaction type.

User Action: ABS internal error. Submit an SPR.

ABS_LIBADDTIMES_FAILED,

Explanation: LIB$ADD_TIMES service failed.

User Action: ABS internal error. Submit an SPR.

ABS_LIBEDIV_FAILED,

Explanation: LIB$EDIV service failed.

User Action: ABS internal error. Submit an SPR.

ABS_LIBSUBTIMES_FAILED,

Explanation: LIB$SUB_TIMES service failed.
ABS Error Messages G–18

ABS Error Messages
User Action: ABS internal error. Submit an SPR.

ABS_LOOKUPERR,

Explanation: An attempt to execute an ABS lookup command failed.

User Action: Addition information should follow the error message. Evaluate the additional
information to determine the problem. Correct the problem and retry the command.

ABS_LOST_THREAD_CONTEXT,

Explanation: Coordinator could not locate a thread.

User Action: ABS internal error. Submit an SPR.

ABS_MBXIOERR,

Explanation: Error while creating or reading mailbox.

User Action: ABS internal error. Submit an SPR.

ABS_NAME_UID_MISMATCH,

Explanation: Object name and UID mismatch.

User Action: An attempt was made to specify both the name and UID of an object. Specify
either the name only, the name and version, or the UID only.

ABS_NO_ACCESS,

Explanation: Owner access to catalog denied.

User Action: Access requested to the catalog does not match the authorized access. Contact
the Storage Administrator for access to the specified catalog.

ABS_NO_ACCESS_TO_COLLECTION,

Explanation: Not authorized to access scratch collection.

User Action: Contact the Storage Administrator for access to the specified scratch collec-
tion.

ABS_NO_AGENT_FOR_TYPE,

Explanation: No backup agent found to handle specified object type.

User Action: No backup agent was found to save or restore the specified object type. Use
the pull-down menu on the GUI to determine valid object types. Specify one of the valid
object types.

ABS_NO_AOE_LIST,

Explanation: The AOE list is corrupt.

User Action: ABS internal error. Submit an SPR.

ABS_NO_AOE_SC_MATCH,

Explanation: AOE selection criteria argument does not match show context selection crite-
ria.

User Action: ABS internal error. Submit an SPR.

ABS_NO_AOE_SHOW_CONTEXT,

Explanation: AOE show context is NULL.

User Action: ABS internal error. Submit an SPR.
ABS Error Messages G–19

ABS Error Messages

ABS_NO_CATALOG,

Explanation: A catalog name was not specified on ABS_OpenCatalog.

User Action: Specify a valid catalog name.

ABS_NO_COS_SET,

Explanation: A compound object set was not specified.

User Action: A compound object set must be specified on the utility routine ABS
add_simple_object_set. Use ABS_set_compound_object_set to create a compound object
set.

ABS_NO_DISMOUNT_FILES11,

Explanation: ABS cannot dismount FILES-11 disk. An attempt was made to perform a full
restore operation to a mounted disk.

User Action: To be perform the full restore operation, you must dismount the disk.

ABS_NO_MORE_AOE_ENTRIES,

Explanation: No more entries match AOE selection criteria.

User Action: Do not issue another ABS_ShowObjectEntry.

ABS_NO_MORE_AGENTS,

Explanation: No more agent information is available.

User Action: ABS internal error. Submit an SPR.

ABS_NO_MORE_TLE_ENTRIES,

Explanation: No more entries match transaction log entry selection criteria.

User Action: Do not issue another ABS_ShowLogEntry.

ABS_NO_NODE,

Explanation: The specified node name was not found in the node list.

User Action: Attempted to start a catalog server on a node which is not authorized for the
catalog. Start the server on an authorized node, or modify the authorized list for the catalog.

ABS_NO_PRIV,

Explanation: The user process does not have the required privileges to perform the
requested function.

User Action: Consult your system manager or storage administrator.

ABS_NO_SELECT_CRITERIA,

Explanation: No selection criteria found.

User Action: Specify at least one selection criteria for catalog lookup. See Chapter 13,
Looking Up Saved Data for the list of valid selection criteria.

ABS_NO_SUCH_TAG,

Explanation: No such tag.

User Action: The backup agent information is incorrect. If you have modified the template
information, restore the original template information from ABS distribution kit. If you
have not modified the template information, submit an SPR.

ABS_NO_TLE_LIST,
ABS Error Messages G–20

ABS Error Messages
Explanation: No transaction log entry return list in transaction log entry show context.

User Action: ABS internal error. Submit an SPR.

ABS_NO_TLE_SC_MATCH,

Explanation: The transaction log entry selection criteria argument does not match show
context selection criteria.

User Action: ABS internal error. Submit an SPR.

ABS_NO_TLE_SHOW_CONTEXT,

Explanation: The transaction log entry show context is NULL.

User Action: ABS internal error. Submit an SPR.

ABS_NODE_NOT_LOCAL,

Explanation: A node name that is not in the local cluster was specified.

User Action: Specify a valid node name within the local cluster.

ABS_NOLABELSUPPORT,

Explanation: Volume labels are not supported by the archive file system (AFS).

User Action: The backup agent information is incorrect. If you have modified the template
information, restore the original template information from ABS distribution kit. If you
have not modified the template information, submit an SPR.

ABS_NOMATCH,

Explanation: Input line does not match parse data.

User Action: ABS internal error. Submit an SPR.

ABS_NOMEM,

Explanation: Virtual memory could not be allocated.

User Action: Check the page file quota for the account executing the failing job. Increase
the page file quota. If the problem persists, submit an SPR.

ABS_NOMORE_PARSE,

Explanation: No more agent parse data.

User Action: ABS internal error. Submit an SPR.

ABS_NOMORE_SOS,

Explanation: No more single object sets in the transaction.

User Action: ABS internal error. Submit an SPR.

ABS_NONEXIST_ARCH_TRANS,

Explanation: Nonexistent archive transaction in the transaction chain.

User Action: ABS internal error. Submit an SPR.

ABS_NONEXISTENT_CATALOG,

Explanation: Specified an nonexistent catalog name.

User Action: A non existent catalog name was specified in a storage policy or on a restore
request. Specify a valid catalog name.

ABS_NOT_SPECIAL_TAG,
ABS Error Messages G–21

ABS Error Messages

Explanation: The specified tag was not a special tag.

User Action: ABS internal error. Submit an SPR.

ABS_NOT_YET_IMPLEMENTED,

Explanation: Routine not yet implemented.

User Action: If this message is returned from the GUI, submit an SPR. If this status is
returned from the API, check API document for supported functions and parameters.

ABS_OBJECT_NOT_FOUND,

Explanation: The specified object was not found in ABS policy database.

User Action: ABS internal error. Submit an SPR.

ABS_OPEN_CATALOG_FAILURE,

Explanation: Failed to open the catalog.

User Action: Examine the associated error messages for specific reasons why the catalog
could not opened.

ABS_OPEN_LOG_FAILURE,

Explanation: Failed to open the log file.

User Action: Check the associated error messages for specific reasons why the log file
could not be opened.

ABS_OVERFLOW,

Explanation: Tag formatting overflowed the buffer.

User Action: The command formatting template in the agent information is too long to fit
into the 1024 byte command buffer. Reduce the size of the command formatting template so
that it fits within a 1024 byte command buffer.

ABS_OVERRUN,

Explanation: Message information overflows field.

User Action: The information parsed from the backup agent exceeds the size of the avail-
able field. If you have modified the template information, restore the original template
information from ABS distribution kit. If you have not modified the template information,
submit an SPR.

ABS_PIPECREATEERR,

Explanation: Error creating pipe.

User Action: Check the associated error messages for specific reasons why the pipe could
not be created.

ABS_PIPEDELETEERR,

Explanation: Error deleting pipe.

User Action: Check the associated error messages for specific reasons why the pipe could
not be deleted.

ABS_PIPEIOERR,

Explanation: Error while reading or writing pipe.

User Action: Check the associated error messages for specific reasons why the pipe could
not be read from or written to.
ABS Error Messages G–22

ABS Error Messages
ABS_PLATFORM_SPECIFIC_ERROR,

Explanation: Platform-specific error in diagnostic block.

User Action: This message is provided as additional information to help diagnose a failure.
The subsequent message contains VMS or other operating system-specific information.

ABS_REF_DELETE_FAILURE,

Explanation: Delete failed because the record is in use.

User Action: Wait until all references in the catalog to this object have expired, then delete
the object. If desired, you can change the expiration date of the catalog entries to expire
before the original expiration date.

ABS_RELEASE_NO_ARCH,

Explanation: Thread released with no archive access.

User Action: ABS internal error. Submit an SPR.

ABS_REST_REQ_NOT_FOUND,

Explanation: The restore request was not found in ABS policy database.

User Action: A restore request matching the specified name, name and version, or UID was
not found. Specify a valid restore request name, name and version, or UID.

ABS_RESTOREERR,

Explanation: An attempt to execute a restore request failed.

User Action: Examine the restore log in ABS$LOG directory. Determine the reason for
failure and correct the problem. Re-run the restore request.

ABS_RETRY_EXHAUSTED,

Explanation: Agent retry exhausted.

User Action: The retry count specified in the request environment policy has been
exceeded. The operation will not be retried.

ABS_SAVEERR,

Explanation: An attempt to execute a save request failed.

User Action: Examine the save log in ABS$LOG directory. Determine the reason for fail-
ure and correct the problem. Re-run the save request.

ABS_SCHEDULE_ERROR,

Explanation: Failed to schedule a request job using the current scheduler interface option.

User Action: Check the associated error messages for specific reasons why the job could
not be scheduled. For scheduler interface option EXT_QUEUE_MANAGER and
EXT_SCHEDULER check logfiles ABS$LOG:ABS$EXT_QUEUE_MANAGER*.LOG
or ABS$LOG:ABS$EXT_SCHEDULER*.LOG for more information.

ABS_SCHED_CREATE_ERROR,

Explanation: Failed to schedule a request job using the current scheduler interface option.

User Action: Check the associated error messages for specific reasons why the job could
not be created. For scheduler interface option EXT_QUEUE_MANAGER and
EXT_SCHEDULER check logfiles ABS$LOG:ABS$EXT_QUEUE_MANAGER*.LOG
or ABS$LOG:ABS$EXT_SCHEDULER*.LOG for more information.
ABS Error Messages G–23

ABS Error Messages

ABS_SCHED_DELETE_ERROR,

Explanation: Failed to delete the request job using the current scheduler interface option.

User Action: Check the associated error messages for specific reasons why the job could
not be deleted. For scheduler interface option EXT_QUEUE_MANAGER and
EXT_SCHEDULER check logfiles ABS$LOG:ABS$EXT_QUEUE_MANAGER*.LOG
or ABS$LOG:ABS$EXT_SCHEDULER*.LOG for more information.

ABS_SCHED_ENUM_ERROR,

Explanation: Invalid enumeration in scheduler utility.

User Action: ABS internal error. Submit an SPR.

ABS_SCHED_INVLD_PARAM,

Explanation: Invalid parameter to scheduler utility.

User Action: ABS internal error. Submit an SPR.

ABS_SCHED_INVLD_TIME,

Explanation: An invalid time format was specified for start time or explicit interval.

User Action: Specify a valid OpenVMS date/time.

ABS_SCHED_MODIFY_ERROR,

Explanation: Failed to modify the request job using the current scheduler interface option.

User Action: Check the associated error messages for specific reasons why the job could
not be modified. For scheduler interface option EXT_QUEUE_MANAGER and
EXT_SCHEDULER check logfiles ABS$LOG:ABS$EXT_QUEUE_MANAGER*.LOG
or ABS$LOG:ABS$EXT_SCHEDULER*.LOG for more information.

ABS_SCHED_NONEXIST,

Explanation: A job entry was not found for this request.

User Action: ABS internal error. Submit an SPR.

ABS_SCHED_SHOW_ERROR,

Explanation: Failed to show a request job for the current scheduler interface option.

User Action: Check the associated error messages for specific reasons why the job could
not be shown. For scheduler interface option EXT_QUEUE_MANAGER and
EXT_SCHEDULER check logfiles ABS$LOG:ABS$EXT_QUEUE_MANAGER*.LOG
or ABS$LOG:ABS$EXT_SCHEDULER*.LOG for more information.

ABS_SESSION_IN_PROGRESS,

Explanation: Archive session is in progress.

User Action: The archive session is currently waiting for more work requests to come in.
No User Action is required.

ABS_SETDEVCTX_FAILED,

Explanation: Set device context failed.

User Action: Check the associated error messages for specific reasons why the operation
failed. Check ABS account to make sure it has SETPRV and CMKRNL privileges set.

ABS_SETEERR,

Explanation: An attempt to set an ABS environment policy failed.
ABS Error Messages G–24

ABS Error Messages
User Action: Addition information should follow the error message. Evaluate the additional
information to determine the problem. Correct the problem and retry the command.

ABS_SETRESTOREERR,

Explanation: An attempt to set an ABS restore request failed.

User Action: Addition information should follow the error message. Evaluate the additional
information to determine the problem. Correct the problem and retry the command.

ABS_SETSAVEERR,

Explanation: An attempt to set an ABS save request failed.

User Action: Addition information should follow the error message. Evaluate the additional
information to determine the problem. Correct the problem and retry the command.

ABS_SETSERR,

Explanation: An attempt to set an ABS storage policy failed.

User Action: Addition information should follow the error message. Evaluate the additional
information to determine the problem. Correct the problem and retry the command.

ABS_SHOWERR,

Explanation: An attempt to show a database record (ABS object) failed.

User Action: Additional information should follow the error message. Evaluate the addi-
tional information to determine the problem. Correct the problem and retry the command.

ABS_SHUTERR,

Explanation: An attempt to shut down ABS Policy Engine failed.

User Action: Additional information should follow the error message. Evaluate the addi-
tional information to determine the problem. Correct the problem and retry the shutdown
procedure. Also check ABS$LOG:ABS$POLICY_ENGINE_T.LOG file. Errors may be
present in that log file which may help determine the problem. If the shutdown still fails,
then delete ABS$POLICY process using STOP/ID=pid.

ABS_SPECIFY_AGENT_ID_DATA,

Explanation: Agent ID data argument was not specified.

User Action: ABS internal error. Submit an SPR.

ABS_SPECIFY_ARCH_OBJ_LOC,

Explanation: Archive object location structure was not specified.

User Action: To create an object entry, you must specify the archive object location.

ABS_SPECIFY_ARCH_XNUID,

Explanation: ArchiveTransactionUID was not specified.

User Action: To create a log entry, you must specify the archive transaction UID.

ABS_SPECIFY_DEVICE,

Explanation: Device name was not specified.

User Action: You must specify the device name on ABS_set_aoe_selection_criteria. Spec-
ify a wildcard to look at all devices.

ABS_SPECIFY_DEVICE_NAME,
ABS Error Messages G–25

ABS Error Messages

Explanation: The device name was not specified in the correct format.

User Action: Specify either physical_disk_name, system_ logical_name, or
requestor_logical_name.

ABS_SPECIFY_FILENAME,

Explanation: The archive file system file name was not specified.

User Action: The save set name (archive file system file name) must be specified in
ABS_Set_saveset_info routine.

ABS_SPECIFY_OBJECT,

Explanation: Object name was not specified.

User Action: You must specify the object name to be found in the catalog in
ABS_Set_aoe_selection_criteria call.

ABS_SPECIFY_OBJECT_ID,

Explanation: Object identification was not specified.

User Action: The object identification must be specified in ABS_CreateObjectEntry call.

ABS_SPECIFY_OBJECT_LOC,

Explanation: Archive object location was not specified.

User Action: You must specify the object location on ABS_CreateObjectEntry call.

ABS_SPECIFY_PATHNAME,

Explanation: Pathname was not specified.

User Action: You must specify the location of the saveset (archive file system pathname)
on ABS_Set_saveset_info call.

ABS_SPECIFY_RETURN_BLOCK,

Explanation: The return block pointer argument was not specified.

User Action: The return block pointer was NULL on either ABS_ShowLogEntry or
ABS_ShowObjectEntry.

ABS_SPECIFY_SELECT_CRITERIA,

Explanation: Selection criteria argument was not specified.

User Action: You must specify the selection criteria parameter on either
ABS_ShowLogEntry or ABS ShowObjectEntry call.

ABS_SPECIFY_SSI,

Explanation: The save set information was not specified.

User Action: You must specify the save set information parameter in ABS_CreateLogEntry
call. Use ABS_Set_saveset_info utility routine to create this structure.

ABS_SPECIFY_SS_UID,

Explanation: The save set UID was not specified.

User Action: The save set UID must be specified in ABS set_saveset_info call.

ABS_SS_UID_NOMATCH,

Explanation: The save set UID specified in object location does not match log entry.
ABS Error Messages G–26

ABS Error Messages
User Action: The save set UID in the object location must match the save set UID in the
current log entry for the active catalog connection. Specify the same save set UID in the
object location as specified on ABS_CreateObjectEntry, or issue another
ABS_CreateLogEntry.

ABS_STRING_OVERFLOW,

Explanation: String copy overflowed output buffer.

User Action: ABS internal error. Submit an SPR.

ABS_SUBPROCDELETEERR,

Explanation: Error deleting subprocess.

User Action: Check the associated error messages for specific reasons why the subprocess
could not be deleted.

ABS_SUCCESS,

Explanation: Normal successful operation was completed.

User Action: None.

ABS_SYSALLOC_FAILED,

Explanation: Failed to allocate device.

User Action: Check the associated error messages for specific reasons why the device could
not be allocated.

ABS_SYSASSIGN_FAILED,

Explanation: SYS$ASSIGN failed.

User Action: Check the associated error messages for specific reasons why the operation
failed.

ABS_SYSBINTIM_FAILED,

Explanation: SYS$BINTIM service failed.

User Action: Check the associated error messages for specific reasons why the operation
failed.

ABS_SYSCLOSE_FAILED,

Explanation: SYS$CLOSE service failed.

User Action: Check the associated error messages for specific reasons why the operation
failed.

ABS_SYSCONNECT_FAILED,

Explanation: SYS$CONNECT service failed.

User Action: Check the associated error messages for specific reasons why the operation
failed.

ABS_SYSDALLOC_FAILED,

Explanation: Failed to deallocate device.

User Action: Check the associated error messages for specific reasons why the device could
not be deallocated.

ABS_SYSDELETE_FAILED,
ABS Error Messages G–27

ABS Error Messages

Explanation: SYS$DELETE service failed.

User Action: Check the associated error messages for specific reasons why the operation
failed.

ABS_SYSDISCONNECT_FAILED,

Explanation: SYS$DISCONNECT service failed.

User Action: Check the associated error messages for specific reasons why the operation
failed.

ABS_SYSDISMOU_FAILED,

Explanation: SYS$DISMOU service failed.

User Action: Check the associated error messages for specific reasons why the operation
failed.

ABS_SYSGETDVI_FAILED,

Explanation: SYS$GETDVI service failed.

User Action: Check the associated error messages for specific reasons why the operation
failed.

ABS_SYSGET_FAILED,

Explanation: SYS$GET service failed.

User Action: Check the associated error messages for specific reasons why the operation
failed.

ABS_SYSGET_FAILED_AOE,

Explanation: SYS$GET service failed on an archive object entry.

User Action: Check the associated error messages for specific reasons why the operation
failed.

ABS_SYSGET_FAILED_TLE,

Explanation: SYS$GET service failed on a transaction log entry.

User Action: Check the associated error messages for specific reasons why the operation
failed.

ABS_SYSMOUNT_FAILED,

Explanation: SYS$MOUNT service failed.

User Action: Check the associated error messages for specific reasons why the operation
failed.

ABS_SYSOPEN_FAILED,

Explanation: SYS$OPEN service failed.

User Action: Check the associated error messages for specific reasons why the operation
failed.

ABS_SYSPARSE_FAILED,

Explanation: SYS$PARSE service failed.

User Action: Check the associated error messages for specific reasons why the operation
failed.
ABS Error Messages G–28

ABS Error Messages
ABS_SYSPUT_FAILED,

Explanation: SYS$PUT service failed.

User Action: Check the associated error messages for specific reasons why the operation
failed.

ABS_SYSPUT_FAILED_AOE,

Explanation: SYS$PUT service failed on an archive object entry.

User Action: Check the associated error messages for specific reasons why the operation
failed.

ABS_SYSPUT_FAILED_TLE,

Explanation: SYS$PUT service failed on a transaction log entry.

User Action: Check the associated error messages for specific reasons why the operation
failed.

ABS_SYSREWIND_FAILED,

Explanation: SYS$QIOW with IO$_REWIND failed.

User Action: Check the associated error messages for specific reasons why the operation
failed.

ABS_SYSSKIPFILE_FAILED,

Explanation: SYS$QIOW with IO$_SKIPFILE failed.

User Action: Check the associated error messages for specific reasons why the operation
failed.

ABS_SYSSNDOPR_FAILED,

Explanation: Failed to send a message to the operator.

User Action: Check the associated error messages for specific reasons why the operator did
not receive a message.

ABS_SYSTEM_ERROR,

Explanation: An unexpected error occurred in the graphical user interface (GUI).

User Action: Check the associated error messages for specific reasons why the operation
failed.

ABS_SYSUPDATE_FAILED,

Explanation: SYS$UPDATE service failed.

User Action: Check the associated error messages for specific reasons why the operation
failed.

ABS_SYSUPDATE_FAILED_AOE,

Explanation: SYS$UPDATE service failed on an archive object entry.

User Action: Check the associated error messages for specific reasons why the operation
failed.

ABS_SYSUPDATE_FAILED_TLE,

Explanation: SYS$UPDATE service failed on a transaction log entry.
ABS Error Messages G–29

ABS Error Messages

User Action: Check the associated error messages for specific reasons why the operation
failed.

ABS_TLE_LIST_NULL,

Explanation: ABS internal transaction log list is corrupt.

User Action: ABS internal error. Submit an SPR.

ABS_TLE_NOT_FOUND,

Explanation: A transaction log entry was not found in the catalog.

User Action: Validate the selection criteria specified on ABS_Set_tle_selection_criteria.

ABS_TLE_ON_LIST,

Explanation: The transaction log entry is already on ABS internal transaction log entry
return list.

User Action: ABS internal error. Submit an SPR.

ABS_TLE_SHOW_CONTEXT,

Explanation: The transaction log entry show context is not NULL.

User Action: ABS internal error. Submit an SPR.

ABS_TOOMANYVALUES,

Explanation: Too many values found in tag template.

User Action: The backup agent information is incorrect. If you have modified the template
information, restore the original template information from ABS distribution kit. If you
have not modified the template information, submit an SPR.

ABS_TRANSNOTFND,

Explanation: An attempt to synchronize on an ABS save or restore request failed.

User Action: Execute an ABS SHOW of the save or restore request. If it does not exist, cre-
ate it.

ABS_USER_NAME_NOT_FOUND,

Explanation: The specified user name does not exist in the current cluster.

User Action: Specify a valid user name within the current cluster.

ABS_XMTEXT_WRITE_FAIL,

Explanation: XmText write has failed, check widget ID.

User Action: ABS internal error. Submit an SPR.

ABS_XN_FAILED,

Explanation: Transaction completed with failure status.

User Action: Check the transaction log file for specific reasons for the failure.

ABS_XN_QUALIFIED_SUCCESS,

Explanation: Transaction completed with qualified success.

User Action: Check the transaction log file for specific warnings or non fatal errors.

ABS_XOFFD,

Explanation: Pipe is busy.
ABS Error Messages G–30

ABS Error Messages
User Action: ABS internal error. Submit an SPR.
ABS Error Messages G–31

H
MDMS Error Messages

This Appendix presents Media and Device Management Services for OpenVMS Version 3
(MDMS) error messages and provides descriptions and User Actions for each.

ABORT request aborted by operator

Explanation: The request issued an OPCOM message that has been aborted by an operator.
This message can also occur if no terminals are enabled for the relevant OPCOM classes on
the node.

User Action: Either enable an OPCOM terminal, contact the operator and retry
or
no action.

ACCVIO access violation

Explanation: The MDMS software caused an access violation. This is an internal error.

User Action: Provide copies of the MDMS command issued, the database files and the
server’s logfile for further analysis.

ALLOCDRIVEDEV drive string allocated as device string

Explanation: The named drive was successfully allocated, and the drive may be accessed
with DCL commands using the device name shown.

User Action: None.

ALLOCDRIVE drive string allocated

Explanation: The named drive was successfully allocated.

User Action: None.

ALLOCVOLUME volume string allocated

Explanation: The named volume was successfully allocated.

User Action: None.

APIBUGCHECK internal inconsistency in API

Explanation: The MDMS API (MDMS$SHR.EXE) detected an inconsistency. This is an
internal error.

User Action: Provide copies of the MDMS command issued, the database files and the
server’s logfile for further analysis.

APIUNEXP unexpected error in API string line number

Explanation: The shareable image MDMS$SHR detected an internal inconsistency.

User Action: Provide copies of the MDMS command issued, the database files and the
server’s logfile for further analysis.
 MDMS Error Messages H–1

MDMS Error Messages

BINDVOLUME volume string bound to set string

Explanation: The specified volume (or volume set) was successfully bound to the end of
the named volume set.

User Action: None.

BUGCHECK, internal inconsistency

Explanation: The server software detected an inconsistency. This is an internal error.

User Action: Provide copies of the MDMS command issued, the database files and the
server’s logfile for further analysis. Restart the server.

CANCELLED, request cancelled by user

Explanation: The request was cancelled by a user issuing a cancel request command.

User Action: None, or retry command.

CONFLITEMS, conflicting item codes specified

Explanation: The command cannot be completed because there are conflicting item codes
in the command. This is an internal error.

User Action: Provide copies of the MDMS command issued, the database files and the
server’s logfile for further analysis

CREATVOLUME, volume string created

Explanation: The named volume was successfully created.

User Action: None.

DBLOCACC, local access to database

Explanation: This node has the database files open locally.

User Action: None.

DBRECERR, error string record for string:

Explanation: The search for a database server received an error from a remote server.

User Action: Check the logfile on the remote server for more information. Check the logi-
cal name MDMS$DATABASE_SERVERS for correct entries of database server node.

DBREMACC, access to remote database server on node string

Explanation: This node has access to a remote database server.

User Action: None.

DBREP, Database server on node string reports:

Explanation: The remote database server has reported an error condition. The next line
contains additional information.

User Action: Depends on the additional information.

DCLARGLSOVR DCL extended status format, argument list overflow

Explanation: During formatting of the extended status, the number of arguments exceeded
the allowable limit.

User Action: This is an internal error. Contact Compaq.
MDMS Error Messages H-2

MDMS Error Messages

the

rent

in

.
DCLBUGCHECK internal inconsistency in DCL

Explanation: You should never see this error. There is an internal error in the DCL.

User Action: This is an internal error. Contact Compaq.

DCSCERROR error accessing jukebox with DCSC

Explanation: MDMS encountered an error when performing a jukebox operation. An
accompanying message gives more detail.

User Action: Examine the accompanying message and perform corrective actions to the
hardware, the volume or the database, and optionally retry the operation.

DCSCMSG string

Explanation: This is a more detailed DCSC error message which accompanies DCSCER-
ROR.

User Action: Check the DCSC error message file.

DECNETLISEXIT, DECnet listener exited

Explanation: The DECnet listener has exited due to an internal error condition or because
the user has disabled the DECNET transport for this node. The DECnet listener is the
server’s routine to receive requests via DECnet (Phase IV) and DECnet-Plus (Phase V).

User Action: The DECnet listener should be automatically restarted unless the DECNET
transport has been disabled for this node. Provide copies of the MDMS command issued,
the database files and the server’s logfile for further analysis if the transport has not been
disabled by the user.

DECNETLISRUN, listening on DECnet node string object string

Explanation: The server has successfully started a DECnet listener. Requests can now be
sent to the server via DECnet.

User Action: None.

DEVNAMICM device name item code missing

Explanation: During the allocation of a drive, a drive’s drive name was not returned by
server. This is an internal error.

User Action: Provide copies of the MDMS command issued, the database files and the
server's logfile for further analysis.

DRIVEEXISTS specified drive already exists

Explanation: The specified drive already exists and cannot be created.

User Action: Use a set command to modify the drive, or create a new drive with a diffe
name.

DRVACCERR error accessing drive

Explanation: MDMS could not access the drive.

User Action: Verify the VMS device name, node names and/or group names specified
the drive record. Fix if necessary.

Verify MDMS is running on a remote node. Check status of the drive, correct and retry

DRVALRALLOC drive is already allocated

Explanation: An attempt was made to allocate a drive that was already allocated.
 MDMS Error Messages H–3

MDMS Error Messages

User Action: Wait for the drive to become deallocated, or if the drive is allocated to you,
use it.

DRVEMPTY drive is empty

Explanation: The specified drive is empty.

User Action: Check status of drive, correct and retry.

DRVINITERR error initializing drive on platform

Explanation: MDMS could not initialize a volume in a drive.

User Action: There was a system error initializing the volume. Check the log file.

DRVINUSE drive is currently in use

Explanation: The specified drive is already in use.

User Action: Wait for the drive to free up and re-enter command, or try to use another drive.

DRVLOADED drive is already loaded

Explanation: A drive unload appeared to succeed, but the specified volume was still
detected in the drive.

User Action: Check the drive and check for duplicate volume labels, or if the volume was
reloaded.

DRVLOADING drive is currently being loaded or unloaded

Explanation: The operation cannot be performed because the drive is being loaded or
unloaded.

User Action: Wait for the drive to become available, or use another drive. If the drive is
stuck in the loading or unloading state, check for an outstanding request on the drive and
cancel it. If all else fails, manually adjust the drive state.

DRVNOTALLOC drive is not allocated

Explanation: The specified drive could not be allocated.

User Action: Check again if the drive is allocated. If it is, wait until it is deallocated. Other-
wise there was some other reason the drive could not be allocated. Check the log file.

DRVNOTALLUSER drive is not allocated to user

Explanation: You cannot perform the operation on the drive because the drive is not allo-
cated to you.

User Action: In some cases you may be able to perform the operation by specifying a user
name. Do that to check if it works or defer the operation.

DRVNOTAVAIL drive is not available on system

Explanation: The specified drive was found on the system, but is not available for use.

User Action: Check the status of the drive and correct.

DRVNOTDEALLOC drive was not deallocated

Explanation: MDMS could not deallocate a drive.

User Action: Either the drive was not allocated or there was a system error deallocating the
drive. Check the log file.
MDMS Error Messages H-4

MDMS Error Messages

DRVNOTFOUND drive not found on system

Explanation: The specified drive cannot be found on the system.

User Action: Check that the OpenVMS device name, node names and/or group names are
correct for the drive. Verify MDMS is running on a remote node.

Re-enter command when corrected.

DRVNOTSPEC drive not specified or allocated to volume

Explanation: When loading a volume a drive was not specified, and no drive has been allo-
cated to the volume.

User Action: Retry the operation and specify a drive name.

DRVREMOTE drive is remote

Explanation: The specified drive is remote on a node where it is defined to be local.

User Action: Check that the OpenVMS device name, node names and/or group names are
correct for the drive. Verify MDMS is running on a remote node. Re-enter command when
corrected.

DRVSINUSE all drives are currently in use

Explanation: All of the drives matching the selection criteria are currently in use.

User Action: Wait for a drive to free up and re-enter command.

ERROR error

Explanation: A general MDMS error occurred.

User Action: Provide copies of the MDMS command issued, the database files and the
server’s logfile for further analysis.

EXECOMFAIL execute command failed, see log file for more explanation

Explanation: While trying to execute a command during scheduled activities, a system ser-
vice called failed.

User Action: Check the log file for the failure code from the system server call.

FAILALLOCDRV failed to allocate drive

Explanation: Failed to allocate drive.

User Action: The previous message is the error that caused the failure.

FAILCONSVRD, failed connection to server via DECnet

Explanation: The DECnet(Phase IV) connection to an MDMS server either failed or could
not be established. See additional message lines and/or check the server’s logfile.

User Action: Depends on additional information.

FAILCONSVRT, failed connection to server via TCP/IP

Explanation: The TCP/IP connection to an MDMS server either failed or could not be
established. See additional message lines and/or check the server’s logfile.

User Action: Depends on additional information.

FAILCONSVR, failed connection to server

Explanation: The connection to an MDMS server either failed or could not be established.
See additional message lines and/or check the server’s logfile.
 MDMS Error Messages H–5

MDMS Error Messages

User Action: Depends on additional information.

FAILDEALLOCDRV failed to deallocate drive

Explanation: Failed to deallocate drive.

User Action: The previous message is the error that caused the failure.

FAILEDMNTVOL failed to mount volume

Explanation: MDMS was unable to mount the volume.

User Action: The error above this contains the error that caused the volume not to be
mounted.

FAILICRES failed item code restrictions

Explanation: The command cannot be completed because there are conflicting item codes
in the command. This is an internal error.

User Action: Provide copies of the MDMS command issued, the database files and the
server’s logfile for further analysis.

FAILINIEXTSTAT failed to initialize extended status buffer

Explanation: The API could not initialize the extended status buffer. This is an internal
error.

User Action: Provide copies of the MDMS command issued, the database files and the
server’s logfile for further analysis.

FAILURE fatal error

Explanation: The MDMS server encountered a fatal error during the processing of a
request.

User Action: Provide copies of the MDMS command issued, the database files and the
server’s logfile for further analysis.

FILOPNERR, file string could not be opened

Explanation: An MDMS database file could not be opened.

User Action: Check the server’s logfile for more information.

FIRSTVOLUME specified volume is first in set

Explanation: The specified volume is the first volume in a volume set.

User Action: You cannot deallocate or unbind the first volume in a volume set. However,
you can unbind the second volume and then deallocate the first, or unbind and deallocate the
entire volume set.

FUNCFAILED, Function string failed with:

Explanation: An internal call to a system function has failed. The lines that appear after this
error message identify the function called and the failure status.

User Action: Depends on information that appears following this message.

ILLEGALOP illegal move operation

Explanation: You attempted to move a volume within a DCSC jukebox, and this is not sup-
ported.

User Action: None.
MDMS Error Messages H-6

MDMS Error Messages

INCOMPATOPT incompatible options specified

Explanation: You entered a command with incompatible options.

User Action: Examine the command documentation and re-enter with allowed combina-
tions of options.

INCOMPATVOL volume is incompatible with volumes in set

Explanation: You cannot bind the volume to the volume set because some of the volume’s
attributes are incompatible with the volumes in the volume set.

User Action: Check that the new volume’s media type, onsite location and offsite location
are compatible with those in the volume set. Adjust attributes and retry, or use another vol-
ume with compatible attributes.

INSCMDPRIV insufficient privilege to execute request

Explanation: You do not have sufficient privileges to enter the request.

User Action: Contact your system administrator and request additional privileges, or give
yourself privileges and retry.

INSOPTPRIV insufficient privilege for request option

Explanation: You do not have sufficient privileges to enter a privileged option of this
request.

User Action: Contact your system administrator and request additional privileges, or give
yourself privileges and retry. Alternatively, retry without using the privileged option.

INSSHOWPRIV some volumes not shown due to insufficient privilege

Explanation: Not all volumes were shown because of restricted privilege.

User Action: None if you just want to see volumes you own. You need
MDMS_SHOW_ALL privilege to see all volumes.

INSSVRPRV insufficient server privileges

Explanation: The MDMS server is running with insufficient privileges to perform system
functions.

User Action: Refer to the Installation Guide to determine the required privileges. Contact
your system administrator to add these privileges in the MDMS$SERVER account.

INTBUFOVR, internal buffer overflow

Explanation: The MDMS software detected an internal buffer overflow. This an internal
error.

User Action: Provide copies of the MDMS command issued, the database files and the
server’s logfile for further analysis. Restart the server.

INTINVMSG, internal invalid message

Explanation: An invalid message was received by a server. This could be due to a network
problem or, a remote non-MDMS process sending messages in error or, an internal error.

User Action: If the problem persists and no non-MDMS process can be identified then pro-
vide copies of the MDMS command issued, the database files and the server’s logfile for
further analysis.
 MDMS Error Messages H–7

MDMS Error Messages

INVABSTIME invalid absolute time

Explanation: The item list contained an invalid absolute date and time. Time cannot be ear-
lier than 1-Jan-1970 00: 00: 00 and cannot be greater than 7-Feb-2106 06: 28: 15

User Action: Check that the time is between these two times.

INVALIDRANGE invalid volume range specified

Explanation: The volume range specified is invalid.

User Action: A volume range may contain up to 1000 volumes, where the first 3 characters
must be alphabetic and the last 3 may be alphanumeric. Only the numeric portions may vary
in the range. Examples are ABC000-ABC999, or ABCD01-ABCD99.

INVDBSVRLIS, invalid database server search list

Explanation: The logical name MDMS$DATABASE_SERVERS contains invalid network
node names or is not defined.

User Action: Correct the node name(s) in the logical name
MDMS$DATABASE_SERVERS in file MDMS$SYSTARTUP.COM. Redefine the logical
name in the current system. Then start the server.

INVDELSTATE object is in invalid state for delete

Explanation: The specified object cannot be deleted because its state indicates it is being
used.

User Action: Defer deletion until the object is no longer being used, or otherwise change its
state and retry.

INVDELTATIME invalid delta time

Explanation: The item list contained an invalid delta time.

User Action: Check that the item list has a correct delta time.

INVDFULLNAM, invalid DECnet full name

Explanation: A node full name for a DECnet-Plus (Phase V) node specification has an
invalid syntax.

User Action: Correct the node name and retry.

INVEXTSTS invalid extended status item desc/buffer

Explanation: The error cannot be reported in the extended status item descriptor. This error
can be cause by one of the following: Not being able to read any one of the item descriptors
in the item list

Not being able to write to the buffer in the extended status item descriptor

Not being able to write to the return length in the extended status item descriptor

Not being able to initialize the extended status buffer

User Action: Check for any of the above errors in your program and fix the error.

INVITCODE invalid item code for this function

Explanation: The item list had an invalid item code. The problem could be one of the
following: Item codes do not meet the restrictions for that function.

An item code cannot be used in this function.
MDMS Error Messages H-8

MDMS Error Messages

User Action: Refer to the API specification to find out which item codes are restricted for
each function and which item codes are allowed for each function.

INVITDESC invalid item descriptor, index number

Explanation: The item descriptor is in error. The previous message gives the error.
Included is the index of the item descriptor in the item list.

User Action: Refer to the index number and the previous message to indicate the error and
which item descriptor is in error.

INVITLILENGTH invalid item list buffer length

Explanation: The item list buffer length is zero. The item list buffer length cannot be zero
for any item code.

User Action: Refer to the API specification to find an item code that would be used in place
of an item code that has a zero buffer length.

INVMEDIATYPE media type is invalid or not supported by volume

Explanation: The specified volume supports multiple media types where a single media
type is required, or the volume does not support the specified media type.

User Action: Re-enter the command specifying a single media type that is already sup-
ported by the volume.

INVMSG, invalid message via string

Explanation: An invalid message was received MDMS software. This could be due to a
network problem or, a non-MDMS process sending messages in error or, an internal error.

User Action: If the problem persists and no non-MDMS process can be identified then pro-
vide copies of the MDMS command issued, the database files and the server’s logfile for
further analysis.

INVNODNAM, invalid node name specification

Explanation: A node name for a DECnet (Phase IV) node specification has an invalid syn-
tax.

User Action: Correct the node name and retry.

INVPORTS, invalid port number specification

Explanation: The MDMS server did not start up because the logical name
MDMS$TCPIP_SND_PORTS in file MDMS$SYSTARTUP.COM specifies and illegal
port number range. A legal port number range is of the form
"low_port_number-high_port_number".

User Action: Correct the port number range for the logical name
DMS$TCPIP_SND_PORTS in file MDMS$SYSTARTUP.COM. Then start the server.

INVPOSITION invalid jukebox position

Explanation: The position specified is invalid.

User Action: Position is only valid for jukeboxes with a topology defined. Check that the
position is within the topology ranges, correct and retry. Example: /POSITION=(1,2,1)

INVSELECT invalid selection criteria

Explanation: The selection criteria specified on an allocate command are invalid.

User Action: Check the command with the documentation and re-enter with a valid
combination of selection criteria.
 MDMS Error Messages H–9

MDMS Error Messages

INVSLOTRANGE invalid slot range

Explanation: The slot range was invalid. It must be of the form: 1-100 1,100-200,300-400.
The only characters allowed are:
, (comma), - (dash), and numbers (0-9).

User Action: Check that you are using the correct form.

INVSRCDEST invalid source or destination for move

Explanation: Either the source or destination of a move operation was invalid (does not
exist).

User Action: If the destination is invalid, enter a correct destination and retry. If a source is
invalid, either create the source or correct the current placement of the affected volumes or
magazines.

INVTFULLNAM, invalid TCP/IP full name

Explanation: A node full name for a TCP/IP node specification has an invalid syntax.

User Action: Correct the node name and retry.

INVTOPOLOGY invalid jukebox topology

Explanation: The specified topology for a jukebox is invalid.

User Action: Check topology definition; the towers must be sequentially increasing from 0;
there must be a face, level and slot definition for each tower.

Example:

/TOPOLOGY=(TOWER=(0,1,2), FACES=(8,8,8), - LEVELS=(2,3,2),
SLOTS=(13,13,13))

INVVOLPLACE invalid volume placement for operation

Explanation: The volume has an invalid placement for a load operation.

User Action: Re-enter the command and use the move option.

INVVOLSTATE volume in invalid state for operation

Explanation: The operation cannot be performed on the volume because the volume state
does not allow it.

User Action: Defer the operation until the volume changes state. If the volume is stuck in a
transient state (e.g. moving), check for an outstanding request and cancel it. If all else fails,
manually change the state.

JUKEBOXEXISTS specified jukebox already exists

Explanation: The specified jukebox already exists and cannot be created.

User Action: Use a set command to modify the jukebox, or create a new jukebox with a dif-
ferent name.

JUKENOTINIT jukebox could not be initialized

Explanation: An operation on a jukebox failed because the jukebox could not be initialized.

User Action: Check the control, robot name, node name and group name of the jukebox,
and correct as needed. Check access path to jukebox (HSJ etc.), correct as needed. Verify
MDMS is running on a remote node. Then retry operation.
MDMS Error Messages H-10

MDMS Error Messages

JUKETIMEOUT timeout waiting for jukebox to become available

Explanation: MDMS timed out waiting for a jukebox to become available. The timeout
value is 10 minutes.

User Action: If the jukebox is in heavy use, try again later. Otherwise, check requests for a
hung request - cancel it. Set the jukebox state to available if all else fails.

JUKEUNAVAIL jukebox is currently unavailable

Explanation: The jukebox is disabled.

User Action: Re-enable the jukebox.

LOCATIONEXISTS specified location already exists

Explanation: The specified location already exists and cannot be created.

User Action: Use a set command to modify the location, or create a new location with a dif-
ferent name.

LOGRESET, Log file string by string on node string

Explanation: The server logfile has been closed and a new version has been created by a
user.

User Action: None.

MAGAZINEEXISTS specified magazine already exists

Explanation: The specified magazine already exists and cannot be created.

User Action: Use a set command to modify the magazine, or create a new magazine with a
different name.

MBLISEXIT, mailbox listener exited

Explanation: The mailbox listener has exited due to an internal error condition. The mail-
box listener is the server’s routine to receive local user requests through mailbox
MDMS$MAILBOX.

User Action: The mailbox listener should be automatically restarted. Provide copies of the
MDMS command issued, the database files and the server’s logfile for further analysis.

MBLISRUN, listening on mailbox string logical string

Explanation: The server has successfully started the mailbox listener. MDMS commands
can now be entered on this node.

User Action: None.

MEDIATYPEEXISTS specified media type already exists

Explanation: The specified media type already exists and cannot be created.

User Action: Use a set command to modify the media type, or create a new media type with
a different name.

MOVEINCOMPL move is incomplete

Explanation: When moving volumes into and out of a jukebox, some of the volumes were
not moved.

User Action: Check that there are enough empty slots in the jukebox when moving in and
retry. On a move out, examine the cause of the failure and retry.
 MDMS Error Messages H–11

MDMS Error Messages

MRDERROR error accessing jukebox with MRD

Explanation: MDMS encountered an error when performing a jukebox operation. An
accompanying message gives more detail.

User Action: Examine the accompanying message and perform corrective actions to the
hardware, the volume or the database, and optionally retry the operation.

MRDMSG String

Explanation: This is a more detailed MRD error message which accompanies MRDER-
ROR.

User Action: Check the MRU error message file.

NOBINDSELF cannot bind a volume to itself

Explanation: A volume cannot be bound to itself.

User Action: Use another volume.

NOCHANGES no attributes were changed in the database

Explanation: Your set command did not change any attributes in the database because the
attributes you entered were already set to those values.

User Action: Double-check your command, and re-enter if necessary. Otherwise the data-
base is already set to what you entered.

NOCHECK drive not accessible, check not performed

Explanation: The specified drive could not be physically accessed and the label check was
not performed. The displayed attributes are taken from the database.

User Action: Verify the VMS device name, node name or group name in the drive object.
Check availability on system.

Verify MDMS is running on a remote node. Determine the reason the drive was not accessi-
ble, fix it and retry.

NODEEXISTS specified node already exists

Explanation: The specified node already exists and cannot be created.

User Action: Use a set command to modify the node, or create a new node with a different
name.

NODENOPRIV, node is not privileged to access database server

Explanation: A remote server access failed because the user making the DECnet(Phase IV)
connection is not MDMS$SERVER or the remote port number is not less than 1024.

User Action: Verify with DCL command SHOW PROCESS that the remote MDMS server
is running under a username of MDMS$SERVER and/or, verify that logical name
MDMS$TCPIP_SND_PORTS on the remote server node specifies a port number range
between 0-1023.

NODENOTENA, node not in database or not fully enabled

Explanation: The server was not allowed to start up because there is no such node object in
the database or its node object in the database does not specify all network full names cor-
rectly.

User Action: For a node running DECnet (Phase IV) the node name has to match logical
name SYS$NODE on that node.
MDMS Error Messages H-12

MDMS Error Messages

For a node running DECnet-Plus (Phase V) the node’s DECNET_PLUS_FULLNAME has
to match the logical name SYS$NODE_FULLNAME on that node. For a node running
TCP/IP the node’s TCPIP_FULLNAME has to match the full name combined from logical
names *INET_HOST and *INET_DOMAIN.

NODENOTINDB, no node object with string name string in database

Explanation: The current server could not find a node object in the database with a match-
ing DECnet (Phase IV) or DECnet-Plus (Phase V) or TCP/IP node full name.

User Action: Use SHOW SERVER/NODES=(...) to see the exact naming of the server’s net-
work names. Correct the entry in the database and restart the server.

NODRIVES no drives match selection criteria

Explanation: When allocating a drive, none of the drives match the specified selection
criteria.

User Action: Check spelling and re-enter command with valid selection criteria.

NODRVACC, access to drive disallowed

Explanation: You attempted to allocate, load or unload a drive from a node that is not
allowed to access it.

User Action: The access field in the drive object allows local, remote or all access, and your
attempted access did not conform to the attribute. Use another drive.

NODRVSAVAIL no drives are currently available

Explanation: All of the drives matching the selection criteria are currently in use or other-
wise unavailable.

User Action: Check to see if any of the drives are disabled or inaccessible. Re-enter com-
mand when corrected.

NOJUKEACC, access to jukebox disallowed

Explanation: You attempted to use a jukebox from a node that is not allowed to access it.

User Action: The access field in the jukebox object allows local, remote or all access, and
your attempted access did not conform to the attribute. Use another jukebox.

NOJUKESPEC jukebox required on vision option

Explanation: The jukebox option is missing on a create volume request with the vision
option.

User Action: Re-enter the request and specify a jukebox name and slot range.

NOMAGAZINES no magazines match selection criteria

Explanation: On a move magazine request using the schedule option, no magazines were
scheduled to be moved.

User Action: None.

NOMAGSMOVED no magazines were moved

Explanation: No magazines were moved for a move magazine operation. An accompany-
ing message gives a reason.

User Action: Check the accompanying message, correct and retry.
 MDMS Error Messages H–13

MDMS Error Messages

NOMEDIATYPE no media type specified when required

Explanation: An allocation for a volume based on node, group or location also requires the
media type to be specified.

User Action: Re-enter the command with a media type specification.

NOMEMORY not enough memory

Explanation: The MDMS server failed to allocate enough memory for an operation.

User Action: Shut down the MDMS server and restart. Contact Compaq.

NOOBJECTS no such objects currently exist

Explanation: On a show command, there are no such objects currently defined.

User Action: None.

NOPARAM required parameter missing

Explanation: A required input parameter to a request or an API function was missing.

User Action: Re-enter the command with the missing parameter, or refer to the API specifi-
cation for required parameters for each function.

NORANGESUPP, slot or space ranges not supported with volset option

Explanation: On a set volume, you entered the volset option and specified either a slot
range or space range.

User Action: If you want to assign slots or spaces to volumes directly, do not use the volset
option.

NORECVPORTS, no available receive port numbers for incoming connections

Explanation: The MDMS could not start the TCP/IP listener because none of the receive
ports specified with this node’s TCPIP_FULLNAME are currently available.

User Action: Use a suitable network utility to find a free range of TCP/IP ports which can
be used by the MDMS server.

Use the MDMS SET NODE command to specify the new range with the
/TCPIP_FULLNAME then restart the server.

NOREMCONNECT, unable to connect to remote node

Explanation: The server could not establish a connection to a remote node. See the server’s
logfile for more information.

User Action: Depends on information in the logfile.

NOREQUESTS no such requests currently exist

Explanation: No requests exist on the system.

User Action: None.

NORESEFN, not enough event flags

Explanation: The server ran out of event flags. This is an internal error.

User Action: Provide copies of the MDMS command issued, the database files and the
server’s logfile for further analysis. Restart the server.

NOSCRATCH scratch loads not supported for jukebox drives

Explanation: You attempted a load drive command for a jukebox drive.
MDMS Error Messages H-14

MDMS Error Messages

User Action: Scratch loads are not supported for jukebox drives. You must use the load vol-
ume command to load volumes in jukebox drives.

NOSENDPORTS, no available send port numbers for outgoing connection

Explanation: The server could not make an outgoing TCP/IP connection because none of
the send ports specified for the range in logical name MDMS$TCPIP_SND_PORTS are
currently available.

User Action: Use a suitable network utility to find a free range of TCP/IP ports which can
be used by the MDMS server.

Change the logical name MDMS$TCPIP_SND_PORTS in file MDMS$SYSTAR-
TUP.COM. Then restart the server.

NOSLOT not enough slots defined for operation

Explanation: The command cannot be completed because there are not enough slots speci-
fied in the command, or because there are not enough empty slots in the jukebox.

User Action: If the jukebox is full, move some other volumes out of the jukebox and retry.
If there are not enough slots specified in the command, re-enter with a larger slot range.

NOSTATUS, no status defined

Explanation: An uninitialized status has been reported. This an internal error.

User Action: Provide copies of the MDMS command issued, the database files and the
server’s logfile for further analysis.

NOSUCHDEST specified destination does not exist

Explanation: In a move command, the specified destination does not exist.

User Action: Check spelling or create the destination as needed.

NOSUCHDRIVE specified drive does not exist

Explanation: The specified drive does not exist.

User Action: Check spelling or create drive as needed.

NOSUCHGROUP specified group does not exist

Explanation: The specified group does not exist.

User Action: Check spelling or create group as needed.

NOSUCHINHERIT specified inherited object does not exist

Explanation: On a create of an object, the object specified for inherit does not exist.

User Action: Check spelling or create the inherited object as needed.

NOSUCHJUKEBOX specified jukebox does not exist

Explanation: The specified jukebox does not exist.

User Action: Check spelling or create jukebox as needed.

NOSUCHLOCATION specified location does not exist

Explanation: The specified location does not exist.

User Action: Check spelling or create location as needed.

NOSUCHMAGAZINE specified magazine does not exist

Explanation: The specified magazine does not exist.
 MDMS Error Messages H–15

MDMS Error Messages

User Action: Check spelling or create magazine as needed.

NOSUCHMEDIATYPE specified media type does not exist

Explanation: The specified media type does not exist.

User Action: Check spelling or create media type as needed.

NOSUCHNODE specified node does not exist

Explanation: The specified node does not exist.

User Action: Check spelling or create node as needed.

NOSUCHOBJECT specified object does not exist

Explanation: The specified object does not exist.

User Action: Check spelling or create the object as needed.

NOSUCHPOOL specified pool does not exist

Explanation: The specified pool does not exist.

User Action: Check spelling or create pool as needed.

NOSUCHREQUESTID specified request does not exist

Explanation: The specified request does not exist on the system.

User Action: Check the request id again, and re-enter if incorrect.

NOSUCHUSER no such user on system

Explanation: The username specified in the command does not exist.

User Action: Check spelling of the username and re-enter.

NOSUCHVOLUME specified volume(s) do not exist

Explanation: The specified volume or volumes do not exist.

User Action: Check spelling or create volume(s) as needed.

NOSVRACCOUNT, username string does not exist

Explanation: The server cannot startup because the username MDMS$SERVER is not
defined in file SYSUAF.DAT.

User Action: Enter the username of MDMS$SERVER (see Installation manual for account
details) and then start the server.

NOSVRMB, no server mailbox or server not running

Explanation: The MDMS server is not running on this node or the server is not servicing
the mailbox via logical name MDMS$MAILBOX.

User Action: Use the MDMS$STARTUP procedure with parameter RESTART to restart
the server. If the problem persists, check the server’s logfile and file SYS$MAN-
AGER:MDMS$SERVER.LOG for more information.

NOTALLOCUSER volume is not allocated to user

Explanation: You cannot perform the operation on the volume because the volume is not
allocated to you.

User Action: Either use another volume, or (in some cases) you may be able to perform the
operation specifying a user name.
MDMS Error Messages H-16

MDMS Error Messages

NOUNALLOCDRV no unallocated drives found for operation

Explanation: On an initialize volume request, MDMS could not locate an unallocated drive
for the operation.

User Action: If you had allocated a drive for the operation, deallocate it and retry. If all
drives are currently in use, retry the operation later.

NOVOLSMOVED no volumes were moved

Explanation: No volumes were moved for a move volume operation. An accompanying
message gives a reason.

User Action: Check the accompanying message, correct and retry.

NOVOLSPROC no volumes were processed

Explanation: In a create, set or delete volume command, no volumes were processed.

User Action: Check the volume identifiers and re-enter command.

NOVOLUMES no volumes match selection criteria

Explanation: When allocating a volume, no volumes match the specified selection criteria.

User Action: Check the selection criteria. Specifically check the relevant volume pool. If
free volumes are in a volume pool, the pool name must be specified in the allocation
request, or you must be a default user defined in the pool. You can re-enter the command
specifying the volume pool as long as you are an authorized user. Also check that newly-
created volumes are in the FREE state rather than the UNITIALIZED state.

OBJECTEXISTS specified object already exists

Explanation: The specified object already exists and cannot be created.

User Action: Use a set command to modify the object, or create a new object with a differ-
ent name.

OBJNOTEXIST referenced object !AZ does not exist

Explanation: When attempting to allocate a drive or volume, you specified a selection
object that does not exist.

User Action: Check spelling of selection criteria objects and retry, or create the object in the
database.

PARTIALSUCCESS some volumes in range were not processed

Explanation: On a command using a volume range, some of the volumes in the range were
not processed.

User Action: Verify the state of all objects in the range, and issue corrective commands if
necessary.

POOLEXISTS specified pool already exists

Explanation: The specified pool already exists and cannot be created.

User Action: Use a set command to modify the pool, or create a new pool with a different
name.

QUEUED operation is queued for processing

Explanation: The asynchronous request you entered has been queued for processing.

User Action: You can check on the state of the request by issuing a show requests com-
mand.
 MDMS Error Messages H–17

MDMS Error Messages

RDFERROR error allocating or deallocating RDF device

Explanation: During an allocation or deallocation of a drive using RDF, the RDF software
returned an error.

User Action: The error following this error is the RDF error return.

SCHEDULECONFL schedule qualifier and novolume qualifier are incompatible

Explanation: The /SCHEDULE and /NOVOLUME qualifiers are incompatible for this
command.

User Action: Use the /SCHEDULE and /VOLSET qualifiers for this command.

SCHEDVOLCONFL schedule qualifier and volume parameter are incompatible

Explanation: The /SCHEDULE and the volume parameter are incompatible for this com-
mand.

User Action: Use the /SCHEDULE qualifier and leave the volume parameter blank for this
command.

SETLOCALEFAIL an error occurred when accessing locale information

Explanation: When executing the SETLOCALE function an error occurred.

User Action: A user should not see this error.

SNDMAILFAIL send mail failed, see log file for more explanation

Explanation: While sending mail during the scheduled activities, a call to the mail utility
failed.

User Action: Check the log file for the failure code from the mail utility.

SPAWNCMDBUFOVR spawn command buffer overflow

Explanation: During the mount of a volume, the spawned mount command was too long
for the buffer. This is an internal error.

User Action: Provide copies of the MDMS command issued, the database files and the
server’s logfile for further analysis.

SVRBUGCHECK internal inconsistency in SERVER

Explanation: You should never see this error. There is an internal error.

User Action: Provide copies of the MDMS command issued, the database files and the
server’s logfile for further analysis. Restart the server.

SVRDISCON, server disconnected

Explanation: The server disconnected from the request because of a server problem or a
network problem.

User Action: Check the server’s logfile and file SYS$MANAGER:MDMS$SERVER.LOG
for more information. Provide copies of the MDMS command issued, the database files and
the server’s logfile for further analysis.

SVREXIT, server exited

Explanation: Server exited. Check the server logfile for more information.

User Action: Depends on information in the logfile.
MDMS Error Messages H-18

MDMS Error Messages

SVRLOGERR, server logged error

Explanation: The server failed to execute the request. Additional information is in the
server’s logfile.

User Action: Depends on information in the logfile.

SVRRUN, server already running

Explanation: The MDMS server is already running.

User Action: Use the MDMS$SHUTDOWN procedure with parameter RESTART to
restart the server.

SVRSTART, Server stringnumber.number-number started

Explanation: The server has started up identifying its version and build number.

User Action: None.

SVRTERM, Server terminated abnormally

Explanation: The MDMS server was shut down. This could be caused by a normal user
shutdown or it could be caused by an internal error.

User Action: Check the server’s logfile for more information. If the logfile indicates an
error has caused the server to shut down then provide copies of the MDMS command
issued, the database files and the server’s logfile for further analysis.

SVRUNEXP, unexpected error in SERVER string line number

Explanation: The server software detected an internal inconsistency.

User Action: Provide copies of the MDMS command issued, the database files and the
server’s logfile for further analysis.

TCPIPLISEXIT, TCP/IP listener exited

Explanation: The TCP/IP listener has exited due to an internal error condition or because
the user has disabled the TCPIP transport for this node. The TCP/IP listener is the server’s
routine to receive requests via TCP/IP.

User Action: The TCP/IP listener should be automatically restarted unless the TCPIP trans-
port has been disabled for this node. Provide copies of the MDMS command issued, the
database files and the server’s logfile for further analysis if the transport has not been dis-
abled by the user.

TCPIPLISRUN, listening on TCP/IP node string port string

Explanation: The server has successfully started a TCP/IP listener. Requests can now be
sent to the server via TCP/IP.

User Action: None.

TOOLARGE, entry is too large

Explanation: Either entries cannot be added to a list of an MDMS object or existing entries
cannot be renamed because the maximum list size would be exceeded.

User Action: Remove other elements from list and try again.

TOOMANYSORTS too many sort qualifiers, use only one

Explanation: When you specify more than one field to sort on.

User Action: Specify only one field to sort on.
 MDMS Error Messages H–19

MDMS Error Messages

TOOMANY too many objects generated

Explanation: You attempted to perform an operation that generated too many objects.

User Action: There is a limit of 1000 objects that may be specified in any volume range,
slot range or space range.

Re-enter command with a valid range.

UNDEFINEDREFS object contains undefined referenced objects

Explanation: The object being created or modified has references to undefined objects.

User Action: This allows objects to be created in any order, but some operations may not
succeed until the objects are defined. Show the object and verify the spelling of all refer-
enced objects or create them if not defined.

UNSUPPORTED1, unsupported function string

Explanation: You attempted to perform an unsupported function.

User Action: None.

UNSUPPORTED unsupported function

Explanation: You attempted to perform an unsupported function.

User Action: None.

UNSUPRECVER, unsupported version for record string in database string

Explanation: The server has detected unsupported records in a database file. These records
will be ignored.

User Action: Consult the documentation about possible conversion procedures provided for
this version of MDMS.

USERNOTAUTH user is not authorized for volume pool

Explanation: When allocating a volume, you specified a pool for which you are not autho-
rized.

User Action: Specify a pool for which you are authorized, or add your name to the list of
authorized users for the pool.

Make sure the authorized user includes the node name or group name in the pool object.

VISIONCONFL vision option and volume parameter are incompatible

Explanation: You attempted to create volumes with the vision option and the volume
parameter. This is not supported.

User Action: The vision option is used to create volumes with the volume identifiers read
by the vision system on a jukebox.

Re-enter the command with either the vision option (specifying jukebox and slot range), or
with volume identifier(s), but not both.

VOLALRALLOC specified volume is already allocated

Explanation: You attempted to allocate a volume that is already allocated.

User Action: Use another volume.

VOLALRINIT volume is already initialized and contains data

Explanation: When initializing a volume, MDMS detected that the volume is already
initialized and contains data.
MDMS Error Messages H-20

MDMS Error Messages

User Action: If you are sure you still want to initialize the volume, re-enter the command
with the overwrite option.

VOLIDICM, volume ID code missing

Explanation: The volume ID is missing in a request.

User Action: Provide volume ID and retry request

VOLINDRV volume is currently in a drive

Explanation: When allocating a volume, the volume is either moving or in a drive, and
nopreferred was specified.

User Action: Wait for the volume to be moved or unloaded, or use the preferred option.

VOLINSET volume is already bound to a volume set

Explanation: You cannot bind this volume because it is already in a volume set and is not
the first volume in the set.

User Action: Use another volume, or specify the first volume in the volume set.

VOLLOST volume location is unknown

Explanation: The volume’s location is unknown.

User Action: Check if the volume’s placement is in a magazine, and if so if the magazine is
defined. If not, create the magazine. Also check the magazine’s placement.

VOLMOVING volume is currently being moved

Explanation: In a move, load or unload command, the specified volume is already being
moved.

User Action: Wait for volume to come to a stable placement and retry. If the volume is
stuck in the moving placement, check for an outstanding request and cancel it. If all else
fails, manually change volume state.

VOLNOTALLOC specified volume is not allocated

Explanation: You attempted to bind or deallocate a volume that is not allocated.

User Action: None for deallocate. For bind, allocate the volume and then bind it to the set,
or use another volume.

VOLNOTBOUND volume is not bound to a volume set

Explanation: You attempted to unbind a volume that is not in a volume set.

User Action: None.

VOLNOTINJUKE volume is not in a jukebox

Explanation: When loading a volume into a drive, the volume is not in a jukebox.

User Action: Use the move option and retry the load. This will issue OPCOM messages to
move the volume into the jukebox.

VOLNOTLOADED the volume is not loaded in a drive

Explanation: On an unload request, the volume is not recorded as loaded in a drive.

User Action: If the volume is not in a drive, none. If it is, issue an unload drive command to
unload it.
 MDMS Error Messages H–21

MDMS Error Messages

VOLONOTHDRV volume is currently in another drive

Explanation: When loading a volume, the volume was found in another drive.

User Action: Wait for the volume to be unloaded, or unload the volume and retry.

VOLSALLOC String volumes were successfully allocated

Explanation: When attempting to allocate multiple volumes using the quantity option,
some but not all of the requested quantity of volumes were allocated.

User Action: See accompanying message as to why not all volumes were allocated.

VOLUMEEXISTS specified volume(s) already exist

Explanation: The specified volume or volumes already exist and cannot be created.

User Action: Use a set command to modify the volume(s), or create new volume(s) with
different names.

VOLWRTLCK volume loaded with hardware write-lock

Explanation: The requested volume was loaded in a drive, but is hardware write-locked
when write access was requested.

User Action: If you need to write to the volume, unload it, physically enable it for write,
and re-load it.

WRONGVOLUME wrong volume is loaded in drive

Explanation: On a load volume command, MDMS loaded the wrong volume into the drive.

User Action: Check placement (jukebox, slot etc.) of both the volume in the drive and the
requested volume. Modify records if necessary. Unload volume and retry.
MDMS Error Messages H-22

I
SLS and ABS Comparisons

If you are migrating from SLS to ABS as your backup product, the information presented here
may help you equate SLS to ABS backup functions.

Table I–1 lists the attributes in an SLS SBK file and gives the equivalent ABS attribute.

Table I–1 Comparing SLS and ABS Backup Attributes

SBK Attribute Equivalent ABS DCL Attribute

$ DAYS_1 :== INTERVAL on the save request.

If INTERVAL=EXPLICIT is used, you must set the
EXPLICIT qualifier.

$ TIME_1 :== START_TIME on the save request.

$ NODE_1 :== Defaulted to the node where the save request is created. For
UNIX and NT save requests, EXECUTION_NODE means
the node specified for the storage policy used for the UNIX or
NT save request.

$ PREALLOC == VOLUME_SET on the storage policy. You must manually
allocate the volume and set VOLUME_SET to the first vol-
ume in the volume set.

$ BACKUP_TYPE :== OBJECT_TYPE on the save request.

$ FILES_1 :== The include specification on a save request. You can create a
comma separated list of disk or file names. To add or remove
disk or file names on an existing save request (or restore
request), use the /ADD or /REMOVE qualifiers.

$ PROGRESS :== None

$ QUALIFIERS :==

RECORD
CRC
INTERLOCK
IMAGE
INCREMENTAL
BEFORE
SINCE
EXCLUDE
PRIVS :==

See the following equivalences:

/ACTION=option on the environment policy.
DATA_SAFETY=option on the environment policy.
LOCKING_OPTION=option on the environment policy.
/FULL on the save request.
/INCREMENTAL on the save request.
/BEFORE on the save request.
/SINCE on the save request.
/EXCLUDE on the save request.
/PRIVS on the environment policy.
All other qualifiers can be specified using /QUALIFIERS on
the save request.

$ SAVESET_GEN :== /NAME=Save_request_name.

$ HISTORY_SET :== /CATALOG on the storage policy.
SLS and ABS Comparisons I–1

SLS and ABS Comparisons

$ SBUPDT_Q :== None

$ LISTING_GEN :== None

$ FULL :== /LISTING_OPTION on the environment policy.

$ PRINT_Q :== None

$ AUTOSEL :== None

$ TAPE_POOL :== /TAPE_POOL on the storage policy.

$ REEL_SIZE :== None

$ NOTES :== None

$ SCRATCH_DAYS := /EXPIRATION or /RETAIN on the storage policy or the save
request. /EXPIRATION and /RETAIN are mutually exclu-
sive. Use one or the other depending on whether you wish to
specify a date (EXPIRATION) or number of days (RETAIN).

$ CONTINUE :== /VOLUME_SET on the storage policy. This is set automati-
cally after first save operation using that storage POLICY.
Use the CONSOLIDATION options on the storage policy to
control the volume set by either INTERVAL, COUNT or
SIZE.

$ MEDIA_TYPE :== /TYPE_OF_MEDIA on the storage policy.

$ DENSITY :== None

$ N_DRIVES :== /DRIVE_COUNT on the environment policy.

$ DRIVE_TYPE :== DRIVE_LIST on the storage policy.

$ STATUS_MAIL :== /NOTIFICATION=options on the environment policy.

$ LOG_FILE :== ABS always creates a log file. Use /LOG_OPTION on the
environment policy to determine when to keep the log file.

$ OFFSITE_DATE := None

$ ONSITE_DATE :== None

$ CONTLOADOPT == None. ABS defaults to CONTLOADOPT=0.

$ TAPE_LABELS == None

$ MNTFLAGS == None

$ NEXT_JOB :== None. However, you could set up dependencies in the sched-
uler interface being used.

$ QUICKLOAD :== ABS$storage_class_name LOAD_TIMEOUT (user-defined
logical in the file SYS$MANAGER:SYLOGICALS.COM)

$ POST_PROCESSING_FIRST_:== PROLOGUE on the environment policy.

$ PRE_PROCESSING_EACH :== PROLOGUE on the save request.

$ POST_PROCESSING_EACH :== EPILOGUE on the save request.

Table I–1 Comparing SLS and ABS Backup Attributes

SBK Attribute Equivalent ABS DCL Attribute
SLS and ABS Comparisons I–2

SLS and ABS Comparisons
$ POST_PROCESSING_LAST_:== EPILOGUE on the environment policy.

Table I–1 Comparing SLS and ABS Backup Attributes

SBK Attribute Equivalent ABS DCL Attribute
SLS and ABS Comparisons I–3

e it
o

e-

over-

ta-

o con-
 a roll-
J
SLS To ABS Conversion

J.1 SLS To ABS Conversion
This section is intended for SLS users who are considering a conversion from SLS to ABS.

The following sections:

• Give a comparison of SLS and ABS System Backup Policy Management

• Provide an overview of SLS and ABS System Backup Operations

• Give a general overview of the Media and Device Management Services (MDMS)

• Identify the process for converting from SLS to ABS but does not

• Give a general overview of SLS usage and capabilities

• Include information about converting SLS Standby Archiving to ABS

J.2 Why Convert from SLS to ABS?
SLS is a legacy product of Compaq Computer Corporation. Although it is fairly reliable onc
is configured, learning to configure SLS is quite a challenge. In addition, when problems d
occur, diagnosing the problem and making a fix to the source code is very difficult, and som
times impossible.

ABS was released in 1995. ABS has the following advantages over SLS:

• NT and UNIX Clients

• Consolidated Policy Management

• More Intuitive Policy Organization, with Shared Policies

• Better Logging and Diagnostic Capabilities

• Automatic Full and Incremental Operations

• More Versatile User-requested Operations

• On Disk Backups

• A Sophisticated and Reliable Media Management Subsystem

ABS uses a new version of the Media and Device Management Services (MDMS). A brief
view of MDMS is given in this Appendix with more information elsewhere in this guide.
MDMS provides a utility that automatically converts the SLS volume, slot and magazine da
bases, and the TAPESTART.COM command definitions, to MDMS databases. The MDMS
conversion is discussed in the Appendix "Converting SLS/MDMS V2 to V3".

ABS has the ability to read old SLS history sets and restore data from old SLS backups, s
version to ABS can be performed in stages on different nodes over time - this is known as
ing upgrade.
SLS To ABS Conversion J–1

SLS To ABS Conversion
J.2 Why Convert from SLS to ABS?

y
s to
es on
n take

d up.
s is

 out

 what

kly

ss.
dates)
both

sses.
ll as to

and
 SLS

rk-
S.

eekly
pe
ak-

bility
back-
J.2.1 Consolidated Policy Management

ABS policy, what gets backed up and how it is stored in a single policy database on an Open-
VMS cluster in your network is called Central Security Domain, or CSD. Through this central-
ized policy database, ABS supports the ability to control your entire network’s backup polic
from a single location, or allows you to distribute the responsibility for backups and restore
other systems on other OpenVMS nodes. This is contrary to SLS method of storing SBK fil
each node to be backed up, where a minor change in tape drive configuration or policy ca
hours or days to propagate through all SBK files on a large network.

J.2.2 More Intuitive Policy Organization

ABS Policy is organized into simple policy objects:

• Storage Class objects, contain information about where data is stored after it is backe
This includes what type of media is used, how long the data is stored, and what acces
allowed to the data.

• Execution Environment objects, contain information about how data is moved into and
of Storage Classes. This includes data safety options, the user profile under which the
backup is performed, logging and listing options, and client file interlocking options.

• Save Request objects, contain information about what data is to be backed up and on
schedule. Multiple sets of disks, files or databases can be combined in a single Save
Request. The scheduling options of ABS include “complex” schedules, such as a Wee
Full backup with a Daily Incremental, or Log based schedules.

• Restore Request objects, contain information about restoring data from a Storage Cla
This includes what data to restore, and what selection criteria (such as before or after
to be used to select the data. ABS supports a “Full Restore” operation, through which
Full and Incremental restore of a disk or set of files are performed automatically.

• Catalog objects, contain information about what data is stored in the ABS Storage Cla
The Catalogs are used for generating reports on the content of Storage Classes, as we
provide information for restoring files, disks or other data objects.

J.2.3 Better Logging and Diagnostic Capabilities

ABS provides improved logging and diagnostic capabilities. Notification of job completion
status can be sent via MAIL or OPCOM. ABS log files are easier to read and interpret than
log files.

J.2.4 UNIX and NT Clients

ABS provides backup and restore capabilities for NT and UNIX clients. This allows the wo
station disks to be backed up and cataloged with the reliability and availability of OpenVM

J.2.5 Automatic Full and Incremental Operations

ABS makes backup scheduling easy by providing “complex” backup schedules, such as W
Full with Daily Incremental, and log based scheduling. These backup schedule minimize ta
usage and backup time by only doing occasional Full backups, with Incremental backups m
ing up the bulk of the data movement operations. ABS also provides the Full Restore capa
for a disk or other data object, automatically restoring the necessary Full and Incremental
ups to retrieve the data.
SLS To ABS Conversion J–2

SLS To ABS Conversion
J.3 SLS and ABS System Backup Policy Overview

on-
m

l
ition,
nline for

par-

K
ty of
 per-

f the
ble
J.2.6 More versatile User requested Operations

ABS provides users the ability to backup and archive their own files, if allowed by the site man-
agement. By setting Access Control Lists (ACL’s) on Storage Classes and Execution Envir
ments, you can allow users to save data and restore data without intervention of the syste
manager.

J.2.7 Disk Storage Classes

ABS provides the ability to backup disk savesets. This ability is especially useful for optica
media, since many optical devices appear as disk devices to the operating system. In add
disk storage classes can be used for backup operations in which the savesets need to be o
quick restores.

J.3 SLS and ABS System Backup Policy Overview
This section gives you an overview of backup policy as implemented in SLS and ABS, com
ing the two products representation and organization of policy.

Backup policy can be viewed as:

• What gets backed up

• When it gets backed up

• Where it gets backed up to

• Who backs it up, and who can access the backed up data

• How it gets backed up

J.3.1 SLS Policy with ABS Equivalents

J.3.1.1 System Backup Policy Configuration

SLS Backup policy is stored in SBK files, which are DCL command procedures. These SB
files are located on the system where the backup is to be run. The SBK files define a varie
DCL symbols, which identify the What, When, Where, Who and How of each backup to be
formed.

Table J–1 gives the primary DCL symbols of the SBK file which identify each component o
backup policy. There are numerous other parameters in SBK and ABS policies, but this ta
gives an overview.

See Section J.7 for a complete description of each SBK Symbol and its ABS equivalent.

Table J–1 DCL Symbols and ABS Equivalent

Policy Component SBK Symbol(s) ABS Equivalent

What gets backed up BACKUP_TYPE
FILES_n
NODE_n

Save Request Include Specification(s) and
Object Type

When it gets backed up DAYS_n
TIME_n

Save Request Scheduling Option and Start
Time
SLS To ABS Conversion J–3

SLS To ABS Conversion
J.3 SLS and ABS System Backup Policy Overview

pol-
es,
 either
sy-to-

From
ave
torage

must
ds to

ll
ese

y the
e

st the
ntal
lar
In ABS, Backup Policy is consolidated in a network wide Policy Database. The policy is created
and modified using ABS DCL Interface, or ABS Graphical User Interface (GUI).

J.3.1.2 Defining Your System Backup Policy

To define a backup policy in SLS, you log onto the system where the backup is to be performed,
copy SYSBAK.TEMPLATE to a new SBK file, and then edit the SBK files using a regular text
editor. You define each SBK symbol according to what you want the backup policy to do.

This manual editing of SBK files tends to be error prone. Each SBK symbol must be defined in a
particular syntax, and it is easy to make typing errors. When syntactic errors are made in the
SBK symbols, it is often unclear in the SLS log files what the actual problem is, and how it can
be fixed.

In addition, in a fairly large network, the management of the SBK files can become quite cum-
bersome, requiring substantial time and organization on your part.

In ABS, Backup Policy is consolidated in a “Policy Engine”, which contains all the backup
icy for your network. ABS Backup Policy is defined by creating one or more Storage Class
one or more Execution Environments, and one or more Save Requests. This is done using
the DCL command interface, or using the Graphical User Interface (GUI). ABS has an ea
use GUI for convenience of defining your backup policy.

Storage Classes and Execution Environments can be shared by multiple Save Requests.
the Central Security Domain (where your ABS Policy Engine is installed), you can create S
Requests for disks, files or other data objects on remote nodes, which share the common S
Classes and Execution Environments.

J.3.1.3 Restoring Data

Selective File Restores

In SLS, to restore a particular set of files for a user, the Operator or System Administrator
regularly get involved. This is because the SLS History Sets, which stores information nee
perform restore, are not accessible to regular users.

In ABS, Access Control List (ACL) on the Storage Class can be set up to allow access to a
users, or only selected users. This allows individual users to restore their own files from th
Storage Classes.

When using the SLS Storage Restore command, the user (or Operator) must either specif
specific volume, saveset and version of the file to restore. When using the Storage Restor
screen, no choice is given about the version of the file to be restored.

In ABS, a date oriented selection for a file to restore is provided. Normally, users will reque
most recent version of a file to be restored, since user restores are regularly due to accide
deletion. However, in ABS, the user can specify that the most recent copy before a particu
date should be restored. This allows the user to fine tune the restore operation.

Where it gets backed up to MEDIA_TYPE
TAPE_POOL
SCRATCH_DAYS
DRIVE_TYPE

Storage Class

Who backs it up, and who can
access the backed up data

SLS
PROTECTION

Execution Environment User Profile, Stor-
age Class ACL

How it gets backed up QUALIFIERS
QUALIFIERS_n
PRIVS
N_DRIVES

Execution Environment
SLS To ABS Conversion J–4

SLS To ABS Conversion
J.3 SLS and ABS System Backup Policy Overview

sub-
les),

orts
ons
ain

ng
ases,
r-
S
ith the
ort V2.x

cess is
g the

 Data-
e Cen-
he
 net-
work.

ack-
he
MS
bjects.
Full Restore Operations

In SLS, an operation called a Full Disk Restore is provided. This is a fairly manual method by
which a Full backup and associated Incremental backups can be used to restore a full disk.

To perform a Full Disk Restore in SLS, you must manually select the Full and Incremental back-
ups to be applied, and in what order. Although this provides a great deal of versatility, it can also
be error prone. Once an automated backup policy is set up, many customers are not familiar with
the specific backups which are done, and determining the correct order of a restore can be diffi-
cult.

In ABS, when a Restore Request is created for a Disk, the type of restore can be specified as
“Full Restore”. This causes ABS to automatically find the most recent Full Backup, and all
sequent incremental backups (of appropriate level in the case of log-based backup schedu
and commence the restore in the correct order.

J.3.1.4 Media Management

ABS uses a new Media And Device Management Services (MDMS) component that supp
the concept of a domain. An MDMS domain has scope across multiple geographical locati
each with their own nodes, jukeboxes, drives and volumes. Communication within the dom
utilizes TCP/IP, DECnet Phase IV and/or DECnet-Plus at the user's choice. When upgradi
from SLS to ABS, it is first necessary to convert the SLS volume, magazine and slot datab
and the TAPESTART.COM definitions, to MDMS databases. A utility is provided for this pu
pose and this is described in the Appendix "Converting SLS/MDMS V2 to MDMS V3". MDM
has been designed so that this conversion can be performed as a rolling upgrade, starting w
set of nodes designated as database servers. These MDMS V3 database servers can supp
clients running ABS or SLS.

J.3.2 ABS Overview with SLS Equivalents

J.3.2.1 Policy Configuration

In ABS, the Backup Policy is stored in five different types of policy objects:

• Storage Classes

• Execution Environments

• Save Requests

• Restore Requests

• Catalogs

These policy objects each have a Name, and Access Control List (although a catalog’s ac
controlled through Storage Class). They are created using the ABS DCL Command, or usin
Graphical User Interface (GUI).

These policy objects (except the catalogs) are stored in a central location, called the Policy
base. The Policy Database resides on a single OpenVMS cluster in your network, called th
tral Security Domain (CSD). The CSD should also support the MDMS database servers. T
CSD controls all of the Storage Classes and Execution Environments used throughout the
work, but Save and Restore Requests can be created from any OpenVMS node in the net

The ABS policy can be completely controlled from the CSD, or responsibility for creating b
ups and restores can be distributed to the system managers on other OpenVMS nodes. T
Access Control on Storage Classes and Execution Environments determine which OpenV
nodes in the network are allowed to create Save and Restore requests referencing these o
SLS To ABS Conversion J–5

SLS To ABS Conversion
J.3 SLS and ABS System Backup Policy Overview

Table
Catalogs are stored on each node where backups are performed. This substantially reduces the
network bandwidth required for doing backups across the network to a centrally located robot or
storage facility.

J.3.2.2 Storage Class

ABS Storage Class contains information about where backed up files and other data objects
(such as databases or UNIX and NT file systems) are to be stored. As many Storage Classes as
necessary can be created in ABS Policy Database. Multiple Save Requests can share a single
Storage Class.

The information in a Storage class, with each parameter’s SBK file equivalent are given in
J–2.

Table J–2 Storage Class Parameter and SBK File Equivalent

Storage Class Parameter SBK Equivalent Meaning

Name CONTINUE A common name which can be refer
enced by multiple Save Requests

Primary Archive Location <None> For on disk backups, this gives the disk
and top level directory where the
savesets will be stored.

Primary Archive Type <None> This determines whether the Storage
Class is tape based (type is MDMS) or
disk based (type is FILES-11)

Owner <None> Determines the NODE::USER of the
owner of the Storage Class. The owner
always has CONTROL access.

ACL PROTECTION Determines the access to the backed up
data. ABS provides full ACL based
access, while SLS provides only Open
VMS style system, owner, group and
world access.

Tape Pool TAPE_POOL The MDMS pool from which vol umes
will be allocated for backups.

Type of Media MEDIA_TYPE The MDMS media type to be allocated
for backups.

Retain SCRATCH_DAYS The number of days the backed up data
will be saved before the tapes are recy
cled. Note that a Save Request can
specify a retention shorter or equal to
the value in the Storage Class.

Consolidation Criteria CONTINUE This set of parameters determines how
backup savesets will be consolidated
onto tapes. For example, if the Consol
idation Interval is set to 7 days,
savesets will be appended onto a vol
ume set for 7 days before a new vol
ume set is created.
SLS To ABS Conversion J–6

SLS To ABS Conversion
J.3 SLS and ABS System Backup Policy Overview

iven
J.3.2.3 Execution Environment

An ABS Execution Environment (or simply Environment) object stores information about how
backups are to be performed. This includes parameters regarding data safety, file interlocking,
notification, and so forth. As many Environment objects as necessary can be created in the ABS
Policy Database. Multiple Save Requests can share a single Execution Environment.

The information in an ABS Environment, along with each parameter’s SBK equivalent, is g
in Table J–3.

Table J–3 ABS and SBK Equivalent

Catalog Name HISTORY_SET The name of the catalog which stores
data about what files have been backed
up, and where they are located.

Number of Streams <None> The number of simultaneous Save
requests which can be writing into the
Storage Class. Determines the number
of MDMS volume sets simultaneously
active in the Storage Class.

Media Location <None> The MDMS onsite location field to
match for allocating volumes for back-
ups.

Drive List DRIVE_TYPE The list of specific drives to be used
for backup operations in this Storage
Class. Normally, this should be man
aged through MDMS drive objects.

Equivalent Parameter SBK Equivalent Meaning

Name <None> Identifies the Environment for ref
erence by Save Requests

Owner and ACL <None> Identifies the owner and access to
the Environment.

Data Safety Options QUALIFIERS A bitmask containing the data
safety options to be applied during
the backup. Data safety options
include CRC checking, and full
data verification.

Listing Options LISTING_GEN

FULL

Determines whether a listing file is
produced, and whether the listing
is a “full” listing or a “brief” list-
ing.

Span Filesystem
Options

<None> For UNIX file systems, determines
whether the entire filesystem is
backed up, even if it crosses multi-
ple physical devices.
SLS To ABS Conversion J–7

SLS To ABS Conversion
J.3 SLS and ABS System Backup Policy Overview

n

Links Only <None> For UNIX file systems, determines
whether ABS backs up only the
logical links, or backs up the data
as well.

Compression Options <None> For UNIX file systems, determines
the type of compression to be
applied to the savesets.

Original Object Action QUALIFIERS Determines the action to be taken
on the original data objects (e.g.
the files backed up). Options
include None, Record Backup
Date, or Delete

User Profile PRIVS Determines the username, privi-
leges and access rights used during
the backup operation. The special
keyword “<REQUESTER>” indi
cates the backup operations should
be performed with the username,
privileges and access rights of the
person issuing the ABS Save Com
mand.

Notification Criteria REPLY_MSG

STATUS_MAIL

Determines when notification
occurs, what method is used, and
who is notified.

Locking Options QUALIFIERS Determines how much interlocking
is done between the backup in
progress and an active file system.
Options include Ignore File Writ
ers, and Hot Backup.

Number of Drives N_DRIVES Determines the number of tape
drives to be used during the backup
operations.

Staging Option <None> Determines whether catalog entries
are staged to a sequential file and
then inserted into the actual catalog
at a later time. This improves per
formance of the backup.

Retry Interval and
Count

<None> Determines how often and how
many times a failed backup should
be retried.

Prolog Command PRE_PROCESS_FIRST A command to be executed whe
the backup starts. Contrast to Save
Request Prolog.

Epilog Command POST_PROCESS_LAST A command to be executed when
the backup completes. Contrast to
Save Request Epilog.
SLS To ABS Conversion J–8

SLS To ABS Conversion
J.3 SLS and ABS System Backup Policy Overview

 in the
J.3.2.4 Save Request

An ABS Save Request identifies the data to be backed up, the Storage Class and Environment to
be used for the backup(s), and the schedule on which the request is to be executed. As many
Save Requests as necessary can be created in the ABS Policy Database, and multiple Save
Requests can share any Storage Class or Execution Environment.

The information stored in a Save Request, with each parameter’s SBK equivalent, is given
Table J–4.

Table J–4 Save Request and SBK Equivalent

Save Request
Parameter SBK Equivalent Meaning

Name SBK File name Identifies the group of backup opera-
tions to be performed.

Movement Type QUALIFIERS Determines whether the opera tions are
Full, Incremental or Selective (i.e.
individual file) oper ations.

Source Node NODE_n Node on which the data resides.

Include Specification FILES_n Identifies the data to be backed up.
Multiple include specifications can be
given on a single Save Request, and
each can have a different Source Node
and Object Type.

Object Type BACKUP_TYPE Gives the type of the data. ABS Sup-
ports many different types of data,
including OpenVMS Files, UNIX
Files, Oracle RDB Data bases, and so
forth.

Agent Qualifiers QUALIFIERS Allows backup agent specific qual ifi-
ers to be added to the command used to
backup the data.

Since and Before Date QUALIFIERS Determine whether data objects to be
backed up should be selected based
upon creation/modification date.

Exclude Specification QUALIFIERS Determines selected data objects to be
excluded from the backup.

Storage Class Name CONTINUE Gives the name of the Storage Class
into which the data is backed up.

Environment Name <None> Gives the name of the Execution Envi-
ronment to be used for the backup
operations.

Start Time TIME_n Indicates the time at which the Save
Request should start each time it is
scheduled. Note that although an SBK
can provide mul tiple DAYS_n and
TIME_n parameters, an ABS Save
Request is restricted to a single Start
Time and Interval.
SLS To ABS Conversion J–9

SLS To ABS Conversion
J.3 SLS and ABS System Backup Policy Overview

-
the

h

-
t-

as

o

J.3.2.5 Restore Request

An ABS Restore Request stores information about files, disks, or other data objects to be
restored from a Storage Class. As many Restore Requests as necessary can be created in the
ABS Policy Database.

The information stored in a Restore Request are given in Table J–5. Because SLS does not pro
vide a formal Restore Request mechanism, no SBK or other SLS equivalents are given in
Table J–5.

Table J–5 Restore Request Parameter Information

Schedule Options and
Explicit

DAYS_n Identifies the repeat interval for the
Save Request. ABS provides a variety
of pre defined simple inter vals, such
as Daily, Weekly, Monthly, as well as
several “com plex” intervals, such as
Weekly Full with Daily Incremental,
and log based schedules. See the
Appendix "Log-n Backup Schedules"
for a full description of log based
schedules.

Prolog Command PRE_PROCESS_EACH A command to be executed before
each backup operation within the Save
Request starts. Contrast to Environ-
ment Prolog.

Epilog Command POST_PROCESS_EACH A command to be executed after eac
backup operation within the Save
Request completes. Contrast to Envi-
ronment Epilog.

Restore Request Parameter Meaning

Name Identifies the set of restore operations to be performed.

Movement Type Identifies whether a Full, Incremental or Selective restore is per
formed. Note that when a Full restore is requested, ABS automa
ically applies the necessary Incremental restores to bring the
restored data up-to-date.

Source Node Gives the node where the data to be restored resided when it w
backed up.

Include Specification Identifies the disk, filesystem, set of files or other data objects t
be restored. Multiple include specifications can be given in a sin-
gle Restore Request, each with its own Object Type.

Object Type Identifies the type of data to be restored.

Agent Qualifiers Allows backup agent specific qualifiers to be added to the com-
mand used to restore the data.

Since and Before Date Determine that data objects as of a particular date should be
restored. For example, specifying a Before Date of last Thursday
would indicate that the most recent copy of the data before this
date should be restored.
SLS To ABS Conversion J–10

SLS To ABS Conversion
J.4 SLS and ABS Operation Overview
J.3.2.6 Catalog

An ABS Catalog object stores information about what backup operations have been performed,
and what files or other data objects have been backed up. ABS Catalog object combines the SLS
concepts of a Summary File, a System History Set, and a User History Set.

Catalog objects are accessed through one or more Storage Classes. More than one Storage Class
can share a Catalog, or each Storage Class can have a separate catalog. The ABS Catalogs can
also be queried using the ABS LOOKUP command (or associated GUI function) and the ABS
REPORT SAVE command.

ABS Catalogs are created using ABS$SYSTEM:ABS_CATALOG_OBJECT.EXE utility. An
ABS Catalog has the following parameters, as specified in Table J–6 when it is created:

Table J–6 ABS Parameter and SLS Equivalent

J.4 SLS and ABS Operation Overview
This section gives you a comparison of SLS and ABS operations. This gives information about
how Save Requests are executed in each product, with similarities and differences between the
two pointed out.

J.4.1 Scheduling

J.4.1.1 SBK Symbols for Scheduling

In SLS, the SBK symbols DAYS_n and TIME_n identify the schedule and start time for the save
request to execute. Each DAYS_n symbol can have one of the following forms:

• A list of day names

– Example: MONDAY, WEDNESDAY, FRIDAY

Storage Class Name Gives the name of the Storage Class from which the data should
be restored. The Storage Class identifies the catalog from which
restore information is retrieved.

Environment Name Gives the name of the Execution Environment to be used for the
restore operations.

Output Location Indicates the data should be restored to an alternate loca tion. By
default, ABS restores the data to its original loca tion.

Catalog Parameter SLS Equivalent Meaning

Name SBK HISTORY_SET
TAPESTART
HSTNAM_n

Gives the name of the catalog to be refer enced
by a Storage Class.

Type System History or User
History

Provides the type of information stored in the
catalog. The type can be Brief, SLS or Full
Restore catalog. The SLS Catalog type is pro-
vided to allow a Storage Class to retrieve
information from SLS History sets.

Owner <None> Determines the Owner of the catalog. The
Owner has full access to the catalog.

Use Staging Default behavior for SLS
history files

Determines whether catalog entries are staged
to a sequential file during the backup, and
inserted in the actual catalog at a later time.
SLS To ABS Conversion J–11

SLS To ABS Conversion
J.4 SLS and ABS Operation Overview

K
 time.
h the

e
ming

ched-

e a
_n
uler,

 identi-
• A day offset within the month

– Example: MONTH + 2 (second day of the month)

– Example: MONTH - 10 (10 days before the end of the month)

• A day within a week offset within a month

– Example: MONTH + 2 * THURSDAY (second Thursday of the month)

– Example: MONTH - 2 * Sunday (two Sunday before the end of the month)

Every night at midnight, a special utility process in SLS is executed, which scans all the SB
files on the system. It determines which SBK files are to be executed that day and at what
It then submits a Batch job for each SBK, specifying the start time of the batch job to matc
TIME_n parameter.

J.4.1.2 ABS Scheduler Interface Options

ABS allows the use of different scheduler interfaces to schedule its Save Requests. A Sav
Request is scheduled using a Start Time and a Scheduling Option. ABS uses the program
interface the OpenVMS Queue Manager as the default scheduler interface option.

A variety of pre-defined scheduling options are provided:

• One time only (the Save Request is removed after 72 hours)

• On demand (run with an explicit SCHEDULE RUN command)

• Daily

• Weekly

• Bi-Weekly

• Monthly

• Quarterly

• Semi-Annually

• Daily with Weekly Full

• Log-based schedules

In addition, ABS provides access to explicit interval schedules. This requires a 3rd party s
uler product which supports complex interval setting.

An important difference between SLS and ABS is that an ABS Save Request can only hav
single schedule and start time, while an SLS SBK file can have multiple DAYS_n and TIME
parameters. However, because the ABS Save Request can be run using a 3rd party sched
any number of scheduler jobs can be created to run the Save Request as needed.

Another important difference between ABS and SLS is SLS’s ability to specify a list of day
names. To provide the same functionality in ABS, a 3rd party scheduler product is required
which allows setting specific days for scheduled jobs.

J.4.2 Types of Operations

This section discusses the various types of operations performed by SLS and/or ABS, and
fies similarities and differences between the two products.
SLS To ABS Conversion J–12

SLS To ABS Conversion
J.4 SLS and ABS Operation Overview

S

or
he

er to

ce-
SBK

 utili-
e to

ility
tes via

f

e-
ding

 are

ts are

stem
a
tility

er
Save

ecu-
ment,
J.4.2.1 System Backups

System Backups are the type of backup which is performed by the system on behalf of the users.
Normally, this type of backup backs up entire disks or file systems, which can then be used to
restore any particular file or set of files for any particular user.

The System Backup is what implemented via the SLS SBK file. It has these characteristics:

• It is always executed using the SLS account, with the privileges identified by the PRIV
symbol.

• The type of the backup is identified in the QUALIFIERS symbol (or QUALIFIERS_n). F
example, if /IMAGE is included in QUALIFIERS, this indicates a full, image backup of t
disk should be performed. In addition, the QUALIFIERS symbol provides many of the
operational characteristics of the backup, such as whether to do a record pass, wheth
ignore file writers, and so forth.

• SLS Executes the SBK file by submitting a Batch job, which then runs a command pro
dure called SYSBAK.COM. This command procedure is responsible for executing the
file, allocating tape drives, mounting volumes, and so forth.

• The actual backup operations are performed using OpenVMS Backup or Oracle RMU
Backup, based upon the backup type specified by the BACKUP_TYPE symbol. These
ties are executed in a subprocess created by SYSBAK.COM, which then communicat
SYSBAK via mailboxes, or pseudo terminals in the case of Oracle RMU backup.

• The actual backup operations are run using a utility called SLS$SYSBAK.EXE. This ut
creates the subprocesses to house OpenVMS or Oracle RMU backup, and communica
mailboxes.

• The log file created in SLS$SYSBAK_LOGS gives the whole output of the execution o
SYSBAK.COM.

• Many functions in SLS are provided by “DCL Utilities”. These are images which are ex
cuted from SYSBAK.COM to perform functions such as sending mail, opening and rea
mailboxes, mounting tapes, and so forth.

• Some of the tape, robot and drive operations performed during an SLS system backup
performed by SYSBAK.COM via “DCL Utilities”, while others are performed in the
SLS$SYSBAK image itself. This can cause inconsistencies in the way that load reques
handled depending on where in the backup operation the request is issued.

• The history set entries for each saveset created and each file backed up during the Sy
Backup operation are written to a temporary file. After the System Backup completes,
batch job is created, which runs SYS$SBUPDT.EXE (System Backup Update). This u
moves the history set entries from the temporary file into the actual SLS History Files.

In ABS, a System Backup is performed by setting up an Execution Environment whose Us
Profile indicates the ABS account (with particular privileges and access rights). Then, any
Request which uses that Environment would be considered a “System Backup”.

ABS installation kit provides out-of-the box policy objects for performing system backups.
These are the SYSTEM_BACKUPS Storage Class, and the SYSTEM_BACKUPS_ENV ex
tion environment. If the parameters on these policy objects are not suitable to your environ
they can be modified using the ABS SET command (or equivalent GUI functions).

An ABS System Backup has the following characteristics:

• It is run using the User Profile of the ABS account.
SLS To ABS Conversion J–13

SLS To ABS Conversion
J.4 SLS and ABS Operation Overview

ing

o a

VMS

e it
S
.

d Exe-
f the

edia
 from

ds to
 cre-

ports

each
mpo-
 the

oper-
 or

BK

nder

vides
. SLS

e

up

ing.
• The type of the backup is given on the Save Request, in combination with the schedul
option if a “complex” scheduling option was chosen. For example, if the “Daily with
Weekly Full” scheduling option was chosen, ABS will automatically decide whether to d
FULL or INCREMENTAL backup on any particular day.

• The Save Request is run using the selected scheduling mechanism - by default Open
batch queues are used. The request is executed on the interval specified by the Save
Request, and always runs under the ABS account.

• The Save Request runs a program called the ABS Coordinator. It is called this becaus
coordinates the execution of a Save Request. As its command line parameter, the AB
Coordinator is given the UID (Universal Identifier) of the Save Request to be executed

• The ABS Coordinator retrieves the Save Request and its associated Storage Class an
cution Environment from the Policy Database. This may require a network connection i
Policy Database is on another node.

• The ABS Coordinator then allocates volumes (if necessary) and loads them using the M
and Device Management Services. The parameters for these volume operations come
the Storage Class.

• Once volumes are accessed, the Coordinator then creates multiple “Data Mover” threa
execute each backup operation specified by the Save Request. Each Data Mover then
ates a subprocess to hold the backup agent for the given backup operation.

• The actual backup operations are performed by ABS using “Backup Agents”. ABS Sup
many different Backup Agents, including OpenVMS Backup, Oracle RMU Backup, and
gtar in the case of UNIX and Microsoft Windows/NT clients.

• During each backup operation, the Catalog entries for each operation performed and
data object backed up are either written directly to the Catalog, or are staged into a te
rary staging file. After the Save Request completes, the staged entries are moved into
actual ABS Catalog using a detached process.

As shown above SLS and ABS System Backup operations are very similar in their overall
ation. Both use subprocesses to perform the actual backup operations using other utilities,
Backup Agents. Both produce a catalog of the operations performed and the files (or data
objects) backed up.

However, SLS and ABS System Backup operations have these important differences:

• ABS Save Requests are run using the current scheduler interface option, while SLS S
files are executed using an SLS specific Batch job.

• ABS System Backups execute under the ABS account, while SLS SBK files execute u
the SLS account.

• ABS Save Requests are coordinated using a program called the Coordinator, which pro
good error reporting and recovery, as well as consistent tape management and logging
uses SYSBAK.COM, which is a convoluted, hard-to-understand command procedure.

• The policy to be executed by ABS is retrieved from a central Policy Database, while th
SLS SBK file is executed locally, and the SBK Symbols used accordingly. ABS Save
Requests can share Storage Classes or Environments.

• ABS supports many different Backup Agents, while SLS supports just OpenVMS Back
and Oracle RMU Backup.

• ABS provides optional catalog staging, while SLS system backups always require stag

• The ABS Log Files are clearer and easier to understand than the SLS log files.
SLS To ABS Conversion J–14

SLS To ABS Conversion
J.4 SLS and ABS Operation Overview

e

ither a

is
p, it
mental
 restore

LIFI-
re-

S

:

ati-
func-
 with

each

might

ile

 as
J.4.2.2 Full and Incremental Operations

A “Full” backup operation is one which saves all the information on a disk, including any fil
system specific information. OpenVMS Backup calls these “Image” backups.

An “Incremental” backup only saves data and directory structure that has changed since e
particular date, or since each file was backed up.

Usually, a backup policy combines these two types of operations. Although a Full backup
desirable because it contains all of the data on a disk or filesystem at the time of the backu
also uses more tape, is more time consuming, and occupies more catalog space. An Incre
backup uses less tape, less time, and less catalog space, but requires more time during the
of a full disk.

SLS provides indirect access to Full and Incremental operations. In the SBK file, the QUA
ERS symbol can be defined to contain the string “/IM” (Image) or “/SINCE=BACKUP” (Inc
mental) to manually determine whether a particular save operation is a Full or Incremental
backup. You must explicitly set up the Full and Incremental schedule using the QUALIFIER
symbol.

In ABS, Full and Incremental operations can be automated using the “complex” schedules

• Daily with Weekly Full

• Log-2

• Log-3

See the Appendix "Log-n Backup Schedules" for full information on these schedules.

The “complex” scheduling options on a Save Request cause the ABS Coordinator to autom
cally decide the correct operation to perform each time it is executed. For example, a fully
tional, efficient backup schedule for a set of disk can be set up to run each night at 6:00PM
the single ABS Command:

$ ABS Save DISK$USER1:,DISK$USER2:,DISK$USER3:,DISK$USER4: -
_$ /Name=NIGHTLY_BACKUPS/Start=”18:00”/Schedule=LOG-2 -
_$ /Storage=SYSTEM_BACKUPS

Then, if one of these disks goes bad, for example DISK$USER3:, you can restore the whole disk
to the previous night’s backup by issuing the commands:

$ DISMOUNT/NOUNLOAD/CLUSTER DISK$USER3! prepare for restore
$ ABS Restore/Full DISK$USER3:/Storage=SYSTEM_BACKUPS

ABS will automatically find the most recent Full save, apply that to the disk, and then apply
subsequent Incremental backup in the correct order to the disk.

J.4.2.3 Selective Operations

Selective Backup operations are portions of an entire disk or filesystem. For example, you
want to only backup a particular user’s directory, or a particular file or set of files.

A Selective Operation in SLS is identified when neither “/IM” (Image) nor
“/SINCE=BACKUP” (Incremental) is found in the QUALIFIERS symbol. This indicates that
the files given in FILES_n should be backed up “as is”, and not as part of a whole disk or f
system.

In ABS, the type of operation is specified on the Save Request. If the operation is specified
“Selective”, then sets of files or other data objects can be backed up.
SLS To ABS Conversion J–15

SLS To ABS Conversion
J.4 SLS and ABS Operation Overview

LS,

ack up
strain

er
name,
d use

S is
es,
ned by

ent,
ommon
 own

arate

lumes
his

CAT-

ting
e.

NV
ndi-
J.4.2.4 User Requested Operations

SLS provides the Storage Save command, which allows individual users or the system adminis-
trator to backup files “on demand”. This type of operation is called a “User Backup” under S
because it has the following characteristics:

• It is normally requested by a user

• The tapes used for the backup are owned by the user

In ABS, any user with appropriate access levels can issue an ABS Save command, and b
their own files. It is access to the Storage Classes and Execution Environments which con
which tapes and tape drives can be used by individual users.

For example, if you set the Access Control List (ACL) on the SYSTEM_BACKUPS Storage
Class to be:

/ACCESS=(USER=*::*,ACCESS=”READ+WRITE”)

then any user can write into the Storage Class (do backups to it) or Read from the Storage Class
(restore files from it).

The ABS installation kit provides an out-of-the-box set of policy objects for user backup opera-
tions. These are the Storage Class USER_BACKUP and the Environment
USER_BACKUP_ENV.

The User Profile in the Execution Environment determines the context in which the backup
operations are performed. Except in special cases, Environments which are accessible to the
average users will have a user profile specifying the keyword “<REQUESTER>” as the us
under which the backups are to be performed. This causes ABS to capture the user’s user
privileges and access rights when they create a Save Request using this Environment, an
these parameters during the backup operations.

In ABS, all volumes are owned and managed by the ABS account. The primary goal of AB
data safety. This primary goal precludes allowing individual users to manage their own tap
since the user may destroy data accidentally, or misuse the tapes. Access to the tapes ow
ABS is allowed by setting the Access Control on Storage Classes.

Using the USER_BACKUP Storage Class and USER_BACUPS_ENV execution environm
users can issue their own Save and Restore requests. These backup operations share a c
pool of tapes and a common catalog with other users, but each user can only access their
backed up data on these tapes.

If you want a user to be limited to a particular set of tapes, or record their backups in a sep
catalog, ABS also allows this to be configured by issuing the steps below:

1. Create an MDMS Pool for the user and specify that the user is authorized to access vo
in the pool. This limits the volumes the user is able to use for their personal backups. T
step is not required if you wish to allow users to share a pool of tapes.

2. Create a personal catalog for the user using the ABS_CATALOG_OBJECT utility. If
desired, you can move the catalog files to the user’s directory, then redefine the ABS$
ALOG logical name to include that user’s directory. Note that access to the catalog is
through the Storage Class, created below.

3. Create an ABS Storage Class for the user, identifying the Owner as the user, and gran
the user full access via the ACL. Specify the correct pool and catalog, as created abov
Deny access to other users.

4. Create an ABS Execution Environment for the user, or let it default to the DEFAULT_E
object provided by the ABS Installation Kit. The User Profile in the Environment must i
SLS To ABS Conversion J–16

SLS To ABS Conversion
J.4 SLS and ABS Operation Overview

ckup

 all of

ment.

orts
ons
 data-

naged

 in a

sed as
s)

to

 be

s

 at
on
I
nc-
ically

t,

uired
a-fide
ny of the
and
s
ly had

S
s
 are
cate the keyword “<REQUESTER>” in the user profile as the user under which the ba
operations are performed.

5. Notify the user of their Storage Class Name. This Storage Class should be included on
the user’s ABS Save commands using the /STORAGE qualifier.

J.4.3 Media and Device Management

This section describes differences in how SLS and ABS handle media and device manage

J.4.3.1 New Media Manager

ABS uses a new Media And Device Management Services (MDMS) component that supp
the concept of a domain. An MDMS domain has scope across multiple geographical locati
each with their own nodes, jukeboxes, drives and volumes. MDMS utilizes a network-wide
base that supports the following types of objects:

 Domain - the entire scope of operations covered by a single MDMS database and ma
as a single environment, networked together by a choice of protocols

 Drive - a device that can read or write data to/from tape volumes, and that may reside
jukebox

 Group - a group of nodes that have some kind of relationship; the group name can be u
a convenience for multiple node names in a variety of contexts (e.g. OpenVMS cluster

 Jukebox - a device that performs random-access loading and unloading of volumes in
drives

 Location - a physical location that contains nodes, jukeboxes and volumes, which can
configured in a hierarchy and may contain spaces for volume and magazine storage

 Magazine - a collection of volumes in a physical magazine that are moved as a group

 Media Type - a logical description of the type of media of a volume, including attribute
such as density, compaction and length

 Node - an OpenVMS system running MDMS and ABS

 Pool - a collection of volumes that may be allocated by authorized users

 Volume - a piece of tape media that ABS uses to backup and restore customer data

 Communication within the domain utilizes TCP/IP, DECnet Phase IV and/or DECnet-Plus
the user's choice. A Java-based GUI is also provided for MDMS operations, and this runs
Alpha VMS and Windows platforms. A comprehensive, consistent DCL syntax and the GU
replace the STORAGE commands and the forms interface provided with SLS; all useful fu
tions can be performed from either interface. All database changes can be applied dynam
without the need to restart MDMS, and are applicable in all parts of the domain.

This is substantially different from the media management supplied by SLS. In that produc
many definitions are stored in a configuration file called TAPESTART.COM. Not only was
there a tendancy for this file to vary across nodes, but any change to the configuration req
SLS to be restarted. Other definitions, such as volumes, magazines and slots were in bon
databases, but access to the database was inconsistent and incomplete. For example, ma
volume's attributes could not be modified using standard commands. In addition, the DCL
forms interfaces, while overlapping, were not complete in their own right; certain operation
could only be performed using one of the interfaces, meaning that the user/operator probab
to learn and use both of them.

One other substantial difference with MDMS is that it utilizes no device-specific code; MDM
attempts to perform operations on devices and if there are errors takes corrective action a
needed, transparent to the user. One great advantage of this approach is that new devices
automatically supported, rather than having to wait for a software upgrade.
SLS To ABS Conversion J–17

SLS To ABS Conversion
J.4 SLS and ABS Operation Overview

es are

E

me the
ob-

 vol-
lled the

 Crite-
re are
t:

tomati-
o

or

tem
com-
s indi-

kup
anage-
 When upgrading from SLS to ABS, it is first necessary to convert the SLS volume, magazine
and slot databases, together with the TAPESTART.COM definitions, to MDMS databases. A
utility is provided for this purpose. This utility, together with a full description of how the media
manager in SLS and MDMS are different, are described in the Appendix "Converting
SLS/MDMS V2 to MDMS V3". MDMS has been designed so that the conversion can be per-
formed as a rolling upgrade, starting with the set of nodes designated as database servers. These
MDMS V3 database servers can support V2.x clients running ABS or SLS.

There are also a couple of significant differences between the way SLS and ABS handle volume
management:

• Management of Volume Sets

• Consistency of Volume and Drive Management

J.4.3.2 Volume Set Management

Volume Sets are a collection of tape volumes that are treated as a single entity. The volum
logically appended to one another, allowing more data to be stored and wasting less tape.

SLS only provides very rudimentary volume set management in the form of the CONTINU
symbol. Any SBK file which uses a consistent value of the CONTINUE symbol will have its
savesets appended to a volume set managed by SLS. However, the user must explicitly na
volume sets (i.e. the value of the CONTINUE symbol), and creating new volume sets is pr
lematic.

In ABS, data is written to volume sets automatically. Each Storage Class has one or more
ume sets which it manages. The number of volume sets managed by a Storage Class is ca
Number of Streams, or Number of Simultaneous Read and Write Operations.

ABS automatically creates new volume sets based upon the Storage Class’s Consolidation
ria. The Consolidation Criteria determines how data is consolidated onto volume sets. The
three criteria which can be used to limit the amount of data written by ABS to a volume se

• Consolidation Interval - the number of days data will be appended to the volume set

• Consolidation Size - the maximum number of volumes in the volume set

• Consolidation Count - the maximum number of savesets to append to the volume set

Once ABS determines the consolidation criteria has been exceeded on a volume set, it au
cally “retires” the volume set. Retiring a volume set allows data to be restored from it, but n
more data is written to the volume set. ABS then automatically creates a new volume set f
backing up data in the Storage Class.

J.4.3.3 Consistency of Volume and Drive Management

SLS is very inconsistent in its management of volumes and drives. For example, SLS Sys
Backups do a different style of tape load than SLS User Backups, and the source code is
pletely different. In addition, the way that tapes are appended to volume sets, the message
cating problems, and the methods for debugging problems in these areas are completely
inconsistent.

ABS does all volume and drive management via MDMS through the ABS Coordinator. All
types of data movements, from Selective to Full, Saves and Restores, and all types of Bac
Agents are managed by the ABS Coordinator. This means that volume, robot and drive m
ment are completely consistent across all operations.
SLS To ABS Conversion J–18

SLS To ABS Conversion
J.4 SLS and ABS Operation Overview

ry
kups.
hich

d
g data
sers

ation
been
or, so

T
also
talog
, and

 per-
ce
efine

ory
 tapes
rsion
n fully
J.4.4 Cataloging

This section identifies similarities and differences between how SLS and ABS handle cataloging
operations. Catalogs (called History Sets in SLS) record what backup operations have taken
place, and what files or other data objects have been backed up.

J.4.4.1 SLS History Sets

SLS History Sets come in two varieties: System History Sets and User History Sets. System His-
tory Sets are updated for system backups (i.e. SBK files), while User History Sets are updated
for user backups.

Creating and configuring history sets is troublesome on SLS. The TAPESTART.COM com-
mand procedure is used to determine what System History Sets are created, and where they are
located. The User History Sets are created on a per user basis, using the ASNUSRBAK.COM
command procedure. Configuring User Histories depends upon the user executing the
SLS$TAPSYMBOLS.COM procedure in their LOGIN.COM.

Although the information stored in both System and User History Sets are similar, the source
code to write to them, look up files and restore files is totally different. This is a problem for
maintenance, and prevents consistency in the data available for data backed up by SLS.

System History Sets are “staged”, which means that during the backup operation, the histo
records are written to a sequential temporary file. This improves the performance of the bac
Then, at a later time, the temporary files are loaded into the actual System History Sets, w
can then be used to restore files. User History Sets are never staged.

SLS History Sets contain no protection information. The entire history set must be protecte
against individual users reading and restoring data. This means that at most sites, restorin
from system backups must be done by the Operator or System Administrator to prevent u
from restoring data they would not normally have access to.

J.4.4.2 ABS Catalogs

ABS has only one catalog format, called a Brief catalog. This catalog provides basic inform
about what backup operations have been done, and what files or other data objects have
backed up. All ABS Catalogs have the same format, and are written by the ABS Coordinat
information is consistent across all backups.

Creating catalogs in ABS is done by running the ABS$SYSTEM:ABS_CATALOG_OBJEC
utility. Using this utility, you can create new catalogs with any name and owner. The utility
allows you to specify whether the catalog supports staging or not. Staging is where the ca
records are written to a temporary sequential file during the backup to improve performance
then loaded into the actual catalog at a later time.

By default, ABS stores all catalogs in a single location on each system where backups are
formed. This location is referenced by the ABS$CATALOG logical name. If you want to pla
the catalogs in other locations, you can move the catalog files to another directory, and red
the ABS$CATALOG logical name.

J.4.4.3 Restoring data with ABS from SLS History Sets

ABS provides the ability to perform lookups and selective restores using SLS System Hist
Sets. SLS System History Sets are written by SLS system backup operations to locate the
and savesets containing backed up data. This ability is an important function for any conve
plan, since the data backed up previously by SLS may be needed even after ABS has bee
deployed.
SLS To ABS Conversion J–19

SLS To ABS Conversion
J.5 Conversion Process

LS to
nd need

ata-
m-

endix
ure

ee

ever,
 has
ABS cannot perform full disk restores or Oracle RDB Database restores using SLS history sets.
It can restore VMS files selected using a wildcard file specification.

The steps for restoring data using ABS with SLS History Sets are:

1. Create an ABS Catalog with the type of SLS. This is done using the
ABS_CATALOG_OBJECT utility, as follows:

$ Catalog_obj := ABSSYSTEM:ABS_CATALOG_OBJECT.EXE
$ Catalog_obj Create <hisnam> SLS ABS NO

where <hisnam> is the name of the SLS history set from TAPESTART.COM. This will also
be the name of the ABS catalog.

2. Create a read only Storage Class in ABS which references the SLS type catalog. The Stor-
age Class should be read only, since SLS History Sets can only be used for restores.

3. Issue ABS Lookup or ABS Restore commands using the Storage Class created above. The
SLS History Set will be used for the lookup or restore.

Note

You must have ABS_LOOKUP_ALL access right granted to your account to display
entries in the SLS History Files from ABS.

J.5 Conversion Process
This chapter identifies the Conversion Process from SLS to ABS. First, the steps involved in
converting from SLS to ABS are presented and explained. A Conversion Utility to help with the
conversion is then presented.

J.5.1 Steps for Conversion

This section identifies the steps involved in converting a site’s backup management from S
ABS. These steps are intended as guidelines, since each site has different requirements a
for their backup management.

J.5.1.1 Convert the MDMS Database

The first step in converting from SLS to ABS is to convert the volume, slot and magazine d
bases, and the media and device portions of TAPESTART.COM to MDMS databases. A co
mand procedure is provided for this purpose and this procedure is documented in the App
"Converting SLS/MDMS V2 to MDMS V3". Please note that this version of ABS and all fut
versions require the accompanying version of MDMS included in the installation kit.

J.5.1.2 Determine your use of SLS

The next step in converting from SLS to ABS is to identify how you use SLS. There are thr
major uses of SLS:

• System Backups

• Standby Archiving

• User Backups

ABS provides the same functionality as SLS System Backups and SLS User Backups. How
ABS cannot perform the same function as SLS Standby Archiving. SLS Standby Archiving
the following characteristics:

• “Archive Classes” are created by the System Administrator
SLS To ABS Conversion J–20

SLS To ABS Conversion
J.5 Conversion Process

t the

sts

ts to

 being

. If

al-

 The
lete.

K

s for
 not
lete or

u
on-

d
LS

n, a
• When users request a Save, they indicate the Archive Class on their Save request, bu
request is only queued, it is not executed immediately or scheduled.

• At some point in time, the system Operator starts a “standby archive session” for each
Archive Class

• SLS then mounts the tape associated with the Archive Class, and appends any reque
queued since the last session to the tape.

• Until the Operator stops the session, the tape sits on the drive waiting for more reques
come in.

• When the Operator stops the session, the tape is dismounted and requests go back to
queued.

If you use SLS System Backups (as many sites do), then converting to ABS is fairly simple
you use SLS User Backups, converting to ABS is slightly more involved, but is still fairly
straightforward. If you use SLS Standby Archiving, ABS will not provide equivalent function
ity.

J.5.1.3 Converting SLS System Backups to ABS

This section describes how to convert SLS System Backups (SBK files) into ABS Policy.

Determine valid SBK files

At many sites, only a few of the SBK files which reside in SLS$SYSBAK are actually used.
other SBK files are a result of experimentation, false starts at configuring SLS, or are obso

In order to simplify the conversion of SLS System Backups, you should first identify the SB
files which you actually use. Usually, SBK Files are used at your site if:

• They are scheduled regularly by SLS

• They are manually executed by you or the Operator

A simple way of finding the SBK files which are scheduled by SLS is to search the SBK file
the DAYS_1 symbol. Any SBK file which does not define DAYS_1, or defines it as blank, is
scheduled by SLS for automatic execution. These SBK files are prime candidates for obso
unused files.

After identifying the SBK files which are not automatically scheduled, carefully determine
which of the files may be invoked manually by you or the Operator.

Once you have identified the obsolete or unused SBK files, you can remove them from
SLS$SYSBAK (after backing them up in case of mistakes, of course).

Convert the Valid SBK Files to ABS Policy

Once you have cleaned up your SLS$SYSBAK directory to only contain those SBK files yo
actually use, it is time to convert these SBK files to ABS Storage Classes, Execution Envir
ments and Save Requests.

Compaq provides a utility to help in this conversion process. The conversion utility is calle
SLS_CONVERT.COM, and is included as an installation kit on the ABS Kit. To install the S
to ABS Conversion utility, issue the command:

$ @SYS$UPDATE:VMSINSTAL SLSTOVABS031 ABS$SYSTEM:! VAX System OR
$ @SYS$UPDATE:VMSINSTAL SLSTOAABS031 ABS$SYSTEM:! Alpha System

This command will install the conversion utility into ABS$SYSTEM:SLS_CONVERT.COM,
and will create a subdirectory under the ABS$ROOT called SLS_CONVERSION. In additio
SLS To ABS Conversion J–21

SLS To ABS Conversion
J.5 Conversion Process

s to
ch

e cre-

ds to

 sym-
or-

sed
ment

quest
logical name, ABS$SLS_CONVERSION will be defined to point to the work directory for the
conversion effort.

The conversion utility creates DCL Command Procedures which issues appropriate ABS DCL
commands equivalent to each SBK file. No changes are made to your ABS Policy Configuration
directly. This allows you to experiment with the conversion utility safely, without affecting
either the execution of your SLS SBK files, or starting ABS Save Requests inadvertently.

Once you have installed the conversion utility, you can create ABS command procedures for all
of your SBK files by issuing the command:

$ @ABS$SYSTEM:SLS_CONVERT *

The asterisk indicates you want to convert all SBK files to ABS DCL Commands. If you only
want to convert one SBK file, you can specify the name of the SBK without the _SBK.COM or
SLS$SYSBAK on the command line. For example, to convert NIGHTLY_SBK.COM, you
would issue the command:

$ @ABS$SYSTEM:SLS_CONVERT NIGHTLY

 Evaluate the ABS Conversion Command Files

After running the conversion utility, the ABS$SLS_CONVERSION directory will contain one
ABS DCL Command Procedure for each SBK file converted. These output command files will
contain:

• Comments explaining the conversion process

• ABS DCL Commands to create ABS Policy Objects

• A Prolog and Epilog command to complete the functions performed by the SBK file

You should not execute these command procedures blindly. The conversion utility attempt
duplicate the backup policy reflected in each SBK file, but you should carefully examine ea
command file produced to ensure that errors were not made, and that the ABS Policy to b
ated correctly reflects the backup policy you expect.

The things you should check for in the produced command procedures are:

• Naming conventions used in the conversion may not be what you want

• Errors in converting the SBK policy

• Possible ABS Policy Consolidation

The command procedure for each SBK file processed will contain the ABS DCL Comman
create one Storage Class, one Execution Environment and one or more Save Requests.

Naming Conventions Used

The name of the Storage Class created for an SBK file will be the value of the CONTINUE
bol (if defined) followed by the suffix “_SC”. If the CONTINUE symbol is not defined, the St
age Class will be named the same as the SBK file with the “_SC” suffix.

The Environment created for an SBK will be named the same as the SBK file, but with an
“_ENV” suffix. When a Save Request specifies a Storage Class, the default Environment u
will be the same name as the Storage Class, but with the “_ENV” suffix. Thus, the Environ
created should be used by default.

Each SBK File will produce one or more ABS Save Requests. More than one ABS Save Re
will be produced from an SBK file if all the following conditions are met:

• There are more than one FILES_n is specified

• The QUALIFIERS_n differ in the type of operation
SLS To ABS Conversion J–22

SLS To ABS Conversion
J.5 Conversion Process

ll)
e-
. This
t a

S_n,

NC”
 if the
e

er
r-

to
ents

 over-

ry to
ed if
l is bet-

fer-

f Stor-
ote that
• More than eight include specifications are found in a single SBK file

For example, if an SBK file has QUALIFIER_1 defined as “/IM” indicating an Image (or Fu
backup operation, but QUALIFIERS_2 is defined as “/SINCE=BACKUP” indicating an Incr
mental operation, then ABS will need two separate Save Requests to implement this policy
is because an ABS Save Request will only do Full, Incremental or Selective operations, no
mix of them.

If all QUALIFIERS_n specify the same movement type and there are fewer than eight FILE
then ABS can combine all the operations into a single Save Request.

The Save Requests created will be named the same as the SBK file, but with “_FULL”, “_I
or “_SEL” to indicate the data movement type included in the Save Request. For example,
SBK file NIGHTLY_SBK.COM defines FILES_1 through FILES_20, and all qualifiers includ
the “/IM” Image qualifier, then the conversion tool will create three Save Requests, called
NIGHTLY_FULL_1 through NIGHTLY_FULL_3. Because ABS has a limit of 8 operations p
save request, NIGHTLY_FULL_1 and NIGHTLY_FULL_2 would perform 8 Full backup ope
ations, and NIGHTLY_FULL_3 would perform the last four.

Consolidate ABS Policy Objects

The Conversion Utility shipped with ABS is a very simple utility. It converts each SBK file in
the appropriate ABS DCL Commands to create the Storage Classes, Execution Environm
and Save Requests necessary to reflect the backup policy in the SBK file.

No attempt is made to consolidate the Storage Classes and Execution Environments, or to
lay the Save Requests for more optimum performance.

Before executing the command procedures to create the ABS Policy objects, you should t
consolidate Storage Classes and Execution Environments. Save Requests may be combin
warranted by the intended policy, but in some cases, breaking a Save Request into severa
ter for reducing nightly backup time, simplifying an overall backup policy, or backing up dif
ent objects at different intervals.

Consolidating Storage Classes

Consolidating the Storage Classes is done by comparing their parameters. For each pair o
age Classes, you can determine whether they can be combined by using the Table J–7. N
in all cases, you can decide that one or the other parameter is correct for both, and consolidate
based upon that decision.

Table J–7 Storage Class Parameter

Storage Class Parameter Matching Criteria

Name Doesn’t matter choose meaningful name

Media Type Should match

Tape Pool Should match

Media Location Should match

Access Control OK if different, choose best for intended Storage Class use

Owner Should both be ABS

Retention OK if different, choose best for intended Storage Class use

Volume Set Name Not set, doesn’t matter
SLS To ABS Conversion J–23

SLS To ABS Conversion
J.5 Conversion Process

e

Only the Administrator at a site can truly determine if two separate Storage Classes can be con-
solidated based upon the intended use of the Storage Class.

Consolidating Execution Environments

Consolidating Execution Environments is again done by comparing the parameters of pairs of
Environments, and then combining those Environments if your decisions indicate they can serve
the same purpose. Use Table J–8 as a guide:

Table J–8 Execution Environment Parameter

As with Storage Classes, only the Administrator at a site can truly determine if two separate
Environments can be consolidated based upon the intended use of the Environment.

Implement ABS Policy

This section discusses the steps involved in implementing the ABS Policy as produced by the
conversion utility and evaluated by the site Administrator.

Executing the Command Procedures – After you have examined the raw output command
files from the conversion utility and done what consolidation or modifications seem appropriate,
the command files can simply be executed using the at sign (@) operator at DCL. When each
command procedure is invoked, it will:

• Create a Storage Class

• Create an Execution Environment

Consolidation Criteria OK if different, choose best for intended Storage Class use

Catalog name OK if different

Number of Streams Always set to 1 from Conversion utility

Execution Node Should match

Drive name OK if different, choose best for intended Storage Class use

Environment Parameter Matching Criteria

Name Doesn’t Matter choose meaningful name

Data Safety options OK if different choose best for intended Environment’s us

Listing options OK if different Digital recommends not producing listings

Span FileSystems Should Match

Links Only Should Match

Original object action Should Match

User Profile Will always be ABS from conversion utility, choose PRIVI
LEGES best for intended Environment’s use

Notification OK if different choose best for intended Environment’s use

Locking options Should match

Number of drives OK if different choose best for intended Environment’s use

Retry options OK if different choose best for intended Environment’s use

Prolog and Epilog Should match, or be combined
SLS To ABS Conversion J–24

SLS To ABS Conversion
J.5 Conversion Process

the

hould
xecu-
d with
e fea-
on

d epi-
 the
rolog
e SBK

 the
a
ile.

S log-
e

 the
-

• Create one or more Save Requests and associated Scheduler jobs

• Possibly create a Prolog command procedure

• Possibly create an Epilog command procedure

Integrating the Prolog and Epilog Commands – There are several features of an SBK file
which are not directly supported by ABS. The conversion utility creates a Prolog command file
and an Epilog command file which implement some of these other features.

For example, ABS does not support the Offsite Date or Onsite Date in the SBK file directly.
However, by issuing the appropriate MDMS SET VOLUME command, this can be imple-
mented. The conversion utility writes these commands into the Prolog or Epilog command files.

When the conversion utility produces a Prolog and Epilog command procedure, they will be cre-
ated in the ABS$SLS_CONVERSION directory, and will be called, the same name as the Save
Request, but will have “_PROLOG” or “_EPILOG” appended. For example, if you convert
NIGHTLY_SBK.COM, you will end up with the Prolog and Epilog command files:

ABS$SLS_CONVERSION:NIGHTLY_ABS_PROLOG.COM
ABS$SLS_CONVERSION:NIGHTLY_ABS_EPILOG.COM

If you need the features implemented in the Prolog or Epilog command procedures, you s
integrate these into your own Prolog and Epilog command procedures (if any). Both the E
tion Environment and the Save Request may have Prolog and Epilog commands associate
them, which are usually the execution of a site specific command procedure. If you want th
tures implemented in the Prolog or Epilog command procedures produced by the conversi
utility, you should invoke them from your site specific command procedure.

SBK Symbols and ABS Logicals

When executing an SBK file, SLS makes various DCL symbols accessible to the prolog an
log command files you invoke. For example, SLS will define the DCL symbol DO_DISK as
name of the disk being backed up during an SBK execution. The objective is to allow the p
or epilog commands to produce log messages, or perform other operations based upon th
file execution.

ABS provides logical names which provide similar functionality. For example, ABS defines
logical name ABS_OS_OBJECT_SET_1 as the set of files being backed up in the first dat
movement operation. Thus, it can be used in the place of the FILES_n symbol in an SBK f

The conversion utility kit provides a command procedure, SLS_SYMBOLS.COM, which
attempts to define many of the same DCL symbols as an SBK file does based upon the AB
ical names. For example, it defines the DO_DISK symbol based upon the ABS logical nam
ABS_OS_OBJECT_SET_1.

See ABS$SLS_CONVERSION:SBK_SYMBOLS.COM command procedure for details on
definition of each SBK symbol. Not all SLS DCL symbols defined are supported by the com
mand procedure.

Disable the SLS SBK Files – It is very important to note that once you have executed the
DCL Command procedures produced by the conversion utility, the ABS Save Requests will be
executing according to their schedules. This means that you will be doing both SLS and ABS
backups if you do not disable the SLS SBK files.

The SLS SBK files can be disabled by changing their DAYS_n and TIME_n qualifiers to empty.
This causes SLS to no longer schedule the SBK files for execution.

Since SLS and ABS use different media management subsystems, it is highly recommended that
you do not use both products on the same node. If you do, you will find that the SLS and MDMS
volume databases may get out of synchronization, and there may be contention and other unex-
SLS To ABS Conversion J–25

SLS To ABS Conversion
J.5 Conversion Process

hed-

nd
pected troubles with drives and jukeboxes. If you wish to stage your SLS to ABS conversion
across your network, the following approach is recommended:

 Define your Central Security Domain as your first set of nodes to convert; these nodes will
run the ABS policy engine and the MDMS database server

 Perform the MDMS conversion on these nodes - see Appendix "Converting SLS/MDMS
V2 to V3".

 Perform the ABS conversion on these nodes

 On other client nodes still running SLS, define the appropriate TAPESTART.COM to point
to nodes in the ABS/MSMS Central Security Domain in the symbol DB_NODES

At this point, your volume, magazine and slot databases are being managed by MDMS, but your
client systems are still able to use SLS as the backup paradigm. It is recommended that you con-
vert the remainder of your systems to ABS/MDMS as soon as practical, because some of the
more unusual features of SLS/MDMS are not supported by the new MDMS database server.

J.5.1.4 Converting User Backup policy

The conversion utility does not convert User Backup policy automatically. It is only intended to
make converting SBK files easier or automatic.

To allow a particular user to do their own backups, follow the steps as outlined in Section . Note
that there is no automatic way to set up Storage Classes for the entire user population, or a large
set of users except by creating a DCL command procedure issuing the correct ABS DCL com-
mands.

J.5.1.5 Monitor ABS Activity

After implementing your backup policy in ABS, you should carefully monitor the activities of
ABS until you are confident that your policy is being executed as intended.

There are three ways to monitor ABS activity:

• Use the appropriate show command for the current scheduler interface option to list sc
uled requests.

• Set up Notification criteria on the Execution Environments to send you mail when ABS
operations complete. The mail will contain the name of the job and the final status.

• Examine the ABS Log files. All ABS Log files are created in the ABS$LOG: directory, a
are called the same name as the Save Request.

• For catalog operations:

• Monitor the Staging Log files

– These are named ABS$LOG:<catalog_name>_<stream>.LOG

• Monitor the Catalog cleanup log files

– These are named ABS$LOG:ABS_CLEAN_CATLG_<node>.LOG

• Monitor the Policy Engine Log files on your Central Security Domain (CSD)

– ABS$ROOT:[000000]ABS$START_POLICY_ENGINE.LOG

– ABS$LOG:ABS_CLEAN_DB_UTIL.LOG
SLS To ABS Conversion J–26

SLS To ABS Conversion
J.6 Conversion Utility Reference

gs.
m-

ach
ION

 for
m-

d that
ich

 the

son

uests.
ve

 with
J.5.1.6 Restoring from SLS History Sets

ABS has the ability to restore data backed up by SLS. After you have implemented your backup
policy using ABS, it may be necessary to restore data which was backed up using SLS prior to
the conversion. Please see Section for more information on this capability.

J.6 Conversion Utility Reference
J.6.1 Command Syntax

$ @ABS$SYSTEM:SLS_CONVERT <wildcard_SBK_spec> [<match1>] [<match2>…]

<wildcard_SBK_spec>

This parameter identifies the set of SBK files to be converted by this command. The string given
should not include SLS$SYSBAK: or the _SBK.COM suffix. For example, if you want to con-
vert the SBK file SLS$SYSBAK:NIGHTLY*_SBK.COM, you should issue the command:

$ @ABS$SYSTEM:SLS_CONVERT NIGHTLY*

<match1> … <match7>

These optional parameters allow you to search the SBK files defined by the
<wildcarded_SBK_spec> and only process those files which contain ALL of the given strin
The strings must all appear on the same line in the SBK file, since the SLS_CONVERT co
mand procedure uses a /MATCH=AND on the Search command.

J.6.2 Output Command File naming and contents

The output of the SLS_CONVERT conversion utility is one DCL command procedure for e
SBK file processed. The command procedures will be created in the ABS$SLS_CONVERS
directory.

Each command procedure will be named the same as the SBK file, but substituting “ABS”
“SBK”. For example, if the SBK file SYSTEM_DISK_SBK.COM is converted, the output co
mand procedure will be ABS$SLS_CONVERSION:SYSTEM_DISK_ABS.COM.

Although the command procedures can be executed immediately, it is highly recommende
you review their contents before executing them to ensure that the ABS Policy objects wh
will be created accurately reflect your intended backup policy.

Each output command file will contain:

• A block of comments indicating that the file was produced by the conversion utility, and
date and time of the conversion.

• The name of the SBK file represented in the command file

• The list of SBK parameters which are not handled by the conversion utility, and the rea
they are not.

• An ABS Create Storage command to create a Storage Class.

• An ABS Create Environment command to create an Execution Environment.

• One or more ABS Save commands and ABS Set Save commands to create Save Req
See Section J.5.1.2 for information on why a single SBK file might produce multiple Sa
Requests.

• The creation of a Prolog command file. The Prolog command file should be integrated
any site specific prolog command files to complete the functions defined by the SBK.
SLS To ABS Conversion J–27

SLS To ABS Conversion
J.7 SBK Symbols in ABS Terminology

K.
• The creation of an Epilog command file. The Epilog command file should be integrated
with any site specific epilog command files to complete the functions defined by the SB

J.7 SBK Symbols in ABS Terminology

Table J–9 SBK Symbols in ABS Terminology

Table J–9, lists SBK Symbols in ABS Terminology.

SBK Symbol ABS Equivalent Meaning

DAYS_n Save Request /SCHEDULE
and /EXPLICIT

Defines how often the backup oper
ations are performed

TIME_n Save Request /START_TIME Defines when the backup operation
starts

NODE_n Save Request
/SOURCE_NODE

Defines the node in your network
where the data resides

BACKUP_TYPE Save Request
/OBJECT_TYPE

Defines the type of data to be
backed up or restored.

PRE_PROCESS_FIRST Environment /PROLOG Defines a command to be executed
when the backup job starts

PRE_PROCESS_EACH Save Request /PROLOG Defines a command to be executed
prior to each backup operation
within a job

POST_PROCESS_EACH Save Request /EPILOG Defines a command to be executed
when each operation within a job
finishes

POST_PROCESS_LAST Environment /EPILOG Defines a command to be executed
when the backup job completes.

NEXT_JOB Use dependencies in current
scheduler interface option if
available

Defines what job to run next after
the current job completes

SUMMARY_FILE ABS REPORT SAVE/FULL
and ABS Catalogs

Gives overview information about a
save operation in a job.

PRIVS Environment /PRO
FILE=(PRIVS)

Defines the set of privileges to be
used when executing the operation

FILES_n Save Request Include Specifi
cation

Defines the set of files or other data
objects to be backed up or restored.

QUALIFIERS and
QUALIFIERS_n

Environment /ACTION,
/LOCK and /DATA_SAFETY
Save Request
/FULL/SINCE=BACKUP
/SELECT

Defines characteristics of the save
operation, such as the type of data
movement, and options for execu
tion of the backup.

MNTFLAGS Not supported. ABS controls
mounting of tapes.

Defines how tapes are mounted.

SAVESET_GEN Not supported. ABS gener-
ates the saveset names.

Defines the name of the saveset
stored on tape.

PROTECTION Storage Class /ACCESS Defines what access is available to
the backed up data.
SLS To ABS Conversion J–28

SLS To ABS Conversion
J.7 SBK Symbols in ABS Terminology
MEDIA_TYPE Storage Class
/TYPE_OF_MEDIA

Defines which MDMS media type
is to be used for backup operations.

DENSITY Density is an attribute of the
MDMS media type object.

Defines the tape density to be used
for backup operations.

REEL_SIZE This maps to the length
attribute of the MDMS media
type object.

For 9 track tapes, defines the length
of the tape (e.g. 2400 feet)

TAPE_POOL Storage Class /TAPE_POOL Defines the MDMS pool from
which tapes are drawn for backup
operations.

QUICKLOAD The MDMS drive attribute
"AUTO_REPLY" can be
specified on a per-drive basis
to determine whether a drive
comes on line.

Determines whether MDMS will
automatically recognize when a tape
drive comes online without opera
tor intervention.

QUICKLOAD_RETRIES Not supported Defines how long a LOAD request
should remain outstanding before
being canceled.

PREALLOC ABS allocates and manages
volume sets automatically.

Determines the number of volumes
to pre allocate before a backup
begins, forming them into a volume
set.

AUTOSEL ABS always automatically
selects new volumes to
append to volume sets, if
needed.

Determines whether SLS is allowed
to automatically select new volumes
from the volume database if needed.

CONTLOADOPT Logical Name:
ABS$DISABLE_SCRATCH_
LOADS set to one. By default,
ABS will request and accept
scratch tapes. The logical can
be defined to force specific
tapes to be mounted.

Determines whether the operator
can substitute a valid tape for the
requested tape.

UNATTENDED_BACKUP
S

ABS always attempts to per
form the backup without oper
ator intervention.

Determines whether SYSBAK
should default responses to ques
tions rather than require operator
intervention.

CONTINUE ABS Storage Class Name.
Each Storage Class manages
one or more volume sets, and
appends data to these volume
sets until the Consolidation
Criteria is exceeded.

Determines how data is consoli
dated onto volume sets.

HISTORY_SET Catalog Name
Storage Class /CATALOG

Determines the catalog into which a
record of the operations performed
and the files backed up is written.

SBUPDT_Q Not supported. If a catalog
supports staging, ABS always
performs the catalog update in
a detached process.

Determines the Batch Queue in
which the System history set update
is performed.
SLS To ABS Conversion J–29

SLS To ABS Conversion
J.8 ABS Policy Attributes in SBK Terminology
J.8 ABS Policy Attributes in SBK Terminology
Table J–10, lists ABS Storage Class object parameters and their SLS SBK Equivalents.

SCRATCH_DAYS Storage Class /RETAIN Determines how long data is saved
before the tapes are recycled and
catalog entries removed.

OFFSITE_DATE
ONSITE_DATE

MDMS volumes support
OFFSITE_DATE and
ONSITE_DATE attributes,
and will automatically gener-
ate MOVE VOLUME com-
mands when these dates are
reached.

Determines when the volume sets
are moved offsite or onsite (i.e.
vaulting).

TAPE_LABELS Not supported. Determines if paper labels are
printed for the volumes used in the
backup

NOTES The MDMS description field
in the volume object is the
equivalent attribute.

Store a free form text note in the
volume record for the volumes used
in the backup.

DRIVE_TYPE Storage Class /DRIVE_LIST Determines the list of tape drives to
be used. It is recommended that
MDMS media types be set up cor
rectly rather than using this field.

N_DRIVES Environment
/DRIVE_COUNT

Determines the number of tape
drives to use during a backup opera
tion.

PROGRESS Not supported Notifies the operator after a certain
number of files have been backed
up.

REPLY_MSG Not supported. MDMS issues
all OPCOM messages in a
standard format

Determines the notification to be
performed when each backup opera
tion starts and ends.

STATUS_MAIL Environment /NOTIFY Determines who should be sent
MAIL when the job completes.

LOG_FILE Not supported. ABS gener-
ates a log file in ABS$LOG
with the same name as the
Save Request.

Determines the name of the log file
for the operation.

LISTING_GEN Environment /LISTING. ABS
will generate listing files, but
they are always located in
ABS$LISTINGS, and are
named the same as the Save
Request and the operation
number.

Determines the name of a backup
listing file to be produced from each
operation.

FULL Environment /LIST
ING=FULL

Determines if the listing file pro
vides all information about backed
up files, or only brief information.

PRINT_Q Not supported. Determines the Print queue on
which the listing file is printed.
SLS To ABS Conversion J–30

SLS To ABS Conversion
J.8 ABS Policy Attributes in SBK Terminology
Table J–10 ABS Storage Classes and SLS SBK Equivalent

Table J–11, lists ABS Execution Environment parameters and their SLS SBK Equivalents

Storage Class
Parameter SBK Equivalent Meaning

Name CONTINUE A common name which can be referenced by
multiple Save Requests

Primary Archive Loca
tion

<None> For on disk backups, this gives the disk and top
level directory where the savesets will be stored.

Primary Archive Type <None> This determines whether the Storage Class is
tape based (type is MDMS) or disk based (type
is FILES-11)

Owner <None> Determines the NODE::USER of the owner of
the Storage Class. The owner always has CON
TROL access.

ACL PROTECTION Determines the access to the backed up data.
ABS provides full ACL based access, while SLS
provides only OpenVMS-style system, owner,
group and world access.

Tape Pool TAPE_POOL The MDMS pool from which volumes will be
allocated for backups.

Type of Media MEDIA_TYPE The MDMS media type to be allocated for back
ups.

Retain SCRATCH_DAYS The number of days the backed up data will be
saved before the tapes are recycled. Note that a
Save Request can specify a retention shorter or
equal to the value in the Storage Class.

Consolidation Criteria CONTINUE This set of parameters determines how backup
savesets will be consolidated onto tapes. For
example, if the Consolidation Interval is set to 7
days, savesets will be appended onto a volume
set for 7 days before a new volume set is created.

Catalog Name HISTORY_SET The name of the catalog which stores data about
what files have been backed up, and where they
are located.

Number of Streams <None> The number of simultaneous Save requests
which can be writing into the Storage Class.
Determines the number of MDMS volume sets
simultaneously active in the Storage Class.

Media Location <None> The MDMS onsite location field to match for
allocat ing volumes for backups.

Drive List DRIVE_TYPE The list of specific drives to be used for backup
operations in this Storage Class. Normally, this
should be managed through MDMS drive
objects.
SLS To ABS Conversion J–31

SLS To ABS Conversion
J.8 ABS Policy Attributes in SBK Terminology

Table J–11 ABS Execution Environment Parameter and SLS SBK Equivalent

Table J–12, lists ABS Save Request parameters and their SLS SBK equivalents.

Environment
Parameter SBK Equivalent Meaning

Name <None> Identifies the Environment for reference by Save
Requests

Owner and ACL <None> Identifies the owner and access to the Environment.

Data Safety Options QUALIFIERS A bitmask containing the data safety options to be
applied during the backup. Data safety options
include CRC checking, and full data verification.

Listing Options LISTING_GEN
FULL

Determines whether a listing file is produced, and
whether the listing is a “full” listing or a “brief” list
ing.

Span Filesystem
Options

<None> For UNIX file systems, determines whether the
entire filesystem is backed up, even if it crosses
multiple physical devices.

Links Only <None> For UNIX file systems, determines whether ABS
backs up only the logical links, or backs up the data
as well.

Compression Options <None> For UNIX file systems, determines the type of com
pression to be applied to the savesets.

Original Object Action QUALIFIERS Determines the action to be taken on the original
data objects (e.g. the files backed up). Options
include None, Record Backup Date, or Delete

User Profile PRIVS Determines the username, privileges and access
rights used during the backup operation. The special
keyword “<REQUESTER>” indicates the backup
operations should be performed with the username,
privileges and access rights of the person issuing
the ABS Save Command.

Notification Criteria REPLY_MSG
STATUS_MAIL

Determines when notification occurs, what method
is used, and who is notified.

Locking Options QUALIFIERS Determines how much interlocking is done between
the backup in progress and an active file system.
Options include Ignore File Writers, and Hot
Backup.

Number of Drives N_DRIVES Determines the number of tape drives to be used
during the backup operations.

Retry Interval and
Count

<None> Determines how often and how many times a failed
backup should be retried.

Prolog Command PRE_PROCESS_FI
RST

A command to be executed when the backup starts.
Contrast to Save Request Prolog.

Epilog Command POST_PROCESS_
LAST

A command to be executed when the backup com
pletes. Contrast to Save Request Epilog.
SLS To ABS Conversion J–32

SLS To ABS Conversion
J.8 ABS Policy Attributes in SBK Terminology

Table J–12 ABS Save Request Parameter and SLS SBK Equivalent

Save Request
Parameter SBK Equivalent Meaning

Name SBK File name Identifies the group of backup operations to be per
formed.

Movement Type QUALIFIERS Determines whether the operations are Full, Incre
mental or Selective (i.e. individual file) operations.

Source Node NODE_n Node on which the data resides.

Include Specification FILES_n Identifies the data to be backed up. Multiple
include specifications can be given on a single
Save Request, and each can have a different Object
Type.

Object Type BACKUP_TYPE Gives the type of the data. ABS Supports many dif
ferent types of data, including OpenVMS Files,
UNIX Files, Oracle RDB Databases, and so forth.

Agent Qualifiers QUALIFIERS Allows backup agent specific qualifiers to be
added to the command used to backup the data.

Since and Before Date QUALIFIERS Determine whether data objects to be backed up
should be selected based upon creation/modifica
tion date.

Exclude Specification QUALIFIERS Determines selected data objects to be excluded
from the backup.

Storage Class Name <None> Gives the name of the Storage Class into which the
data is backed up.

Environment Name <None> Gives the name of the Execution Environment to
be used for the backup operations.

Start Time TIME_n Indicates the time at which the Save Request
should start each time it is scheduled. Note that
 an SBK can provide multiple DAYS_n and
TIME_n parameters, an ABS Save Request is
restricted to a single Start Time and Interval.

Scheduling Option and
Explicit

DAYS_n Identifies the repeat interval for the Save Request.
ABS provides a variety of predefined simple inter
vals, such as Daily, Weekly, Monthly, as well as
several “complex” intervals, such as Weekly Full
with Daily Incremental, and log based schedules.
See the Appendix "Log-n Backup Schedules"ABS
for a full description of log based schedules.

Prolog Command PRE_PROCESS_E
ACH

A command to be executed before each backup
operation within the Save Request starts. Contrast
to Environment Prolog.

Epilog Command POST_PROCESS_
EACH

A command to be executed after each backup oper
ation within the Save Request completes. Contrast
to Environment Epilog.
SLS To ABS Conversion J–33

K
Differences Between MDMS Version 2

and MDMS Version 3

This Appendix addresses differences between MDMS Version 2 and MDMS Version 3 (V3.0
and later). It describes differences in command syntax, software features replacing the MDMS
User, Operator, and Administrator interfaces, and features replacing the TAPESTART.COM
command procedure.

K.1 Comparing STORAGE and MDMS Commands
For MDMS version 3.0 and later, the MDMS command set replaces the STORAGE command
set. Table K–1compares the STORAGE command set with MDMS commands.

Table K–1 Comparing MDMS Version 2 and Version 3 Commands

MDMS Version 2 Commands... MDMS Version 3 Commands...

STORAGE ADD DRIVE MDMS SET DRIVE/ENABLED

STORAGE ADD MAGAZINE MDMS CREATE MAGAZINE

STORAGE ADD VOLUME MDMS CREATE VOLUME

STORAGE APPEND MDMS BIND VOLUME

STORAGE BIND MDMS MOVE VOLUME

STORAGE CREATE LABEL No equivalent feature

STORAGE EXPORT ACS MDMS MOVE VOLUME

STORAGE EXPORT CARTRIDGE MDMS MOVE VOLUME

STORAGE EXPORT MAGAZINE MDMS MOVE MAGAZINE

STORAGE IMPORT ACS MDMS MOVE VOLUME

STORAGE IMPORT CARTRIDGE MDMS MOVE VOLUME

STORAGE IMPORT MAGAZINE MDMS MOVE MAGAZINE

STORAGE INVENTORY ACS MDMS INVENTORY JUKEBOX

STORAGE INVENTORY JUKEBOX MDMS INVENTORY JUKEBOX

STORAGE LABEL No equivalent feature

STORAGE LOAD MDMS LOAD DRIVE
MDMS LOAD VOLUME

STORAGE RELEASE MDMS SET VOLUME /RELEASE
 Differences Between MDMS Version 2 and MDMS Version 3 K–1

Differences Between MDMS Version 2 and MDMS Version 3
K.2 MDMS V2 Forms Interface Options
K.2 MDMS V2 Forms Interface Options
The MDMS Version 2 forms interface provides features that are not found in the command set.
This section compares the features of the three forms interfaces with MDMS Version 3
commands.

STORAGE REMOVE DRIVE MDMS SET DRIVE/DISABLED

STORAGE REMOVE MAGAZINE MDMS DELETE MAGAZINE

STORAGE REMOVE VOLUME MDMS DELETE VOLUME

STORAGE REPORT SLOT MDMS REPORT VOLUME SPACES/SORT

STORAGE REPORT VOLUME MDMS REPORT VOLUME

STORAGE SELECT MDMS ALLOCATE DRIVE

STORAGE SET VOLUME MDMS SET VOLUME

STORAGE SHOW JUKEBOX MDMS SHOW JUKEBOX

STORAGE SHOW LAST_ALLOCATED No equivalent feature

STORAGE SHOW MAGAZINE MDMS SHOW MAGAZINE

STORAGE SHOW VOLUME MDMS SHOW VOLUME

STORAGE SPLIT MDMS UNBIND VOLUME

STORAGE UNBIND MDMS MOVE VOLUME

STORAGE UNLOAD DRIVE MDMS UNLOAD DRIVE

STORAGE UNLOAD VOLUME MDMS UNLOAD VOLUME

Table K–1 Comparing MDMS Version 2 and Version 3 Commands

Table K–2 Comparing MDMS V2 Forms and MDMS V3 Features

MDMS Version 2 Forms Features... MDMS Version 3 Features...

SLSUSER Menu COMMANDS Section
Show Volume
Deallocate Volume
Modify Scratch Date
Modify Volume Note
DCL Storage Command

MDMS SHOW VOLUME
MDMS DEALLOCATE VOLUME
MDMS SET VOLUME/SCRATCH_DATE
MDMS SET VOLUME/DESCRIPTION
MDMS commands

SLSUSER Menu REPORTS Section
All Owned Volumes
Volumes by Scratch Date

MDMS REPORT VOLUME/USER
MDMS REPORT VOLUME/FORECAST

SLSOPER Menu COMMANDS Section
Release Volumes MDMS SET VOLUME/RELEASE

Update Clean Data
Initialize Volumes
DCL Storage Command
Delete User Histories
Tapejuke Initialize Volume

None
MDMS INITIALIZE VOLUME
All MDMS Commands
None
MDMS INITIALIZE VOLUME
Differences Between MDMS Version 2 and MDMS Version 3 K-2

Differences Between MDMS Version 2 and MDMS Version 3
K.2 MDMS V2 Forms Interface Options
SLSOPER Menu MENUS Section
Maintenance Option
Add Volume
Add Volume Series
Remove Volume
Show Volume
Modify Volume
Modify Volume Series
Add Slot Definitions
Remove Slot Definitions
Generate Volume Report

MDMS CREATE VOLUME
MDMS CREATE VOLUME
MDMS DELETE VOLUME
MDMS SHOW VOLUME
MDMS SET VOLUME
MDMS SET VOLUME
MDMS SET LOCATION /SPACES
MDMS SET LOCATION /SPACES
MDMS REPORT VOLUME

SLSOPER Menu MENUS Section
Vault Management Option
Change to Onsite
Change to Offsite
Mass Movement
Change Onsite Date
Change Offsite Date
Volumes Offsite
Volumes to go Offsite
Volumes to come Onsite
Vault Profile Report
Change Name for Current Process (Vault)

MDMS MOVE VOLUME
MDMS MOVE VOLUME
MDMS MOVE VOLUME
MDMS SET VOLUME
MDMS SET VOLUME
MDMS REPORT VOLUME
MDMS REPORT VOLUME
MDMS REPORT VOLUME
MDMS REPORT VOLUME
MDMS SET VOLUME

SLSOPER Menu MENUS Section
Standby Archive
SYSCLN

None

SLSOPER Menu MENUS Section
ACS Management Option
Inventory Volume Series
Import Volume(s)
Initialize Volume Series
Load Volume Onto Drive
Unload Drive
Unload Volume
Export Volume(s)

MDMS INVENTORY JUKEBOX
MDMS MOVE VOLUME
MDMS INITIALIZE VOLUME
MDMS LOAD VOLUME or DRIVE
MDMS UNLOAD DRIVE
MDMS UNLOAD VOLUME
MDMS MOVE VOLUME

SLSOPER Menu REPORTS Section
Free Volumes
Allocated Volumes
Down Volumes
Volumes in Transition
Volumes Due for Allocation
Volumes Due for Cleaning
Quantity Control

MDMS REPORT VOLUME

SLSOPER Menu MISC Section
Repair Tape Jukebox Volume State

MDMS SET VOLUME

SLSMGR Menu
Exit None

Volume Pool Authorization
Database Access Authorization
HELP Screen for Keypad Definitions

MDMS CREATE or SET POOL
MDMS Rights
None

Table K–2 Comparing MDMS V2 Forms and MDMS V3 Features
 Differences Between MDMS Version 2 and MDMS Version 3 K–3

Differences Between MDMS Version 2 and MDMS Version 3
K.3 TAPESTART.COM Command Procedure
K.3 TAPESTART.COM Command Procedure
The command procedure TAPESTART.COM is no longer used. shows TAPESTART.COM
symbols and the comparable features of the MDMS Version 3.

Table K–3 Comparison of TAPESTART.COM to MDMS Version 3 Features.

TAPESTART.COM Feature... MDMS Version 3 Feature...

PRIMAST symbol MDMS$SYSTARTUP.COM symbol
MDMS$DATABASE_LOCATION

NET_REQUEST_TIMEOUT symbol Domain object record network timeout attribute

NODE symbol Node object record for each node

Media Triplet
MTYPE_n symbol
DENS_n symbol
DRIVES_n symbol

Media type object record,
name attribute,
density attribute,
Drive object record media types attribute

TAPE_JUKEBOXES symbol
USER_DEFINED_NAME_n symbol
(including the jukebox and drive device names)

All jukebox object records
Jukebox object record name attribute,
robot attribute,
Drive object record jukebox attribute

MGRPRI symbol Domain object record priority attribute

VERBOSE symbol There is no equivalent feature

Software Privileges
PRIV_SEEANY symbol
PRIV_MODANY symbol
PRIV_MAXSCR symbol
PRIV_LABEL symbol
PRIV_CLEAN symbol
PRIV_MODOWN symbol

MDMS rights do not map directly. See Command
Reference Guide for descriptions for setting
MDMS rights.

Operator Terminal Controls There is no equivalent feature

LOC symbol Domain object record onsite location attribute

PROTECTION symbol Domain object record protection attribute

ALLOCSIZE symbol There is no equivalent feature

LBL symbol There is no equivalent feature

FRESTA symbol Domain object record transition time attribute.
When it has no value, volumes transition to the
free state when the scratch date arrives.

TRANS_AGE symbol Domain object record transition time attribute.
When it has a value, volumes transition to the
transition state when the scratch date arrives.

ALLOCSCRATCH symbol Domain object record scratch time attribute

MAXSCRATCH symbol Domain object record maximum scratch time
attribute

TAPEPURGE_WORK symbol Domain object record mail users attribute

TAPEPURGE_MAIL symbol Domain object record mail users attribute
Differences Between MDMS Version 2 and MDMS Version 3 K-4

Differences Between MDMS Version 2 and MDMS Version 3
K.3 TAPESTART.COM Command Procedure
VLT symbol Domain object record offsite location attribute

Drive Controls
ALLDEV symbol
SELDEV symbol

No equivalent features

ALLTIM symbol No equivalent feature

TOPERS symbol Domain object record OPCOM classes attribute

LOAD symbols
QUICKLOAD symbol
QUICKLOAD_RETRIES symbol

No equivalent features

UNATTENDED_BACKUPS symbol No equivalent features

Table K–3 Comparison of TAPESTART.COM to MDMS Version 3 Features.
 Differences Between MDMS Version 2 and MDMS Version 3 K–5

L
Sample Configuration of MDMS

This appendix shows a sample configuration of Media and Device Management System
(MDMS) including examples for the steps involved.

L.1 Configuration Order

Configuration - which involves the creation or definition of MDMS objects, should take place in
the following order:

1. Location

2. Media type

3. Node

4. Jukebox

5. Drives

6. Pools

7. Volumes

Creating these objects in the above order ensures that the following informational message, does
not appear:

%MDMS-I-UNDEFINEDREFS, object contains undefined referenced objects

This message appears if an attribute of the object is not defined in the database. The object is cre-
ated even though the attribute is not defined. The sample configuration consists of the following:

• Four nodes

SMITH1 - ACCOUN cluster node
SMITH2 - ACCOUN cluster node
SMITH3 - ACCOUN cluster node
JONES - a client node

• TL826 Jukebox with robot 1DUA560 and the following six drives:

1MUA560
1MUA561
1MUA562
1MUA563
1MUA564
1MUA565
Sample Configuration of MDMS L–1

Sample Configuration of MDMS
L.1 Configuration Order
The following examples illustrate each step in the order of configuration.

L.1.1 Configuration Step 1 Example - Defining Locations

This example lists the MDMS commands to define an offsite and onsite location for this domain.

$!
$! create onsite location
$!
$ MDMS CREATE LOCATION BLD1_COMPUTER_ROOM -
 /DESCRIPTION="Building 1 Computer Room"
$ MDMS SHOW LOCATION BLD1_COMPUTER_ROOM
 Location: BLD1_COMPUTER_ROOM
 Description: Building 1 Computer Room
 Spaces:
 In Location:
$!
$! create offsite location
$!
$ MDMS CREATE LOCATION ANDYS_STORAGE -
 /DESCRIPTION="Andy’s Offsite Storage, corner of 5th and Main"
$ MDMS SHOW LOCATION ANDYS_STORAGE
 Location: ANDYS_STORAGE
 Description: Andy’s Offsite Storage, corner of 5th and Main
 Spaces:
 In Location:

L.1.2 Configuration Step 2 Example - Defining Media Type

This example shows the MDMS command to define the media type used in the TL826.

 !
$! create the media type
$!
$ MDMS CREATE MEDIA_TYPE TK88K -
 /DESCRIPTION="Media type for volumes in TL826 with TK88 drives" -
 /COMPACTION ! volumes are written in compaction mode
$ MDMS SHOW MEDIA_TYPE TK88K
 Media type: TK88K
 Description: Media type for volumes in TL826 with TK88 drives
 Density:
 Compaction: YES
 Capacity: 0
 Length: 0

L.1.3 Configuration Step 3 Example - Defining Domain Attributes

This example shows the MDMS command to set the domain attributes. The reason this com-
mand is not run until after the locations and media type are defined, is because they are default
attributes for the domain object. Note that the deallocation state (transition) is taken as the
default. All of the rights are taken as default also.

$!
$! set up defaults in the domain record
$!
$ MDMS SET DOMAIN -
 /DESCRIPTION="Smiths Accounting Domain" - ! domain name
 /MEDIA_TYPE=TK88K - ! default media type
 /OFFSITE_LOCATION=ANDYS_STORAGE - ! default offsite location
 /ONSITE_LOCATION=BLD1_COMPUTER_ROOM - ! default onsite location
 /PROTECTION=(S:RW,O:RW,G:RW,W) ! default protection for volumes
$ MDMS SHOW DOMAIN/FULL
 Description: Smiths Accounting Domain
Sample Configuration of MDMS L–2

Sample Configuration of MDMS
L.1 Configuration Order
 Mail: SYSTEM
 Offsite Location: ANDYS_STORAGE
 Onsite Location: BLD1_COMPUTER_ROOM
 Def. Media Type: TK88K
 Deallocate State: TRANSITION
 Opcom Class: TAPES
 Priority: 1536
 Request ID: 2576
 Protection: S:RW,O:RW,G:RW,W
 DB Server Node: SPIELN
 DB Server Date: 1-FEB-1999 08:18:20
 Max Scratch Time: NONE
 Scratch Time: 365 00:00:00
 Transition Time: 14 00:00:00
 Network Timeout: 0 00:02:00
 ABS Rights: NO
 SYSPRIV Rights: YES
Application Rights: MDMS_ASSIST
 MDMS_LOAD_SCRATCH
 MDMS_ALLOCATE_OWN
 MDMS_ALLOCATE_POOL
 MDMS_BIND_OWN
 MDMS_CANCEL_OWN
 MDMS_CREATE_POOL
 MDMS_DEALLOCATE_OWN
 MDMS_DELETE_POOL
 MDMS_LOAD_OWN
 MDMS_MOVE_OWN
 MDMS_SET_OWN
 MDMS_SHOW_OWN
 MDMS_SHOW_POOL
 MDMS_UNBIND_OWN
 MDMS_UNLOAD_OWN
 Default Rights:
 Operator Rights: MDMS_ALLOCATE_ALL
 MDMS_ASSIST
 MDMS_BIND_ALL
 MDMS_CANCEL_ALL
 MDMS_DEALLOCATE_ALL
 MDMS_INITIALIZE_ALL
 MDMS_INVENTORY_ALL
 MDMS_LOAD_ALL
 MDMS_MOVE_ALL
 MDMS_SHOW_ALL
 MDMS_SHOW_RIGHTS
 MDMS_UNBIND_ALL
 MDMS_UNLOAD_ALL
 MDMS_CREATE_POOL
 MDMS_DELETE_POOL
 MDMS_SET_OWN
 MDMS_SET_POOL
 User Rights: MDMS_ASSIST
 MDMS_ALLOCATE_OWN
 MDMS_ALLOCATE_POOL
 MDMS_BIND_OWN
 MDMS_CANCEL_OWN
 MDMS_DEALLOCATE_OWN
 MDMS_LOAD_OWN
 MDMS_SHOW_OWN
 MDMS_SHOW_POOL
 MDMS_UNBIND_OWN
 MDMS_UNLOAD_OWN

L.1.4 Configuration Step 4 Example - Defining MDMS Database Nodes

This example shows the MDMS commands for defining the three MDMS database nodes of the
cluster ACCOUN. This cluster is configured to use DECnet-PLUS.
Sample Configuration of MDMS L–3

Sample Configuration of MDMS
L.1 Configuration Order

EC-

ns-
Note that a node is defined using the DECnet node name as the name of the node.

• If the node has DECnet-PLUS installed, the DECnet Fullname attribute must be the D
net-PLUS full name.

• If the node uses TCP/IP, the TCP/IP attribute should be defined.

• If you use the GUI, you must define the TCP/IP attribute and include TCPIP in the Tra
ports attribute.

$!
$! create nodes
$! database node
$ MDMS CREATE NODE SMITH1 - ! DECnet node name
 /DESCRIPTION="ALPHA node on cluster ACCOUN" -
 /DATABASE_SERVER - ! this node is a database server
 /DECNET_FULLNAME=SMI:.BLD.SMITH1 - ! DECnet-Plus name
 /LOCATION=BLD1_COMPUTER_ROOM -
 /TCPIP_FULLNAME=SMITH1.SMI.BLD.COM - ! TCP/IP name
$ MDMS SHOW NODE SMITH1
 Node: SMITH1
 Description: ALPHA node on cluster ACCOUN
DECnet Fullname: SMI:.BLD.SMITH1
TCP/IP Fullname: SMITH1.SMI.BLD.COM:2501-2510
 Disabled: NO
Database Server: YES
 Location: BLD1_COMPUTER_ROOM
 Opcom Classes: TAPES
 Transports: DECNET,TCPIP
$ MDMS CREATE NODE SMITH2 - ! DECnet node name
 /DESCRIPTION="ALPHA node on cluster ACCOUN" -
 /DATABASE_SERVER - ! this node is a database server
 /DECNET_FULLNAME=SMI:.BLD.SMITH2 - ! DECnet-Plus name
 /LOCATION=BLD1_COMPUTER_ROOM -
 /TCPIP_FULLNAME=SMITH2.SMI.BLD.COM - ! TCP/IP name
 /TRANSPORT=(DECNET,TCPIP) ! TCPIP used by JAVA GUI and JONES
$ MDMS SHOW NODE SMITH2
 Node: SMITH2
 Description: ALPHA node on cluster ACCOUN
DECnet Fullname: SMI:.BLD.SMITH2
TCP/IP Fullname: SMITH2.SMI.BLD.COM:2501-2510
 Disabled: NO
Database Server: YES
 Location: BLD1_COMPUTER_ROOM
 Opcom Classes: TAPES
 Transports: DECNET,TCPIP
$ MDMS CREATE NODE SMITH3 - ! DECnet node name
 /DESCRIPTION="VAX node on cluster ACCOUN" -
 /DATABASE_SERVER - ! this node is a database server
 /DECNET_FULLNAME=SMI:.BLD.SMITH3 - ! DECnet-Plus name
 /LOCATION=BLD1_COMPUTER_ROOM -
 /TCPIP_FULLNAME=CROP.SMI.BLD.COM - ! TCP/IP name
 /TRANSPORT=(DECNET,TCPIP) ! TCPIP used by JAVA GUI and JONES
$ MDMS SHOW NODE SMITH3
 Node: SMITH3
 Description: VAX node on cluster ACCOUN
DECnet Fullname: SMI:.BLD.SMITH3
TCP/IP Fullname: CROP.SMI.BLD.COM:2501-2510
 Disabled: NO
Database Server: YES
 Location: BLD1_COMPUTER_ROOM
 Opcom Classes: TAPES
 Transports: DECNET,TCPIP
Sample Configuration of MDMS L–4

Sample Configuration of MDMS
L.1 Configuration Order
L.1.5 Configuration Step 5 Example - Defining a Client Node

This example shows the MDMS command for creating a client node. TCP/IP is the only trans-
port on this node.

$!
$! client node
$! only has TCP/IP
$ MDMS CREATE NODE JONES -
 /DESCRIPTION="ALPHA client node, standalone" -
 /NODATABASE_SERVER - ! not a database server
 /LOCATION=BLD1_COMPUTER_ROOM -
 /TCPIP_FULLNAME=JONES.SMI.BLD.COM - ! TCP/IP name
 /TRANSPORT=(TCPIP) ! TCPIP is used by JAVA GUI
$ MDMS SHOW NODE JONES
 Node: JONES
 Description: ALPHA client node, standalone
DECnet Fullname:
TCP/IP Fullname: JONES.SMI.BLD.COM:2501-2510
 Disabled: NO
Database Server: NO
 Location: BLD1_COMPUTER_ROOM
 Opcom Classes: TAPES
 Transports: TCPIP

L.1.6 Configuration Step 6 Example - Creating a Jukebox

This example shows the MDMS command for creating a jukebox

$!
$! create jukebox
$!
$ MDMS CREATE JUKEBOX TL826_JUKE -
 /DESCRIPTION="TL826 Jukebox in Building 1" -
 /ACCESS=ALL - ! local + remote for JONES
 /AUTOMATIC_REPLY - ! MDMS automatically replies to OPCOM requests
 /CONTROL=MRD - ! controled by MRD robot control
 /NODES=(SMITH1,SMITH2,SMITH3) - ! nodes the can control the robot
 /ROBOT=1DUA560 - ! the robot device
 /SLOT_COUNT=176 ! 176 slots in the library
$ MDMS SHOW JUKEBOX TL826_JUKE
 Jukebox: TL826_JUKE
 Description: TL826 Jukebox in Building 1
 Nodes: SMITH1,SMITH2,SMITH3
 Groups:
 Location: BLD1_COMPUTER_ROOM
 Disabled: NO
 Shared: NO
 Auto Reply: YES
 Access: ALL
 State: AVAILABLE
 Control: MRD
 Robot: 1DUA560
 Slot Count: 176
 Usage: NOMAGAZINE

L.1.7 Configuration Step 7 Example - Defining a Drive

This example shows the MDMS commands for creating the six drives for the jukebox.
This example is a command procedure that uses a counter to create the six drives. In this exam-
ple it is easy to do this because of the drive name and device name. You may want to have the
drive name the same as the device name. For example:
Sample Configuration of MDMS L–5

Sample Configuration of MDMS
L.1 Configuration Order
$ MDMS CREATE DRIVE 1MUA560/DEVICE=1MUA560

This works fine if you do not have two devices in your domain with the same name.

$ COUNT = COUNT + 1
$ IF COUNT .LT. 6 THEN GOTO DRIVE_LOOP
$DRIVE_LOOP:
$ MDMS CREATE DRIVE TL826_D1 -
 /DESCRIPTION="Drive 1 in the TL826 JUKEBOX" -
 /ACCESS=ALL - ! local + remote for JONES
 /AUTOMATIC_REPLY - ! MDMS automatically replies to OPCOM requests
 /DEVICE=1MUA561 - ! physical device
 /DRIVE_NUMBER=1 - ! the drive number according to the robot
 /JUKEBOX=TL826_JUKE - ! jukebox the drives are in
 /MEDIA_TYPE=TK88K - ! media type to allocate drive and volume for
 /NODES=(SMITH1,SMITH2,SMITH3)! nodes that have access to drive
$ MDMS SHOW DRIVE TL826_D1
 Drive: TL826_D1
 Description: Drive 1 in the TL826 JUKEBOX
 Device: 1MUA561
 Nodes: SMITH1,SMITH2,SMITH3
 Groups:
 Volume:
 Disabled: NO
 Shared: NO
 Available: NO
 State: EMPTY
 Stacker: NO
 Automatic Reply: YES
 RW Media Types: TK88K
 RO Media Types:
 Access: ALL
 Jukebox: TL826_JUKE
 Drive Number: 1
 Allocated: NO
 :
 :
 :
$ MDMS CREATE DRIVE TL826_D5 -
 /DESCRIPTION="Drive 5 in the TL826 JUKEBOX" -
 /ACCESS=ALL - ! local + remote for JONES
 /AUTOMATIC_REPLY - ! MDMS automatically replies to OPCOM requests
 /DEVICE=1MUA565 - ! physical device
 /DRIVE_NUMBER=5 - ! the drive number according to the robot
 /JUKEBOX=TL826_JUKE - ! jukebox the drives are in
 /MEDIA_TYPE=TK88K - ! media type to allocate drive and volume for
 /NODES=(SMITH1,SMITH2,SMITH3)! nodes that have access to drive
$ MDMS SHOW DRIVE TL826_D5
 Drive: TL826_D5
 Description: Drive 5 in the TL826 JUKEBOX
 Device: 1MUA565
 Nodes: SMITH1,SMITH2,SMITH3
 Groups:
 Volume:
 Disabled: NO
 Shared: NO
 Available: NO
 State: EMPTY
 Stacker: NO
 Automatic Reply: YES
 RW Media Types: TK88K
 RO Media Types:
 Access: ALL
 Jukebox: TL826_JUKE
 Drive Number: 5
 Allocated: NO
$ COUNT = COUNT + 1
$ IF COUNT .LT. 6 THEN GOTO DRIVE_LOOP
Sample Configuration of MDMS L–6

Sample Configuration of MDMS
L.1 Configuration Order
L.1.8 Configuration Step 8 Example - Defining Pools

This example shows the MDMS commands to define two pools: ABS and HSM. The pools need
to have the authorized users defined.

$!
$! create pools
$!
$ mdms del pool abs
$ MDMS CREATE POOL ABS -
 /DESCRIPTION="Pool for ABS" -
 /AUTHORIZED=(SMITH1::ABS,SMITH2::ABS,SMITH3::ABS,JONES::ABS)
$ MDMS SHOW POOL ABS
 Pool: ABS
 Description: Pool for ABS
Authorized Users: SMITH1::ABS,SMITH2::ABS,SMITH3::ABS,JONES::ABS
 Default Users:
$ mdms del pool hsm
$ MDMS CREATE POOL HSM -
 /DESCRIPTION="Pool for HSM" -
 /AUTHORIZED=(SMITH1::HSM,SMITH2::HSM,SMITH3::HSM)
$ MDMS SHOW POOL HSM
 Pool: HSM
 Description: Pool for HSM
Authorized Users: SMITH1::HSM,SMITH2::HSM,SMITH3::HSM
 Default Users:

L.1.9 Configuration Step 9 Example - Defining Volumes using the /VISION
qualifier

This example shows the MDMS commands to define the 176 volumes in the TL826 using the
/VISION qualifier. The volumes have the BARCODES on them and have been placed in the
jukebox. Notice that the volumes are created in the UNINITIALIZED state. The last command
in the example initializes the volumes and changes the state to FREE.

$!
$! create volumes
$!
$! create 120 volumeS for ABS
$! the media type, offsite location, and onsite location
$! values are taken from the DOMAIN object
$!
$ MDMS CREATE VOLUME -
 /DESCRIPTION="Volumes for ABS" -
 /JUKEBOX=TL826_JUKE -
 /POOL=ABS -
 /SLOTS=(0-119) -
 /VISION
$ MDMS SHOW VOLUME BEB000
 Volume: BEB000
 Description: Volumes for ABS
 Placement: ONSITE BLD1_COMPUTER_ROOM
 Media Types: TK88K Username:
 Pool: ABS Owner UIC: NONE
 Error Count: 0 Account:
 Mount Count: 0 Job Name:
 State: UNINITIALIZED Magazine:
 Avail State: UNINITIALIZED Jukebox: TL826_JUKE
Previous Vol: Slot: 0
 Next Vol: Drive:
 Format: NONE Offsite Loc: ANDYS_STORAGE
 Protection: S:RW,O:RW,G:RW,W Offsite Date: NONE
 Purchase: 1-FEB-1999 08:19:00 Onsite Loc: BLD1_COMPUTER_ROOM
 Creation: 1-FEB-1999 08:19:00 Space:
 Init: 1-FEB-1999 08:19:00 Onsite Date: NONE
Sample Configuration of MDMS L–7

Sample Configuration of MDMS
L.1 Configuration Order
 Allocation: NONE Brand:
 Scratch: NONE Last Cleaned: 1-FEB-1999 08:19:00
Deallocation: NONE Times Cleaned: 0
 Trans Time: 14 00:00:00 Rec Length: 0
 Freed: NONE Block Factor: 0
 Last Access: NONE
$!
$! create 56 volumes for HSM
$!
$ MDMS CREATE VOLUME -
 /DESCRIPTION="Volumes for HSM" -
 /JUKEBOX=TL826_JUKE -
 /POOL=HSM -
 /SLOTS=(120-175) -
 /VISION
$ MDMS SHOW VOL BEB120
 Volume: BEB120
 Description: Volumes for HSM
 Placement: ONSITE BLD1_COMPUTER_ROOM
 Media Types: TK88K Username:
 Pool: HSM Owner UIC: NONE
 Error Count: 0 Account:
 Mount Count: 0 Job Name:
 State: UNINITIALIZED Magazine:
 Avail State: UNINITIALIZED Jukebox: TL826_JUKE
Previous Vol: Slot: 120
 Next Vol: Drive:
 Format: NONE Offsite Loc: ANDYS_STORAGE
 Protection: S:RW,O:RW,G:RW,W Offsite Date: NONE
 Purchase: 1-FEB-1999 08:22:16 Onsite Loc: BLD1_COMPUTER_ROOM
 Creation: 1-FEB-1999 08:22:16 Space:
 Init: 1-FEB-1999 08:22:16 Onsite Date: NONE
 Allocation: NONE Brand:
 Scratch: NONE Last Cleaned: 1-FEB-1999 08:22:16
Deallocation: NONE Times Cleaned: 0
 Trans Time: 14 00:00:00 Rec Length: 0
 Freed: NONE Block Factor: 0
 Last Access: NONE
$!
$! initialize all of the volumes
$!
$ MDMS INITIALIZE VOLUME -
 /JUKEBOX=TL826_JUKE -
 /SLOTS=(0-175)
$ MDMS SHOW VOL BEB000
 Volume: BEB000
 Description: Volumes for ABS
 Placement: ONSITE BLD1_COMPUTER_ROOM
 Media Types: TK88K Username:
 Pool: ABS Owner UIC: NONE
 Error Count: 0 Account:
 Mount Count: 0 Job Name:
 State: FREE Magazine:
 Avail State: FREE Jukebox: TL826_JUKE
Previous Vol: Slot: 0
 Next Vol: Drive:
 Format: NONE Offsite Loc: ANDYS_STORAGE
 Protection: S:RW,O:RW,G:RW,W Offsite Date: NONE
 Purchase: 1-FEB-1999 08:19:00 Onsite Loc: BLD1_COMPUTER_ROOM
 Creation: 1-FEB-1999 08:19:00 Space:
 Init: 1-FEB-1999 08:19:00 Onsite Date: NONE
 Allocation: NONE Brand:
 Scratch: NONE Last Cleaned: 1-FEB-1999 08:19:00
Deallocation: NONE Times Cleaned: 0
 Trans Time: 14 00:00:00 Rec Length: 0
 Freed: NONE Block Factor: 0
 Last Access: NONE
Sample Configuration of MDMS L–8

out the

rrent

ror
bly at
ions.

rms
IP

M
Converting SLS/MDMS V2.X to MDMS V3

M.1 Operational Differences Between SLS/MDMS V2 & MDMS V3
This appendix discusses the main operational differences in the new version of MDMS from
previous versions. In some cases, there are conceptual differences in approach, while others are
more changes of the ’nuts and bolts’ kind. This appendix is designed to acquaint you with the
changes, including why some of them were made, in order to make the upgrade as smooth as
possible. It will also enable you to use the new features to optimize your configuration and usage
of the products.

M.1.1 Architecture

The media manager used for previous versions of ABS and HSM was embedded within the SLS
product. The MDMS portion of SLS was implemented in the same requester
(SLS$TAPMGRRQ), database (SLS$TAPMGRDB) and OPCOM (SLS$OPCOM) processes
used for SLS.

The STORAGE DCL interface contained both SLS and MDMS commands, as did the forms
interface and the configuration file TAPESTART.COM. All media management status and error
messages used the SLS prefix. All in all, it was quite difficult to determine where MDMS left off
and SLS began. In addition, SLS contained many restrictions in its design that inhibited optimal
use of ABS and HSM in a modern environment.

Compaq reviewed the SLS/MDMS design and the many requests for enhancements and decided
to completely redesign the media manager for ABS and HSM. The result is MDMS V3 (V3.0
and later), which is included as the preferred media manager for both ABS and HSM V3.0 and
later. The main functional differences between MDMS V3 and previous versions include:

• An object oriented design that begins at the user interfaces and is propagated through
product. You will become familiar with the ten classes of objects and use a consistent
interface to manipulate them. A multi-threaded design that allows any number of concu
operations throughout the MDMS domain.

• Complete separation from SLS. MDMS now has its own distinct user interfaces and er
messages. Its two fully functional interfaces (DCL and GUI) can be used interchangea
your preference. It is no longer necessary to switch interfaces to perform certain funct
The GUI is usable on OpenVMS and Windows-based PCs.

• A simplified design that utilizes only one server process on a node. This process perfo
all MDMS operations on a node. Support of modern network protocols including TCP/
and DECnet-Plus with fullname support.

• New features that allow lights-out operations and enhance ease of use.

• A non-device-specific approach to jukebox handling that should allow support of new
devices without code modifications. Flexible logging and auditing capabilities that allow
you to see what MDMS is working on and has completed.
 Converting SLS/MDMS V2.X to MDMS V3 M–1

Converting SLS/MDMS V2.X to MDMS V3
M.1 Operational Differences Between SLS/MDMS V2 & MDMS V3

re

ly

n

nd
arted.

mes

orted

 and

. This
ject
• While MDMS V3 has been completely re-engineered, a great effort was made to ensu
compatibility and upgradability with the previous version.

• Important attributes and functions that you may be using are retained, albeit in a slight
different form.

The following sections will guide you through the changes one by one.

M.1.2 MDMS Interfaces

The previous SLS/MDMS contained several "interfaces" that you used to configure and ru
operations. These were:

• The file TAPESTART.COM - used for configuration of drives, jukeboxes, media types a
other related parameters. Changes to the configuration required SLS/MDMS to be rest

• DCL STORAGE commands - used for day-to-day operations and manipulation of volu
and magazines

• A forms interface - used for more complex operations and certain operations not supp
by DCL.

• Utilities like SLS$VOLUME to repair the database after an error

While these interfaces together provided a fully functional product, their inconsistent syntax
coverage made them hard to use.

With MDMS V3, a radical new approach was taken. Two interfaces were chosen for
implementation, each of which is fully functional:

A modern DCL interface – this interface was designed with a consistent syntax which is
easier to remember. It is also functionally complete so that all MDMS operations can be initiated
without manipulating files or forms. This interface can be used by batch jobs and command
procedures, as well as by users.

A modern GUI interface – based on Java technology, is provided for those users who prefer
graphical interfaces. Like the DCL interface, it is functionally complete and all operations can be
initiated from it (with necessary exceptions).

In addition, it contains a number of wizards that can be used to guide you through complex
operations such as configuration and volume rotation. The GUI is usable on both OpenVMS
Alpha (V7.1 and later) systems and Windows-based PC systems.

Note

The GUI requires TCP/IP to be running on the OpenVMS MDMS server node and the
node on which the GUI is running.

There are also a limited number of logical names used for tailoring the functionality of the
product and initial startup (when the database is not available).The forms interface,
TAPESTART and the utilities have been eliminated. When you install MDMS V3 you will be
asked about converting TAPESTART and the old databases to the new format. This is discussed
in the Appendix of the Guide to Operations.

Both the DCL and GUI take a forgiving approach to creating, modifying and deleting objects, in
that they allow you to perform the operation even if it creates an inconsistency in the database, as
follows:

• You can create or modify objects by referencing objects that have not yet been defined
allows you to enter commands "out-of-order". A warning message is displayed if an ob
contains undefined references to other objects.
Converting SLS/MDMS V2.X to MDMS V3 M-2

Converting SLS/MDMS V2.X to MDMS V3
M.1 Operational Differences Between SLS/MDMS V2 & MDMS V3

ill

the

. The
t.

ges

.
here
rights

e
x

nce

in

sion
ls had

here in

n be
rts a
odes,

g
ry
ch
en the

es). In
jects

e
y
one

o
• You can delete objects that have references to other objects. The GUI delete wizard w
help go through procedures to clean up references in order.

• One other global feature has been added to MDMS V3 when creating objects. This is
INHERIT option that allows you to create an object using most of the attributes of an
existing object. All fields except the object name and protected fields may be inherited
Command Reference Guide lists fields that cannot be inherited for any particular objec

M.1.3 Rights and Privileges

Both the DCL interface and the GUI require privileges to execute commands. These privile
apply to all commands, including defining objects and attributes that used to reside in
TAPESTART.

With MDMS V3, privileges are obtained by defining MDMS rights in users' UAF definitions
There are three high-level rights, one each for an MDMS user, application and operator. T
are also a large set of low-level rights, several for each command, that relate to high level
by a mapping defined in the domain object.

In addition, a guru right is enabled which allows any command, and the OpenVMS privileg
SYSPRV can optionally be used instead of the guru right. This mechanism replaces the si
SLS/MDMS V2 rights defined in TAPESTART and the OPER privilege.

A full description of rights can be found in the Appendix of the ABS/HSM Command Refere
Guide.

M.1.4 The MDMS Domain

There was no real concept of a domain with SLS/MDMS V2. The scope of operations with
SLS varied according to what was being considered.

For example, attributes defined in TAPESTART were applicable to all nodes using that ver
of the file - normally from one node to a cluster. By contrast, volumes, magazines and poo
scope across clusters and were administered by a single database process running somew
the environment.

MDMS V3 formally defines a domain object, which contains default attribute values that ca
applied to any object which does not have them specifically defined. MDMS formally suppo
single domain, which supports a single database. All objects (jukeboxes, drives, volumes, n
magazines etc.) are defined within the domain.

This introduces some level of incompatibility with the previous version, especially regardin
parameters stored in TAPESTART. Since TAPESTART could potentially be different on eve
node, default parameters like MAXSCRATCH could potentially have different values on ea
node (although there seemed to be no particularly good reason for this). MDMS V3 has tak
approach of defining default attribute values at the domain level, but also allowing you to
override some of these at the a specific object level (for example, OPCOM classes for nod
other cases, values such at LOC and VAULT defined in TAPESTART are now separate ob
in their own right.

After installing MDMS V3, you will need to perform conversions on each TAPESTART that
you have in your domain. If your TAPESTART files on every node were compatible (not
necessarily identical, but not conflicting) this conversion will be automatic. However, if ther
were conflicts, these are flagged in a separate conversion log file, and need to be manuall
resolved. For example, if there are two drives called 1MUA500 on different nodes, then
or both need to be renamed for use in the new MDMS.

It is possible to support multiple domains with MDMS V3, but when you do this you need t
ensure that no objects span more than one domain.
 Converting SLS/MDMS V2.X to MDMS V3 M–3

Converting SLS/MDMS V2.X to MDMS V3
M.1 Operational Differences Between SLS/MDMS V2 & MDMS V3
Each domain contains its own database, which has no relationship to any database in another
domain.

For example, your company may have two autonomous groups which have their own computer
resources, labs and personnel. It is reasonable for each group to operate within their own
domain, but realize that nodes, jukeboxes and volumes cannot be shared among the two groups.
If there is a need to share certain resources (e.g. jukeboxes) it is also possible to utilize a single
domain, and separate certain resources in other ways.

M.1.5 Drives

The drive object in MDMS is similar in concept to a drive in SLS/MDMS V2. However, the
naming convention for drives in MDMS V3 is different.

In V2, drives were named after the OpenVMS device name, optionally qualified by a node.

In MDMS V3, drives are named like most other objects - they may be any name up to 31
characters in length, but they must be unique within the domain. This allows you to give drives
names like DRIVE_1 rather than 1MUA510 if you wish, and specify the OpenVMS device
name with the DEVICE_NAME attribute. It is also equally valid to name the drive after the
OpenVMS device name as long as it is unique within the domain.

Nodes for drives are specified by the NODES or GROUPS attributes. You should specify all
nodes or groups that have direct access to the drive.

Do not specify a node or group name in the drive name or OpenVMS device name.

Consider two drives named 1MUA500, one on cluster BOSTON, the other on cluster
HUSTON, and you wish to use a single MDMS domain.

Here’s how you might set up the drives

$ MDMS CREATE DRIVE BOS_MUA500/DEVICE=1MUA500/GROUP=BOSTON
$ MDMS CREATE DRIVE HUS_MUA500/DEVICE=1MUA500/GROUP=HUSTON

The new ACCESS attribute can limit use of the drive to local or remote access. Local access is
defined as access by any of the nodes in the NODES attribute, or any of the nodes defined in the
group object defined in the GROUP attributes. Remote access is any other node. By default, both
local and remote access are allowed.

With MDMS V3, drives may be defined as being as jukebox controlled, stacker controlled or
stand-alone as follows:

A drive is jukebox controlled when it resides in a jukebox, and you wish random-access
loads/unloads of any volume in the jukebox. Define a jukebox name, a control mechanism
(MRD or DCSC), and a drive number for an MRD jukebox. The drive number is the number
MRD uses to refer to the drive, and starts from zero.

A drive may be defined as a stacker when it resides in a jukebox and you wish sequential loading
of volumes, or if the drive supports a stacker loading system. In this case, do not define a
jukebox name, but set the STACKER attribute.

If the drive is stand-alone (loadable only by an operator), do not define a jukebox and clear the
STACKER attribute.

Set the AUTOMATIC_REPLY attribute if you wish OPCOM requests on the drive to be
completed without an operator reply. This enables a polling scheme which will automatically
cancel the request when the requested condition has been satisfied.
Converting SLS/MDMS V2.X to MDMS V3 M-4

Converting SLS/MDMS V2.X to MDMS V3
M.1 Operational Differences Between SLS/MDMS V2 & MDMS V3

ccess
ed in

efault,

box

x

o
ay
ion).

tion.

with
 set of
Unlike
e in a
nd
 the

ently

n

l

 and
to

ed by
r the

d.

ination
e
ng,
ly on
M.1.6 Jukeboxes

In previous SLS/MDMS versions, jukeboxes were differentiated as libraries, loaders and ACS
devices, each with their own commands and functions. With MDMS V3, all automatic loading
devices are brought together under the concept of a jukebox object.

Jukeboxes are named like other objects as a unique name up to 31 characters. Each jukebox may
be controlled by one of two subsystems:

• MRD - for most SCSI jukeboxes, including some StorageTek silos

• DCSC - for most existing and older StorageTek silos

The new ACCESS attribute can limit use of the jukebox to local or remote access. Local a
is defined as access by any of the nodes in the NODES attribute, or any of the nodes defin
the group object defined in the GROUP attributes. Remote access is any other node. By d
both local and remote access is allowed.

For MRD jukeboxes, the robot name is the name of the device that MRD accesses for juke
control, and is equivalent to the device name listed first in the old TAPE_JUKEBOXES
definition in TAPESTART, but without the node name. As with drives, nodes for the jukebo
must be specified using the NODES or GROUPS attributes.

Jukeboxes now have a LOCATION attribute, which is used in OPCOM messages related t
moving volumes into and out of the jukebox. When moving volumes into a jukebox, you m
first be prompted to move them to the jukebox location (if they are not already in that locat
Likewise, when moving volumes out of the jukebox they will first be moved to the jukebox
location. The reason for this is practical; it is more efficient to move all the volumes from
wherever they were to the jukebox location, then move all the volumes to the final destina

 One of the more important aspects of jukeboxes is whether you will be using the jukebox
magazines. As described in the magazine section below, MDMS V3 treats magazines as a
volumes within a physical magazine that share a common placement and move schedule.
SMS/MDMS V2, it is not necessary to relate volumes to magazines just because they resid
physical magazine, although you can. It is equally valid for volumes to be moved directly a
individually in and out of jukeboxes regardless of whether they reside in a magazine within
jukebox.

This is the preferred method when it is expected that the volumes will be moved independ
in and out of the jukebox.

If you decide to formally use magazines, you should set the jukebox usage to magazine. I
addition, if the jukebox can potentially hold multiple magazines at once (for example, a
TL820style jukebox), you can optionally define a topology field that represents the physica
topology of the jukebox (i.e. towers, faces, levels and slots). If you define a topology field,
OPCOM messages relating to moving magazines in and out of the jukebox will contain a
magazine position in the jukebox, rather than a start slot for the magazine. Use of topology
position is optional, but makes it easier for operators to identify the appropriate magazine
move.

Importing and exporting volumes (or magazines) into and out of a jukebox has been replac
a common MOVE command, that specifies a destination parameter. Depending on whethe
destination is a jukebox, a location or a magazine, the direction of movement is determine
Unlike previous versions, you can move multiple volumes in a single command, and the
OPCOM messages contain all the volumes to move that have a common source and dest
location. If the jukebox supports ports or caps, all available ports and caps will be used. Th
move is flexible in that you can stuff volumes into the ports/caps in any order when importi
and all ports will be used on export. All port/cap oriented jukeboxes support automatic rep
 Converting SLS/MDMS V2.X to MDMS V3 M–5

Converting SLS/MDMS V2.X to MDMS V3
M.1 Operational Differences Between SLS/MDMS V2 & MDMS V3
OPCOM messages meaning that the messages do not have to be acknowledged for the move to
complete.

M.1.7 Locations

The concept of locations has been greatly expanded from SLS/MDMS V2, where a copy of
TAPESTART had a single "onsite" location defined in the LOC symbol, and a single "offsite"
location defined in the "VAULT" symbol.

With MDMS V3, locations are now separate objects with the usual object name of up to 31
characters. Locations can be arranged in a hierarchy, allowing locations to be within other
locations. For example, you can define BOSTON_CAMPUS as a location, with BUILDING_1,
BUILDING_2 located in BOSTON_CAMPUS, and ROOM_100, ROOM_200 located within
BUILDING_1. Locations that have common roots are regarded as compatible locations, which
are used for allocating drives and volumes. For example, when allocating a volume currently
located in ROOM_200 but specifying a location of BUILDING_1, these two locations are
considered compatible. However, if BUILDING_2 was specified, they are not considered
compatible since ROOM_200 is in BUILDING_1.

Locations are not officially designated as ONSITE or OFFSITE, as they could be both in some
circumstances. However, each volume and magazine have offsite and onsite location attributes
that should be set to valid location objects. This allows for any number of onsite or offsite
locations to be defined across the domain.

You can optionally associate "spaces" with locations: spaces are subdivisions within a location
in which volumes or magazines can be stored. The term "space" replaces the term "slot" in
SLS/MDMS V2 as that term was overloaded. In MDMS V3, "slot" is reserved for a numeric slot
number in a jukebox or magazine, whereas a space can consist of up to 8 alphanumeric
characters.

M.1.8 Media Types

In SLS/MDMS V2, media type, density, length and capacity were attributes of drives and
volumes, defined both in TAPESTART and in volume records. With MDMS V3, media types
are objects that contain the attributes of density, compaction, length, and capacity; drives and
volumes reference media types only; the other attributes are defined within the media type
object.

If you formerly had media types defined in TAPESTART with different attributes, you need to
define multiple media types with MDMS V3. For example, consider the following
TAPESTART definitions:

MTYPE_1 := TK85K
DENS_1 :=
DRIVES_1 := 1MUA510:, 1MUA520:
MTYPE_2 := TK85K
DENS_2 := COMP
DRIVES_2 := 1MUA510:, 1MUA520:

This definition contains two media type definitions, but with the same name. In MDMS V3, you
need to define two distinct media types and allow both drives to support both media types. The
equivalent commands in MDMS V3 would be:

$ MDMS CREATE MEDIA_TYPE TK85K_N /NOCOMPACTION
$ MDMS CREATE MEDIA_TYPE TK85K_C /COMPACTION
$ MDMS CREATE DRIVE 1MUA510:/MEDIA_TYPES=(TK85K_N,TK85K_C)
$ MDMS CREATE DRIVE 1MUA520:/MEDIA_TYPES=(TK85K_N,TK85K_C)
Converting SLS/MDMS V2.X to MDMS V3 M-6

Converting SLS/MDMS V2.X to MDMS V3
M.1 Operational Differences Between SLS/MDMS V2 & MDMS V3
M.1.9 Magazines

As discussed in the jukebox section, the concept of magazine is defined as set of volumes
sharing common placement and move schedules, rather than simply being volumes loaded in a
physical magazine. With the previous SLS/MDMS V2, all volumes physically located in
magazines had to be bound to slots in the magazine for both DLT-loader jukeboxes, and TL820
style bin-packs (if moved as a whole).

When converting from SLS/MDMS V2 to MDMS V3, the automatic conversion utility will take
existing magazine definitions and create magazines for MDMS V3. It is recommended that you
continue to use magazines in this manner until you feel comfortable eliminating them. If you do
eliminate them, you remove the dependency of moving all volumes in the magazine as a whole.
For TL820 style jukeboxes, volumes will move via the ports.

For DLT-loader style jukeboxes, OPCOM requests will refer to individual volumes for
movement. In this case, the operator should remove the magazine from the jukebox, remove or
insert volumes into it and reload the magazine into the jukebox.

If you utilize magazines with TL820-style jukeboxes, movement of magazines into the jukebox
can optionally be performed using jukebox positions (i.e. the magazine should be placed in
tower n, face n, level n) instead of a start slot. For this to be supported, the jukebox should be
specified with a topology as explained in the jukebox section. For single-magazine jukeboxes
like the TZ887, the magazine can only be placed in one position (i.e. start slot 0).

Like individual volumes, magazines can be set up for automatic movement to/from an offsite
location by specifying an offsite/onsite location and date for the magazine. All volumes in the
magazine will be moved. An automatic procedure is executed daily at a time specified by logical
name

MDMS$SCHEDULED_ACTIVITIES_START_HOUR, or at 01:00 by default. However,
MDMS V3 also allows these movements to be initiated manually using a /SCHEDULE qualifier
as follows:

$ MDMS MOVE MAGAZINE */SCHEDULE=OFFSITE ! Scheduled moves to offsite
$ MDMS MOVE MAGAZINE */SCHEDULE=ONSITE ! Scheduled moves to onsite
$ MDMS MOVE MAGAZINE */SCHEDULE ! All scheduled moves

M.1.10Nodes

A node is an OpenVMS computer system capable of running MDMS V3, and a node object must
be created for each node running ABS or HSM in the domain. Each node object has a node
name, which must be the same as the DECnet Phase IV name of the system (i.e. SYS$NODE) if
the node runs DECnet, otherwise it can be any unique name up to 31 characters in length.

If you wish the node to support either or both DECnet-Plus (Phase V) or TCP/IP, then you need
to define the appropriate fullnames for the node as attributes of the node. Do not specify the
fullnames as the node name. For example, the following command specifies a node capable of
supporting all three network protocols:

$ MDMS CREATE NODE BOSTON -
$_ /DECNET_FULLNAME=CAP:BOSTON.AYO.CAP.COM -
$_ /TCPIP_FULLNAME=BOSTON.AYO.CAP.COM

A node can be designated as supporting a database server or not. A node supporting a database
server must have direct access to the database files in the domain (DFS/NFS access is not
recommended). The first node you install MDMS V3 on should be designated as a database
server.
 Converting SLS/MDMS V2.X to MDMS V3 M–7

Converting SLS/MDMS V2.X to MDMS V3
M.1 Operational Differences Between SLS/MDMS V2 & MDMS V3
Subsequent nodes may or may not be designated as database servers. Only one node at a time
actually performs as the database server, but if that node fails or is shut down, another designated
database server node will take over.

M.1.11Groups

MDMS V3 introduces the group object as a convenient mechanism for describing a group of
nodes that have something in common. In a typical environment, you may wish to designate a
cluster alias as a group, with the constituent nodes defined as attributes. However, the group
concept may be applied to other groups of nodes rather than just those in a cluster. You may
define as many groups as you wish, and individual nodes may be defined in any number of
groups. However, you may not specify groups within groups, only nodes.

 You would typically define groups as a set of nodes that have direct access to drives and
jukeboxes, then simply relate the group to the drive or jukebox using the GROUPS attribute.
Other uses for groups may be for the definition of users. For example, user SMITH may be the
same person for both the BOSTON and HUSTON clusters, so you might define a group
containing constituent nodes from the BOSTON and HUSTON clusters. You might then utilize
this group as part of an authorized user for a volume pool.

M.1.12 Pools

Pools retain the same purpose for MDMS V3 as for SLS/MDMS V2. They are used to validate
users for allocating free volumes. Pool authorization used to be defined through the old forms
interface. With MDMS V3, pool authorization is through the pool object. A pool object needs to
be created for each pool in the domain.

Pool objects have two main attributes: authorized users and default users. Both sets of users must
be in the form NODE::USERNAME or GROUP::USERNAME, and a pool can support up to
1024 characters of authorized and default users. An authorized user is simply a user that is
allowed to allocate free volumes from the pool. A default user also allows that user to allocate
free volumes from the pool, but in addition it specifies that the pool is to be used when a user
does not specify a pool on allocation. As such, each default user should be specified in only one
pool, whereas users can be authorized for any number of pools.

M.1.13 Volumes

The volume object is the most critical object for both MDMS V3 and SLS/MDMS V2. Nearly
all of the attributes from V2 have been retained, although a few have been renamed. When
converting from SLS/MDMS V2.X to MDMS V3, all volumes in the old volume database are
created in the new MDMS V3 database. Support for the following attributes has been changed or
is unsupported:

Table M–1 Volume Attributes

Old Name New Name/Support

Density Unsupported - included in media type object

Flag State

Length Unsupported - included in media type object

Location Onsite Location

Notes Description

Offsite Offsite Date
Converting SLS/MDMS V2.X to MDMS V3 M-8

Converting SLS/MDMS V2.X to MDMS V3
M.1 Operational Differences Between SLS/MDMS V2 & MDMS V3

s
tes.

me
ype

e

e SET
 as a

es,
s you

e used

ds
t with
hould

re:

ume

 time.

t
also
You can create volumes in the MDMS V3 database in one of three ways:

• • By using the CREATE VOLUME command (or GUI equivalent) - this explicitly create
volumes in the database, and gives you the most flexibility in specifying volume attribu

• By physically inserting volumes into a jukebox, then performing an INVENTORY
JUKEBOX/CREATE command referencing a jukebox/slot range (MRD only), or a volu
range (DCSC only). Volume attributes can be set from an inherited volume, or media t
can be specified. You can later use SET VOLUME to customize other attributes.

• By performing scratch loads in non-jukebox drives with the LOAD DRIVE/CREATE
command. Volume attributes can be set from an inherited volume, or media type can b
specified. You can later use SET VOLUME to customize other attributes.

Once a volume is created and initial attributes are set, it is not normally necessary to use th
VOLUME commands to change attributes. Rather, the attributes are automatically modified
result of some action on the volume, such as ALLOCATE or LOAD. However, in some cas
the volume database and physical reality may get out of synchronization and in these case
can use SET VOLUME to correct the database.

Note that several fields in the volume object are designated as "protected". These fields ar
by MDMS to control the volume's operations within MDMS. You need a special privilege to
change protected fields, and in the GUI you need to "Enable Protected" to make these fiel
writable. When changing a protected field you should ensure that its new value is consisten
other attributes. For example, if manually setting the volume's placement to jukebox, you s
ensure that a jukebox name is defined.

Two key attributes in the volume object are "state" and "placement". The volumes states a

• Uninitialized - This is a new state which is the default when a volume is created. A vol
cannot be allocated in this state, and you should either initialize the volume using the
MDMS INITIALIZE command, or set the volume to /PREINITIALIZED, which puts it in
the Free state.

• Free - This is equivalent to the SLS/MDMS V2 Free state, from which volumes can be
initialized.

• Allocated - This is equivalent to the SLS/MDMS V2 Allocated state. Allocated volumes
cannot be deleted or otherwise re-used until they are deallocated.

• Transition - This is equivalent to the SLS/MDMS V2 Transition state, that disallows
reallocation for a period of time called the Transition Time. Deallocating volumes will
either place them in the Transition state or the Free state, depending on the Transition

• Unavailable - This is equivalent to the SLS/MDMS V2 Down state, which removes a
volume from use.

The placement attribute is a new attribute for MDMS V3, and describes a volume's curren
placement: in a drive, jukebox, magazine or onsite or offsite location. The placement may

Onsite Onsite Date

Other Side Unsupported - obsolete feature with RV64 only

Side Unsupported - obsolete feature with RV64 only

Slot Space

Zero Unsupported - can set counters individually

Table M–1 Volume Attributes
 Converting SLS/MDMS V2.X to MDMS V3 M–9

Converting SLS/MDMS V2.X to MDMS V3
M.2 Converting SLS/MDMS V2.X Symbols and Database
be "moving", meaning that it is changing placements but the change has not completed. No load,
unload or move commands may be issued to a volume that is moving. While a volume is
moving, it is sometimes necessary for an operator to determine to where it is moving: for
example, moving from a jukebox to a onsite location and space. The operator can issue a SHOW
VOL-UME command for moving volumes that shows exactly to where the volume is supposed
to be moved.

The new MDMS V3 CREATE VOLUME command replaces the old "Add Volume" storage
command. Note that most attributes are supported for both the create volume and set volume
commands for consistency purposes.

Volumes can be set up for automatic movement to/from an offsite location by specifying an
offsite/onsite location and date, similar to MDMS/SLS V2. Similarly, volumes can be set up for
automatic recycling using the scratch date (to go from the allocated to transition states) and free
dates (to go from the transition to free states). An automatic procedure is executed daily at a time
specified by logical name MDMS$SCHEDULED_ACTIVITIES_START_HOUR, or at 01:00
by default. However, MDMS V3 also allows these movements/state changes to be initiated
manually using a /SCHEDULE qualifier as follows:

$ MDMS MOVE VOLUME */SCHEDULE=OFFSITE ! Scheduled moves to offsite
$ MDMS MOVE VOLUME */SCHEDULE=ONSITE ! Scheduled moves to onsite
$ MDMS MOVE VOLUME */SCHEDULE ! All scheduled moves
$ MDMS DEALLOCATE VOLUME /SCHEDULE ! All scheduled deallocations

MDMS V3 continues to support the ABS volume set objects (those objects whose volume IDs
begins with "&+"). These are normally hidden objects, but they may be displayed in SHOW
VOLUME and REPORT VOLUME commands with the ABS_VOLSET option.

In all other respects, the MDMS V3 volume object is equivalent to the SLS/MDMS V2 volume
object.

M.1.14Remote Devices

In MDMS V3, support for remote devices is handled through the Remote Device Facility (RDF)
in the same manner that was supported for SLS/MDMS V2. DECnet support on both the client
and target nodes is required when using RDF.

M.2 Converting SLS/MDMS V2.X Symbols and Database
This section describes how to convert the SLS/MDMS V2.X symbols and database to Media and
Device Management Services Version 3 (MDMS). The conversion is automated as much as
possible, however, you will need to make some corrections or add attributes to the objects that
were not present in SLS/MDMS V2.X.

Before doing the conversion, you should read Chapter 16 - MDMS Configuration in this Guide
to Operations to become familiar with configuration requirements.

All phases of the conversion process should be done on the first database node on which you
installed MDMS V3. During this process you will go through all phases of the conversion:

1. Convert the symbols in SYS$STARTUP:TAPESTART.COM into the following objects:

• Locations

• Domain

• Nodes

• Media types

• Jukeboxes
Converting SLS/MDMS V2.X to MDMS V3 M-10

Converting SLS/MDMS V2.X to MDMS V3
M.2 Converting SLS/MDMS V2.X Symbols and Database

2.x

e
other

ng

e

le and

se

ach

t to be
ange in
 or this

 V3
• Drives

2. Convert the database authorization file, VALIDATE.DAT, into node objects.

• Convert the rest of the database files:

• Pool Authorization file (POOLAUTH.DAT)

• Slot Definition file (SLOTMAST.DAT)

• Volume Database file (TAPEMAST.DAT)

• Magazine Database file (SLS$MAGAZINE_MASTER_FILE.DAT)

When you install on any other node that does not use the same TAPESTART.COM as the
database node, you only do the conversion of TAPESTART.COM

.

M.2.1 Executing the Conversion Command Procedure

To execute the conversion command procedure, type in the following command:

$ @MDMS$SYSTEM:MDMS$CONVERT_V2_TO_V3

The command procedure will introduce itself and then ask what parts of the SLS/MDMS V
you would like to convert.

During the conversion, the conversion program will allow you to start and stop the MDMS
server. The MDMS server needs to be running when converting TAPESTART.COM and th
database authorization file. The MDMS should not be running during the conversion of the
database files.

During the conversion of TAPESTART.COM the conversion program generates the followi
file:

$ MDMS$SYSTEM:MDMS$LOAD_DB_nodename.COM

This file contains the MDMS commands to create the objects in the database. You have th
choice to execute this command procedure or not during the conversion.

The conversion of the database files are done by reading the SLS/MDMS V2.x database fi
creating objects in the MDMS V3 database files.

You must have the SLS/MDMS V2.x DB server shutdown during the conversion process. U
the following command to shut down the SLS/MDMS V2.x DB server:

$ @SLS$SYSTEM:SLS$SHUTDOWN

M.2.2 Resolving Conflicts During the Conversion

Because of the difference between SLS/MDMS V2.x and MDMS V3 there will be conflicts
during the conversion. Instead of stopping the conversion program and asking you about e
conflict, the conversion program generates the following file during each conversion:

$ MDMS$MDMS$LOAD_DB_CONFLICTS_nodename.COM

Where nodename is the name of the node you ran the conversion on. This file is not mean
executed, it is there for you to look at and see what commands executed and caused a ch
the database. This change is flagged because there was already an object in the database
command changed an attribute of the object.

An example could be that you had two media types of the same name but one specified
compressed and one other specified non compressed. This would cause a conflict. MDMS
 Converting SLS/MDMS V2.X to MDMS V3 M–11

Converting SLS/MDMS V2.X to MDMS V3
M.2 Converting SLS/MDMS V2.X Symbols and Database

.

s the
on
does not allow two media types with the same name but different attributes. What you see in the
conflict file would be the command that tried to create the same media type. You will have to
create a new media type.

Table M–2 shows the symbols in TAPESTART.COM file and what conflicts they may cause

At the completion of the conversion of the database files, you will see a message that note
objects that where in an object but not defined in the database. For example: the conversi
program found a pool in a volume record that was not a pool object.

Table M–2 Symbols in TAPESTART.COM

TAPESTART.COM
Symbol

MDMS V3 Attribute or
Object Possible conflict

 ALLOCSCRATCH If defined, adds the
SCRATCH_TIME
attribute to the domain object.

 If the ALLOCSCRATCH symbol is dif-
ferent in different TAPESTART.COM
files a line is added to the conflict file.

 DB_NODES If defined, creates a node object
for the nodes in the
DB_NODES list.

A conflict can be generated if the node
exists and an attribute changed with a
different TAPESTART.COM file. Every
drive and jukebox definition in the TAP-
ESTART.COM can cause a node to be
created with a
/NODATABASE_SERVER qualifier. A
DB node will change the attribute to
database server, this can cause a line to
be added to the conflict file.

 DCSC_n_NODES If defined, creates a node object
and adds the node attribute to
the DCSC jukebox.

All adds of nodes to jukeboxes cause a
line to be added to the conflict file.

DCSC_DRIVES If defined, creates a drive object
for DCSC.

If an attribute is different when adding
attributes a line is added to the conflict
file.

 DENS_x If defined, adds the density or
compaction attribute to a media
type. If the value is COMP or
NOCOMP then the compaction
attribute is define: YES or NO.
If the density is anything other
than COMP or NOCOMP then
the value is placed in the density
attribute.

A line is added to the conflict file if the
DENS_x is different.

 FRESTA If defined, adds the deallocate
state attribute to the domain
object.

If the FRESTA symbol is different in
different TAPESTART.COM files a line
is added to the conflict file.

 LOC Creates a location object and
also sets the
ONSITE_LOCATION attribute
in domain object.

If the object exists or is different than the
onsite location attribute in the domain
object a line to be added to the conflict
file. This can happen when you have dif-
ferent LOC symbol in two TAPE-
START.COM files.
Converting SLS/MDMS V2.X to MDMS V3 M-12

Converting SLS/MDMS V2.X to MDMS V3
M.2 Converting SLS/MDMS V2.X Symbols and Database
 MAXSCRATCH If defined, adds the maximum
scratch time attribute to the
domain object.

 If the MAXSCRATCH symbol is differ-
ent in different TAPESTART.COM files
a line is added to the conflict file.

 MTYPE_x Creates a media type object for
each MTYPE_x.

A line is added to the conflict file if a
media type is already in the database and
another one has the same name. In
SLS/MDMS V2.x you could have the
same media type name with compaction
and nocompaction. In MDMS you can-
not have two media types with the same
name. You need to change the name of
one of the media type and enter it into
the database. You will also have to
change ABS or HSM to reflect this.
Also, you may have to change volume
and drive objects.

NET_REQUEST_TIM
EOUT

If defined, adds the
NETWORK_TIMEOUT
attribute to the domain object.

If the NET_REQUEST_TIMEOUT is
different in different TAPE-
START.COM files a line is added to the
conflict file.

 PROTECTION Adds the default protection to
the domain object.

A line is added to the conflict file if the
protection is changed.

 QUICKLOAD When drives are created, this
attribute is added as automatic
reply.

 A line is added to the conflict file if a
drive’s automatic reply is changed.

 TAPE_JUKEBOXES Creates a jukebox object for
each jukebox in the list.

A line is added to the conflict file if a
jukebox is already defined and any of the
attributes change.

 TAPEPURGE_MAIL If defined, adds the mail
attribute to the domain object.

If the TAPEPURGE_MAIL is different
in different TAPESTART.COM files a
line is added to the conflict file.

 TOPERS If defined, adds the Opcom
class attribute to the domain
object.

 If the TOPERS symbol is different in
different TAPESTART.COM files a line
is added to the conflict file.

 TRANS_AGE If defined, adds the transition
time attribute to the domain
object.

 If the TRANS_AGE symbol is different
in different TAPESTART.COM files a
line is added to the conflict file.

 VLT Creates a location object and
also sets the
OFFSITE_LOCATION
attribute in domain object.

If the object exists or is different than the
offsite location attribute in the domain
object, a line is added to the conflict file.
This can happen when you have differ-
ent VLT symbol in two TAPE-
START.COM files.

Table M–2 Symbols in TAPESTART.COM
 Converting SLS/MDMS V2.X to MDMS V3 M–13

Converting SLS/MDMS V2.X to MDMS V3
M.3 Things to Look for After the Conversion

sion.
M.3 Things to Look for After the Conversion
Because of the differences between SLS/MDMS V2.x and MDMS V3 you should go through
the objects and check the attributes and make sure that the objects have the attributes that you
want. Table M–3 shows the attributes of objects that you may want to check after the conver

Table M–3 Things to Look for After the Conversion

 Object Attribute Description

 Drive Drive Make sure you have all of the drives defined. In the MDMS V3
domain, you can only have one drive with a given name. In
SLS/MDMS V2.x you could have two drives with the same
name if they were in different TAPESTART.COM files. You
should make sure that all drives in your domain are in the data-
base. You may have to create one drive with a name of say,
DRIVE1 with a device name of 1MUA520 and a node of
NODE1. Then create another drive, DRIVE2, with a device
name of 1MUA520 and a node of NODE2.

A line is added to the conflict file every time a node is added to
a drive. This flags you to check that the node really belongs to
this drive of if you need to create another drive.

 Description Make sure this is the description you want for this drive. This
attribute is not filled in during the conversion program.

 Device Make sure this device name does not have a node name as part
of it.

 Nodes Make sure this list of nodes contains the nodes that can reach
this drive.

 Disabled The conversion program enables all drives. If you want this
drive disabled, then set this attribute to YES.

 Shared The conversion program sets this attribute to NO. NO means
that MDMS does not have to compete with other applications
for this device. If MDMS is supposed to share this device with
other applications set this attribute to YES.

State Make sure this drive is in the right state. If the drive is not in the
right state, you can set this attribute to the right state or issue the
following command:
$ MDMS SET DRIVE drive/CHECK

Automatic reply The conversion program sets this attribute from the QUICK-
LOAD symbol. Make sure this is the way you want the drive to
react.

 RW media types The conversion program added media types to this drive as it
found them. Make sure these are the correct read-write media
types for this drive.

 RO Media
Types

There are no read-only media types in SLS/MDMS V2.x so
none is added to the drives during conversion. You may want to
add some read-only media types to the drive object.

 Access The conversion program has no way of knowing what the
access should be, therefore, it sets the access attribute to ALL.
Make sure this is the access you want for this drive.

 Jukebox Make sure this is the jukebox that this drive is in.
Converting SLS/MDMS V2.X to MDMS V3 M-14

Converting SLS/MDMS V2.X to MDMS V3
M.3 Things to Look for After the Conversion
 Drive Number Make sure this is the drive number for robot commands.

 Domain Description Make sure this is the description you want for your domain. The
default is: Default MDMS Domain.

 Mail Make sure this is where you want mail sent when a volume
reaches its scratch data and MDMS dellocates it. If you do not
want mail sent, make the value blank.
The default is: SYSTEM.

 Offsite location Make sure this is the offsite location that you want for the
default when you create objects. This was set to the value of
VLT from TAPESTART.COM file. This could be different in
each TAPESTART.COM file.

Onsite location Make sure this is the onsite location that you want for the
default when you create objects.

 Default media
type

Make sure this is the media type you want assigned to volumes
that you do not specify a media type for, while creating.

Deallocate state Make sure this is the default state you want volumes to go to
after they have reached their scratch date. This could be
changed each time that you convert the TAPESTART.COM file
on a new node.

Opcom classes Make sure these are the Opcom classes where you want MDMS
OPCOM messages directed. This could be changed each time
you convert the TAPESTART.COM file on a new node.

Protection Make sure this is the default protection that you want assigned
to volumes that you do not specify a protection for.

 Maximum
scratch time

Make sure this is the default maximum scratch time you want
for volumes in your domain. This could be changed each time
that you convert the TAPESTART.COM file on a new node.

Scratch time Make sure this is the default scratch time you want for volumes
in your domain. This could be changed each time that you con-
vert the TAPESTART.COM file on a new node.

 Transition time Make sure this is the default transition time you want for vol-
umes in your domain. This could be changed each time that you
convert the TAPESTART.COM file on a new node.

Network time-
out

Make sure this is the network timeout you want. This could be
changed each time that you convert the TAPESTART.COM file
on a new node.

Location Description Make sure this is the description you want for this location. This
attribute is not filled in during the conversion program.

Spaces The conversion program cannot fill in spaces so make sure you
set the spaces attribute.

 In location The conversion program cannot fill in this attribute so make
sure if this location is in a higher level location you set this
attribute.

Table M–3 Things to Look for After the Conversion
 Converting SLS/MDMS V2.X to MDMS V3 M–15

Converting SLS/MDMS V2.X to MDMS V3
M.3 Things to Look for After the Conversion
 Media type Media type Make sure you have all the media types that you had before. In
the MDMS V3 you can only have on media type with the same
name. If you had two media types in SLS/MDMS V2.x with the
same name, the second one is not created in the MDMS V3
database.

Description The conversion program does not add a description to this
attribute. Type in a description for this attribute.

Density The density attribute is only changed when the DENS_x sym-
bol in the TAPESTART.COM file is something other than
COMP or NOCOMP. Check to make sure this is correct.

Compaction This attribute is set to YES if the DENS_x symbol in the TAPE-
START.COM file is COMP. It is set to NO if the symbol is
NOCOMP. Check to make sure this is right.

Capacity This attribute is set to the value of DENS_X from the TAPE-
START.COM file if it is not defined as COMP or NOCOMP.
Check to make sure this right.

Jukebox Description The conversion program does not put a description for this
attribute. Type in a description to this attribute.

 Nodes Make sure this list of nodes contains the nodes that can reach
the robot.

Location Make sure this is the location where this jukebox is located.

Disabled The conversion program enables all jukeboxes. If you want this
jukebox disabled, set this attribute to YES.

Shared The conversion program sets this attribute to NO. NO means
that MDMS does not expect to compete with other applications
for this jukebox. If MDMS is supposed to share this jukebox
with other applications set this attribute to YES.

 Auto reply The conversion program sets this attribute to NO. Make sure
this is the way you want the jukebox to react.

Access The conversion program has no way of knowing what the
access should be, therefore, it sets the access attribute to ALL.
Make sure this is the access you want for this jukebox.

Control Make sure that the attribute is set to MRD if MRD controls the
robot. If the robot is controlled by DCSC, this attribute should
be set to DCSC.

 Robot Make sure this is the robot for this jukebox.

Slot count You need to set the slot count. The conversion program has no
way of finding out the slot count.

Usage Make sure the usage is correct for the type of jukebox you have.
The conversion program has no way of finding out if the juke-
box uses magazines or not. If this jukebox uses magazines, you
will need to configure it.

 Magazine Description The conversion program does not add a description to this
attribute. Type a description for this attribute.

Offsite location The old magazine record had no offsite location, so you need to
add this attribute.

Table M–3 Things to Look for After the Conversion
Converting SLS/MDMS V2.X to MDMS V3 M-16

Converting SLS/MDMS V2.X to MDMS V3
M.3 Things to Look for After the Conversion
Offsite date The old magazine record had no offsite date, so you need to add
this attribute.

Onsite location The old magazine record had no onsite location, so you need to
add this attribute.

Offsite date The old magazine record had no onsite date, so you need to add
this attribute.

Node Description The conversion program does not put a description in this
attribute. Type a description for this attribute.

DECnet-Plus
fullname

TAPESTART.COM does not support DECnet-Plus, therefore
the conversion program cannot put in the DECnet-Plus
fullname attribute. If this node uses DECnet-Plus, you should
set this attribute.

TCP/IP
fullname

TAPESTART.COM does not support TCP/IP, therefore the
conversion program cannot put in the TCP/IP fullname
attribute. If this node uses TCP/IP, you should set this attribute.

Disabled The conversion program sets the enabled attribute. Make sure
you want this node enabled.

Database server If this attribute is set to YES, this node has the potential to
become a database server.
The logical MDMS$DATABASE_SERVERS must have this
node name in is definition of nodes in the domain. This defini-
tion is defined in the SYS$STARTUP:MDMS$SYSTAR-
TUP.COM file

Location Make sure this is the location that this node is located in. Dur-
ing the conversion it could have been changed depending on the
TAPESTART.COM file or what the default was in the domain
object at the time of creation.

Opcom classes This attribute is defined as the Opcom class in the domain
object when the node was created. Make sure this is the Opcom
class for this node.

Transports Make sure this is the transport you want. The conversion pro-
gram has no way of knowing the transports you want so it takes
the defaults.

POOL Description Make sure this is the description you want for this pool. This
attribute is not filled in during the conversion program.

Authorized
users

Make sure that the comma separated list contains all of the
authorized users for the pool. The users must be specified as
NODE::user

Default users You need to set this attribute because conversion program does
not set this attribute. The users must be specified as node::user.

VOLUME The conversion program fills in all needed attributes from the
old record.

This is included so you will not think the volume object was
forgotten.

Table M–3 Things to Look for After the Conversion
 Converting SLS/MDMS V2.X to MDMS V3 M–17

Converting SLS/MDMS V2.X to MDMS V3
M.4 Using SLS/MDMS V2.x Clients With the MDMS V3 Database

 V3
red by

ible.

before.

ration
M.4 Using SLS/MDMS V2.x Clients With the MDMS V3 Database
This section describes how older versions of SLS/MDMS can coexist with the new version of
MDMS for the purpose of upgrading your MDMS domain. You may have versions of ABS, or
HSM or SLS which are using SLS/MDMS V2 and which cannot be upgraded or replaced
immediately. MDMS V3 provides limited support for older SLS/MDMS clients to make
upgrading your MDMS domain to the new version as smooth as possible. This limited support
allows rolling upgrade of all SLS/MDMS V2 nodes to MDMS V3. Also ABS and HSM version
3.0 and later have been modified to support either SLS/MDMS V2 or MDMS V2 to make it easy
to switch over to the new MDMS. The upgrade procedure has been completed as soon as all
nodes in your domain are running the new MDMS V3 version exclusively.

M.4.1 Limited Support for SLS/MDMS V2 during Rolling Upgrade

The major difference between SLS/MDMS V2 and MDMS V3 is the way information about
objects and configuration is stored. To support the old version the new server can be set up to
accept requests for DECnet object SLS$DB which was serving the database before. Any
database request sent to SLS$DB will be executed and data returned compatible with old
database client requests. This allows SLS/MDMS V2 database clients to still send their database
requests to the new server without any change.

The SLS$DB function in the new MDMS serves and shares information for the following
objects to a V2 database client:

• Volume information - previously stored in TAPEMAST.DAT

• Pool information - previously stored in POOLMAST.DAT

• Magazine information - previously stored in MAGAZINE.DAT

• Object information - not shared between the old and new MDMS:

• Drive information - previously stored in TAPESTART.COM

• Jukebox information - previously stored in TAPESTART.COM

• Media type information - previously stored in TAPESTART.COM

• Slot information - previously stored in SLOTMAST.DAT

• Node information - previously stored in NODE_VALIDATE.DAT

The new MDMS server keeps all its information in a per object database. The MDMS V3
installation process propagates definitions of the objects from the old database to the new
database. However, any changes made after the installation of V3 have to be carefully ente
the user in the old and new databases. Operational problems are possible if the databases
diverge. Therefore it is recommended to complete the upgrade process as quickly as poss

M.4.2 Upgrading the Domain to MDMS V3

Upgrading your SLS/MDMS V2 domain starts with the nodes, which have been defined as
database servers in symbol DB_NODES in file TAPESTART.COM. Refer to the Installation
Guide for details on how to perform the following steps.

Step 1. Shut down all SLS/MDMS database servers in your SLS/MDMS domain.

Step 2. Install version MDMS V3 on nodes, which have been acting as database servers

Step 3. When the new servers are up-and-running check and possibly change the configu
and database entries so that it matches your previous SLS/MDMS V2 setup

Step 4. Edit SYS$MANAGER:MDMS$SYSTARTUP.COM and make sure that:
Converting SLS/MDMS V2.X to MDMS V3 M-18

Converting SLS/MDMS V2.X to MDMS V3
M.4 Using SLS/MDMS V2.x Clients With the MDMS V3 Database

IV)

S

 using
y

ve to

or any

S
w

S V3

on that

V2
s
rive,

e

erting

ers
– Logical name MDMS$DATABASE_SERVERS include this nodes DECnet (Phase
node name

– Logical name MDMS$PREV3_SUPPORT is set to TRUE to enable the SLS/MDM
V2 support function in the new server

– Logical name MDMS$VERSION3 is set to TRUE to direct ABS and/or HSM to use
the new MDMS V3 interface

If you had to change any of the logical name settings above you have to restart the server
'@SYS$STARTUP:MDMS$STARTUP RESTART'. You can type the server's logfile to verif
that the DECnet listener for object SLS$DB has been successfully started.

Step 5. To support load, unload and operator requests from old SLS/MDMS clients you ha
edit SYS$MANAGER:TAPESTART.COM and change the line which defines
DB_NODES to read like this:

$ DB_NODES = ""

This prevents a SLS/MDMS V2 server from starting the old database server process
SLS$TAPMGRDB.

Step 6. Start SLS/MDMS V2 with @SYS$STARTUP:SLS$STARTUP.

Use a "STORAGE VOLUME" command to test that you can access the new MDMS V3
database.

Step 7. Now you are ready to start up ABS, HSM or SLS.

Note that no change is necessary for nodes running SLS/MDMS V2 as a database client. F
old SLS/MDMS client in your domain you have to add its node object to the MDMS V3
database. In V3 all nodes of an MDMS domain have to be registered (see command MDM
CREATE NODE). These clients can connect to a new MDMS DB server as soon as the ne
server is up and running and has been added to the new database.

A node with either local tape drives or local jukeboxes which are accessed from new MDM
servers need to have MDMS V3 installed and running.

A node with either local tape drives or local jukeboxes, which are accessed from old
SLS/MDMS V2 servers, need to have SLS/MDMS V3 running.

If access is required from both old and new servers then both versions need to be started
node. But in all cases DB_NODES in all TAPESTART.COM needs to be empty.

M.4.3 Reverting to SLS/MDMS V2

MDMS V3 allows you to convert the MDMS V3 volume database back to the SLS/MDMS
TAPEMAST.DAT file. Any changes you did under MDMS V3 for pool and magazine object
need to be entered manually into V2 database. Any changes you did under MDMS V3 for d
jukebox or media type objects need to be updated in file TAPESTART.COM.

The following steps need to be performed to revert back to a SLS/MDMS V2 only domain:

Step 1. Shut down all applications using MDMS (i.e., ABS, HSM and SLS)

Step 2. Shut down all MDMS V3 servers in the domain and deassign system logical nam
MDMS$VERSION3 on all nodes.

Step 3. .Convert the new database back to the old database files. Refer to section “Conv
SLS/MDMS V2 Symbols and Database” for instructions.

Step 4. Edit TAPESTART.COM on all SLS/MDMS nodes, which should be database serv
again. Add the node’s DECnet name to the symbol DB_NODES.
 Converting SLS/MDMS V2.X to MDMS V3 M–19

Converting SLS/MDMS V2.X to MDMS V3
M.5 Convert from MDMS Version 3 to a V2.X Volume Database

and

S

 the
Step 5. Remove the call to MDMS$STARTUP.COM from your SYSTARTUP_VMS.COM.

Step 6. Make sure a call to SLS$STARTUP.COM is included in your
SYSTARTUP_VMS.COM.

Step 7. Start up SLS/MDMS V2 and all applications using it.

M.4.4 Restrictions

During the rolling upgrade period, the following restrictions apply:

• Only the first media type of a volume object can be used by a SLS/MDMS V2 client.

• Node names must be exactly the nodes' DECnet (Phase IV) names.

• Some functions of old V2 utilities will not work. All updates to pools, slots, magazines
volumes should be preformed on a MDMS V3 node.

M.5 Convert from MDMS Version 3 to a V2.X Volume Database
This section describes how to convert the MDMS V3 volume database back to a SLS/MDM
V2.X volume database.

If for some reason, you need to convert back to SLS/MDMS V2.X a conversion command
procedure is provided. This conversion procedure does not convert anything other than the
volume database. If you have added new objects, you will have to add these to
TAPESTART.COM or to the following SLS/MDMS V2.X database files:

• database authorization file (VALIDATE.DAT)

• Pool Authorization file (POOLAUTH.DAT)

• Slot Definition file (SLOTMAST.DAT)

• Volume Database file (TAPEMAST.DAT)

• Magazine Database file (SLS$MAGAZINE_MASTER_FILE.DAT)

To execute the conversion command procedure, type in the following command:

$ @MDMS$SYSTEM:MDMS$CONVERT_V3_TO_V2

After introductory information, this command procedure will ask you questions to complete
conversion.
Converting SLS/MDMS V2.X to MDMS V3 M-20

s first
N
Using ABS to Backup Oracle

Databases

This appendix describes how to use ABS to backup Oracle databases using the Oracle Server
Manager. When doing a backup, you can either do a closed database backup or an open database
backup. This appendix contains an example database and examples of ABS environment poli-
cies, ABS storage policies, and ABS save requests that are used to backup the example database.
The examples uses a jukebox that has three tape drives. Be sure to read the Performing Operat-
ing System Backup and Recovery section in the Oracle Backup and Recovery Guide.

The following sections are included in this appendix:

• Example Oracle Database

• Backing up a Closed Database (offline or cold backup)

• Backup up an Open Database (online or hot backup)

N.1 Example Oracle Database
Before getting started with describing how to use ABS to backup the Oracle database, let u
look at the example database so we know the name of the files to backup.

The following shows the tablespaces and datafiles:

SQL> select t.name "Tablespace", f.name "Datafile"
from v$tablespace t, v$datafile f where T.ts# = f.ts#
order by t.name;

Tablespace Datafile
--

SYSTEM DISK$ALPHA:[ORACLE.DB_PAYROLL]ORA_SYSTEM.DBS
TBS1 DISK$ORACLE1:[PAYROLL_TBS1]PAYROLL_TBS1.DF
TBS2 DISK$ORACLE2:[PAYROLL_TBS2]PAYROLL_TBS2.DF
TBS3 DISK$ORACLE3:[PAYROLL_TBS3]PAYROLL_TBS3.DF
TBS4 DISK$ORACLE4:[PAYROLL_TBS4]PAYROLL_TBS4.DF
TBS5 DISK$ORACLE5:[PAYROLL_TBS5]PAYROLL_TBS5.DF
TBS6 DISK$ORACLE6:[PAYROLL_TBS6]PAYROLL_TBS6.DF

7 rows selected.

The following shows the online redo log files:

SQL> select member from v$logfile;

MEMBER

DISK$ALPHA:[ORACLE.DB_PAYROLL]ORA_LOG1.RDO
DISK$ALPHA:[ORACLE.DB_PAYROLL]ORA_LOG2.RDO
Using ABS to Backup Oracle Databases N–1

Using ABS to Backup Oracle Databases
N.2 Backing up a Closed Database
The following shows the control files:

SQL> select value from v$parameter where name = ’control_files’;

VALUE

ora_control1, ora_control2

All of the files used to create the database are located in the following directory which is also a
backup:

DISK$ALPHA:[ORACLE.DB_PAYROLL]

N.2 Backing up a Closed Database
When backing up a closed database, the database must be shutdown. After shutting down the
database, all of the database files can be backed up before starting up the database again. To
accomplish this task, the following example creates an environment policy that has a prologue
file that shutsdown the database. The environment policy also has an epilogue file that restarts
the database. This example has three save requests. Each save request will execute on a separate
tape drive.

The following sections show the environment policy, storage policy, and save requests for the
closed database backup.

N.2.1 Creating ABS Environment and Storage Policies for a Closed Database
Backup

The first thing to create is an environment policy, ORA_CLOSED_BACKUP_ENV. The envi-
ronment has a prologue file and epilogue file which is only run once for each save request. In a
save request, the prologue and epilogue files are run for each save object. That would not work,
so the prologue and epilogue files are put in the environment file. These prologue and epilogue
files have if statements that execute different code for each save request.

The following shows the creation of the ORA_CLOSED_BACKUP_ENV environment:

$ ABS CREATE ENVIRONMENT ORA_CLOSED_BACKUP_ENV -
/PROLOGUE=@DISK$ALPHA:[ORACLE.COM]ORA_CLOSED_BACKUP_PROLOG -
/EPILOGUE=@DISK$ALPHA:[ORACLE.COM]ORA_CLOSED_BACKUP_EPILOG

$ ABS SHOW ENV ORA_CLOSED_BACKUP_ENV/FULL

Execution Environment

Name - ORA_CLOSED_BACKUP_ENV
Version - 1
UID - 883D0028-226A-11D4-AD9F-474F4749524C
Data Safety Options - CRC_VERIFICATION
Listing Option - NO_LISTING
Span Filesystem Options - NO FILESYSTEM SPAN
Symbolic Links Option - LINKS_ONLY
Compression Options - None
Original Object Action - NO_CHANGE

User Profile

Node - CURLEY
Cluster -
User - ABS
Privs - SETPRV,TMPMBX,OPER,NETMBX
Access Right - ORA_DBA
Owner - CURLEY::DBA
Using ABS to Backup Oracle Databases N–2

Using ABS to Backup Oracle Databases
N.2 Backing up a Closed Database

for
ilogue
Access Right - CURLEY::DBA
Access Granted - READ, WRITE, SET, SHOW, DELETE, CONTROL

Notification Method - NO_NOTIFICATION
Notification Receiver - TAPES
Notification When - FATAL
Notification Type - BRIEF

Notification Method - MAIL
Notification List - DBA
Notification Reason - COMPLETE
Notification Type - BRIEF

Locking Options - None
Number of Drives - 1
Retry Count - 3
Retry Interval - 15

Prologue Command - @DISK$ALPHA:[ORACLE.COM]ORA_CLOSED_BACKUP_PROLOG
Epilogue Command - @DISK$ALPHA:[ORACLE.COM]ORA_CLOSED_BACKUP_EPILOG

The prologue and epilogue files have logic in them that only executes when the save request is
ORA_CLOSED_BACKUP1. Because the environment is executed for each save request, the
database should not be shutdown or started up for each save request. The shutdown and startup
of the database is only going to happen when the save request is named
ORA_CLOSED_BACKUP1.

The logic also starts the other two save requests:

• ORA_CLOSED_BACKUP2

• ORA_CLOSED_BACKUP3

The following is the prologue file, ORA_CLOSED_BACKUP_PROLOG.COM:

$!
$! THIS COMMAND PROCEDURE SHUTSDOWN THE ORACLE DATABASE
$! SO THAT A CLOSED DATABASE BACKUP CAN BE COMPLETED
$!
$! IT THEN STARTS ALL OF THE BACKUPS OF THE DATABASE AND
$! THEN SYNCHRONIZES ON THEM TO WAIT UNTIL THEY ARE FINISHED
$!
$ IF (F$TRNLNM("ABS_SAVE_REQUEST_NAME") .NES. "ORA_CLOSED_BACKUP1")
$ THEN
$ EXIT
$ ENDIF
$ @DISK$ALPHA:[ORACLE.DB_PAYROLL]ORAUSER_PAYROLL J3944
$ SVRMGRL @SYS$INPUT
SET ECHO ON
CONNECT INTERNAL AS SYSDBA
SHUTDOWN IMMEDIATE
EXIT
$!
$! START THE BACKUP OF DATABASE
$ ABS SET SAVE/START ORA_CLOSED_BACKUP2
$ ABS SET SAVE/START ORA_CLOSED_BACKUP3
$ EXIT

The epilogue file, ORA_CLOSED_BACKUP_EPILOG.COM, also has logic defined to wait
the other two save requests to finish before the database is started. The following is the ep
file, ORA_CLOSED_BACKUP_EPILOG.COM:

$!
$! THIS COMMAND PROCEDURE STARTS UP THE ORACLE DATABASE
$! AT THE COMPLETION OF THE ORACLE DATABASE BACKUP
$!
$ IF (F$TRNLNM("ABS_SAVE_REQUEST_NAME") .NES. "ORA_CLOSED_BACKUP1")
$ THEN
Using ABS to Backup Oracle Databases N–3

Using ABS to Backup Oracle Databases
N.2 Backing up a Closed Database
$ EXIT
$ ENDIF
$!
$! NOW SYNCHRONIZE TO MAKE SURE ALL BACKUPS ARE DONE BEFORE RESTARTING
$! THE DATABASE
$!
$ ABS SYNCHRONIZE ORA_CLOSED_BACKUP2
$ ABS SYNCHRONIZE ORA_CLOSED_BACKUP3
$!
$ @DISK$ALPHA:[ORACLE.DB_PAYROLL]ORAUSER_PAYROLL J3944
$ SVRMGRL
SET ECHO ON
CONNECT INTERNAL AS SYSDBA
STARTUP
EXIT
$ EXIT

The storage policy, ORA_CLOSED_BACKUP_SP, supports the use of three drives at one time.
The following shows the creation of the storage policy:

$ ABS CREATE STORAGE_CLASS ORA_CLOSED_BACKUP_SP -
/MAXIMUM_SAVES=3 -
/TYPE_OF_MEDIA=TK89

$ ABS SHOW STORAGE_CLASS ORA_CLOSED_BACKUP_SP /full

Storage Class

Name - ORA_CLOSED_BACKUP_SP
Version - 1
UID - 889E98D3-226A-11D4-ADE2-474F4749524C
Execution Node Name - CURLEY
Archive File System
Primary Archive Location -
Staging Location -
Primary Archive Type - SLS/MDMS
Owner - CURLEY::DBA
Access Right - CURLEY::DBA
Access Granted - READ, WRITE, SET, SHOW, DELETE, CONTROL
Tape Pool - None
Volume Set Name -
Retention Period - 365
Consolidation Criteria
Count - 0
Size - 0
Interval - 7
Catalog Name - ABS_CATALOG
Maximum Saves - 3
Media Management Info
Media Location - None
Type of Media - TK89
Drive List - None

N.2.2 Creating ABS Save Requests for a Closed Database Backup

Since this example is using three tape drives there are also three save requests to allow multiple
stream operation. All three save requests backup approximately the same amount of data to keep
all three drives in use. The first save request, ORA_CLOSED_BACKUP1, is scheduled daily
and backups all of the following files:

• ORA_SYSTEM.DBS

• Redo log files

• Archived redo log files

• Database initialization files
Using ABS to Backup Oracle Databases N–4

Using ABS to Backup Oracle Databases
N.3 Backing Up an Open Database

rt at
ase
and.

 are

 during
otified
ollow-
erver
n epi-
ed.
• Table space 1 and table space 2

The ORA_CLOSED_BACKUP1 save request is scheduled each day in this example to sta
23:00. When it starts, the environment policy runs its prologue which shuts down the datab
and starts the other two save requests. The other two save requests are scheduled on dem

The other two save requests, ORA_CLOSED_BACKUP2 and ORA_CLOSED_BACKUP3,
scheduled on demand and backup two table spaces each.

The following shows the creation of the three save requests and then the scheduling of
ORA_CLOSED_BACKUP1 at 23:00.

$!
$! CREATE SAVE REQUESTS
$!
$ ABS SAVE /NOSTART DISK$ALPHA:[ORACLE.DB_PAYROLL]ORA_SYSTEM.DBS -
/NAME=ORA_CLOSED_BACKUP1 -
/ENVIRONMENT=ORA_CLOSED_BACKUP_ENV -
/SCHEDULE_OPTION=DAILY -
/STORAGE_CLASS=ORA_CLOSED_BACKUP_SP

$ ABS SET SAVE ORA_CLOSED_BACKUP1 -
DISK$ALPHA:[ORACLE.DB_PAYROLL]ORA_LOG*.RDO/ADD, -
DISK$ALPHA:[ORACLE.DB_PAYROLL]*.ARC/ADD, -
DISK$ALPHA:[ORACLE.DB_PAYROLL]*.ORA/ADD

$ ABS SET SAVE ORA_CLOSED_BACKUP1 -
DISK$ORACLE1:[PAYROLL_TBS1]PAYROLL_TBS1.DF/ADD,
DISK$ORACLE2:[PAYROLL_TBS2]PAYROLL_TBS2.DF/ADD

$!
$ ABS SAVE /NOSTART DISK$ORACLE3:[PAYROLL_TBS3]PAYROLL_TBS3.DF -
/NAME=ORA_CLOSED_BACKUP2 -
/SCHEDULE_OPTION=ON_DEMAND -
/ENVIRONMENT=ORA_CLOSED_BACKUP_ENV -
/STORAGE_CLASS=ORA_CLOSED_BACKUP_SP

$ ABS SET SAVE ORA_CLOSED_BACKUP2 -
DISK$ORACLE4:[PAYROLL_TBS4]PAYROLL_TBS4.DF/ADD

$!
$ ABS SAVE /NOSTART DISK$ORACLE5:[PAYROLL_TBS5]PAYROLL_TBS5.DF -
/NAME=ORA_CLOSED_BACKUP3 -
/SCHEDULE_OPTION=ON_DEMAND -
/ENVIRONMENT=ORA_CLOSED_BACKUP_ENV -
/STORAGE_CLASS=ORA_CLOSED_BACKUP_SP

$ ABS SET SAVE ORA_CLOSED_BACKUP3 -
DISK$ORACLE6:[PAYROLL_TBS6]PAYROLL_TBS6.DF/ADD

$!
$! NOW TO START IT
$!
$ ABS SET SAVE ORA_CLOSED_BACKUP1/START="23:00"

N.3 Backing Up an Open Database
Backing up an open database allows users to have normal access to all online tablespaces
backup. During the backup of an online tablespace, the Oracle Server Manager must be n
at the beginning of the backup and at the end of the backup. To accomplish this task, the f
ing example creates an environment policy that has a prologue file that notifies the Oracle S
Manager that a backup of tablespace is about to begin. Also, the environment policy has a
logue file that notifies the Oracle Server Manager that a backup of the tablespace has end

This example has the following save requests:
Using ABS to Backup Oracle Databases N–5

Using ABS to Backup Oracle Databases
N.3 Backing Up an Open Database

BS1

n-
ese
quest.

ve
L code
• ORA_OPEN_BACKUP - is the controlling save request. It also backs up tablespaces T
and TBS2.

• ORA_OPEN_BACKUP_SYS - backs up the system tablespace.

• ORA_OPEN_BACKUP_TBS3 - backs up tablespace TBS3.

• ORA_OPEN_BACKUP_TBS4 - backs up tablespace TBS4.

• ORA_OPEN_BACKUP_TBS5 - backs up tablespace TBS5.

• ORA_OPEN_BACKUP_TBS6 - backs up tablespace TBS6.

• ORA_OPEN_BACKUP_RDO - backs up the archived redo logs.
Before backing up the logs, it archives the redo log. Also, it backs up the control file.

N.3.1 Creating ABS Environment and Storage Policies for an Open Database
Backup

The first thing to create is an environment policy, ORA_OPEN_BACKUP_ENV. The enviro
ment has a prologue file and epilogue file which is only run once for each save request. Th
prologue and epilogue files have if statements that execute different code for each save re

The following shows the creation of the ORA_OPEN_BACKUP_ENV environment:

$!
$! CREATE ENVIRONMENT POLICY
$!
$ ABS CREATE ENVIRONMENT ORA_OPEN_BACKUP_ENV -
/PROLOGUE=@DISK$ALPHA:[ORACLE.com]ORA_OPEN_BACKUP_PROLOG -
/EPILOGUE=@DISK$ALPHA:[ORACLE.com]ORA_OPEN_BACKUP_EPILOG

$ ABS SHOW ENV ORA_OPEN_BACKUP_ENV/FULL

Execution Environment

Name - ORA_OPEN_BACKUP_ENV
Version - 1
UID - F253D0EC-2A42-11D4-942B-474F4749524C
Data Safety Options - CRC_VERIFICATION
Listing Option - NO_LISTING
Span Filesystem Options - NO FILESYSTEM SPAN
Symbolic Links Option - LINKS_ONLY
Compression Options - None
Original Object Action - NO_CHANGE
User Profile
Node - CURLEY
Cluster -
User - ABS
Privs - SETPRV,TMPMBX,OPER,NETMBX
Access Right - ORA_DBA
Owner - CURLEY::DBA
Access Right - CURLEY::DBA
Access Granted - READ, WRITE, SET, SHOW, DELETE, CONTROL
Notification Method - NO_NOTIFICATION
Notification Receiver - TAPES
Notification When - FATAL
Notification Type - BRIEF
Locking Options - None
Number of Drives - 1
Retry Count - 3
Retry Interval - 15
Prologue Command - @DISK$ALPHA:[ORACLE.COM]ORA_OPEN_BACKUP_PROLOG
Epilogue Command - @DISK$ALPHA:[ORACLE.COM]ORA_OPEN_BACKUP_EPILOG

The prologue and epilogue files have logic in them that executes different code for each sa
request. In the save requests that backup tablespaces, the code in the prologue file runs SQ
Using ABS to Backup Oracle Databases N–6

Using ABS to Backup Oracle Databases
N.3 Backing Up an Open Database
that notifies the Oracle Server Manager that a backup of the tablespace is about to begin. In the
save requests that backup tablespaces, the code in the epilogue file runs SQL code that notifies
the Oracle Server Manager that a backup of the tablespace has ended. For the save,
ORA_OPEN_BACKUP, the logic deletes the old copy of the control file and starts all of the
other save requests except ORA_OPEN_BACKUP_RDO.

The following is the prologue file, ORA_OPEN_BACKUP_PROLOG.COM:

$!
$! THIS COMMAND PROCEDURE STARTS UP ALL OF THE SAVE REQUESTS FOR
$! AN OPEN DATABASE BACKUP IF THIS SAVE REQUEST IS
$! ORA_OPEN_BACKUP.
$!
$! ALSO, IT BEGINS THE DATABASE BACKUP TABLESPACE TBS1 AND TBS2
$! IT THEN STARTS ALL OF THE BACKUPS OF THE DATABASE AND
$! THEN SYNCHRONIZES ON THEM TO WAIT UNTIL THEY ARE FINISHED
$!
$ @DISK$ALPHA:[ORACLE.DB_APITEST]ORAUSER_APITEST J3944
$ IF (F$TRNLNM("ABS_SAVE_REQUEST_NAME") .EQS. "ORA_OPEN_BACKUP")
$ THEN
$!
$! DELETE THE COPY OF THE CONTROL FILE, WE WILL MAKE ANOTHER COPY
$! AFTER WE GET THROUGH
$!
$ IF(F$SEARCH("DISK$ALPHA:[ORACLE.DB_APITEST]COPY_OF_CONTROL_FILE.CON")
.NES. "")
$ THEN
$ DELETE/NOCONFIRM
DISK$ALPHA:[ORALE.DB_APITEST]COPY_OF_CONTROL_FILE.CON;*
$ ENDIF
$!
$! START OTHER SAVE REQUESTS
$!
$ ABS SET SAVE/START ORA_OPEN_BACKUP_SYS
$ ABS SET SAVE/START ORA_OPEN_BACKUP_TBS3
$ ABS SET SAVE/START ORA_OPEN_BACKUP_TBS4
$ ABS SET SAVE/START ORA_OPEN_BACKUP_TBS5
$ ABS SET SAVE/START ORA_OPEN_BACKUP_TBS6
$!
$ SVRMGRL @SYS$INPUT
SET ECHO ON
SPOOL DISK$ALPHA:[ORACLE.LOG]ORA_OPEN_BACKUP_PROLOG.LOG
CONNECT INTERNAL AS SYSDBA
ALTER TABLESPACE TBS1 BEGIN BACKUP;
ALTER TABLESPACE TBS2 BEGIN BACKUP;
EXIT
$ EXIT
$ ENDIF
$ IF (F$TRNLNM("ABS_SAVE_REQUEST_NAME") .EQS. "ORA_OPEN_BACKUP_SYS")
$ THEN
$ SVRMGRL @SYS$INPUT
SET ECHO ON
SPOOL DISK$ALPHA:[ORACLE.LOG]ORA_OPEN_BACKUP_SYSTEM_PROLOG.LOG
CONNECT INTERNAL AS SYSDBA
ALTER TABLESPACE SYSTEM BEGIN BACKUP;
EXIT
$ EXIT
$ ENDIF
$!
$!
$ IF (F$TRNLNM("ABS_SAVE_REQUEST_NAME") .EQS. "ORA_OPEN_BACKUP_TBS3")
$ THEN
$ SVRMGRL @SYS$INPUT
SET ECHO ON
SPOOL DISK$ALPHA:[ORACLE.LOG]ORA_OPEN_BACKUP_TBS3_PROLOG.LOG
CONNECT INTERNAL AS SYSDBA
ALTER TABLESPACE TBS3 BEGIN BACKUP;
EXIT
$ EXIT
$ ENDIF
Using ABS to Backup Oracle Databases N–7

Using ABS to Backup Oracle Databases
N.3 Backing Up an Open Database
$!
$ IF (F$TRNLNM("ABS_SAVE_REQUEST_NAME") .EQS. "ORA_OPEN_BACKUP_TBS4")
$ THEN
$ SVRMGRL @SYS$INPUT
SET ECHO ON
SPOOL DISK$ALPHA:[ORACLE.LOG]ORA_OPEN_BACKUP_TBS4_PROLOG.LOG
CONNECT INTERNAL AS SYSDBA
ALTER TABLESPACE TBS4 BEGIN BACKUP;
EXIT
$ EXIT
$ ENDIF
$!
$ IF (F$TRNLNM("ABS_SAVE_REQUEST_NAME") .EQS. "ORA_OPEN_BACKUP_TBS5")
$ THEN
$ SVRMGRL @SYS$INPUT
SET ECHO ON
SPOOL DISK$ALPHA:[ORACLE.LOG]ORA_OPEN_BACKUP_TBS5_PROLOG.LOG
CONNECT INTERNAL AS SYSDBA
ALTER TABLESPACE TBS5 BEGIN BACKUP;
EXIT
$ EXIT
$ ENDIF
$!
$ IF (F$TRNLNM("ABS_SAVE_REQUEST_NAME") .EQS. "ORA_OPEN_BACKUP_TBS6")
$ THEN
$ SVRMGRL @SYS$INPUT
SET ECHO ON
SPOOL DISK$ALPHA:[ORACLE.LOG]ORA_OPEN_BACKUP_TBS6_PROLOG.LOG
CONNECT INTERNAL AS SYSDBA
ALTER TABLESPACE TBS6 BEGIN BACKUP;
EXIT
$ EXIT
$ ENDIF
$!
$ IF (F$TRNLNM("ABS_SAVE_REQUEST_NAME") .EQS. "ORA_OPEN_BACKUP_RDO")
$ THEN
$ SVRMGRL @SYS$INPUT
SET ECHO ON
SPOOL DISK$ALPHA:[ORACLE.LOG]ORA_OPEN_BACKUP_RDO_PROLOG.LOG
CONNECT INTERNAL AS SYSDBA
ALTER SYSTEM ARCHIVE LOG CURRENT;
ALTER SYSTEM SWITCH LOGFILE;
ALTER DATABASE BACKUP CONTROLFILE TO
’DISK$ALPHA:[ORACLE.DB_APITEST]COPY_OF_CONTROL_FILE.CON’;
EXIT
$ EXIT
$ ENDIF
$!
$ EXIT

The epilogue file, ORA_OPEN_BACKUP_EPILOG.COM, also has logic defined to execute
different code depending on the save request. All save requests that back up tablespaces executes
code that notifies the Oracle Server Manager that the backup of the tablespace has ended. If the
save request is ORA_OPEN_BACKUP, it waits on all of the jobs to complete and then it starts
the ORA_OPEN_BACKUP_RDO save request to archive the redo log files and make a copy of
the control file to backup.

The following is the example of ORA_OPEN_BACKUP_EPILOG.COM:

$!
$! THIS COMMAND PROCEDURE STARTS UP ALL OF THE SAVE REQUESTS FOR
$! AN OPEN DATABASE BACKUP IF THIS SAVE REQUEST IS
$! ORA_OPEN_BACKUP.
$!
$! ALSO, IT BEGINS THE DATABASE BACKUP TABLESPACE TBS1 AND TBS2
$! IT THEN STARTS ALL OF THE BACKUPS OF THE DATABASE AND
$! THEN SYNCHRONIZES ON THEM TO WAIT UNTIL THEY ARE FINISHED
$!
$ @DISK$ALPHA:[ORACLE.DB_APITEST]ORAUSER_APITEST J3944
$ IF (F$TRNLNM("ABS_SAVE_REQUEST_NAME") .EQS. "ORA_OPEN_BACKUP")
Using ABS to Backup Oracle Databases N–8

Using ABS to Backup Oracle Databases
N.3 Backing Up an Open Database
$ THEN
$!
$! DELETE THE COPY OF THE CONTROL FILE, WE WILL MAKE ANOTHER COPY
$! AFTER WE GET THROUGH
$!
$ IF(F$SEARCH("DISK$ALPHA:[ORACLE.DB_APITEST]COPY_OF_CONTROL_FILE.CON")
.NES. "")
$ THEN
$ DELETE/NOCONFIRM
DISK$ALPHA:[ORALE.DB_APITEST]COPY_OF_CONTROL_FILE.CON;*
$ ENDIF
$!
$! START OTHER SAVE REQUESTS
$!
$ ABS SET SAVE/START ORA_OPEN_BACKUP_SYS
$ ABS SET SAVE/START ORA_OPEN_BACKUP_TBS3
$ ABS SET SAVE/START ORA_OPEN_BACKUP_TBS4
$ ABS SET SAVE/START ORA_OPEN_BACKUP_TBS5
$ ABS SET SAVE/START ORA_OPEN_BACKUP_TBS6
$!
$ SVRMGRL @SYS$INPUT
SET ECHO ON
SPOOL DISK$ALPHA:[ORACLE.LOG]ORA_OPEN_BACKUP_PROLOG.LOG
CONNECT INTERNAL AS SYSDBA
ALTER TABLESPACE TBS1 BEGIN BACKUP;
ALTER TABLESPACE TBS2 BEGIN BACKUP;
EXIT
$ EXIT
$ ENDIF
$ IF (F$TRNLNM("ABS_SAVE_REQUEST_NAME") .EQS. "ORA_OPEN_BACKUP_SYS")
$ THEN
$ SVRMGRL @SYS$INPUT
SET ECHO ON
SPOOL DISK$ALPHA:[ORACLE.LOG]ORA_OPEN_BACKUP_SYSTEM_PROLOG.LOG
CONNECT INTERNAL AS SYSDBA
ALTER TABLESPACE SYSTEM BEGIN BACKUP;
EXIT
$ EXIT
$ ENDIF
$!
$!
$ IF (F$TRNLNM("ABS_SAVE_REQUEST_NAME") .EQS. "ORA_OPEN_BACKUP_TBS3")
$ THEN
$ SVRMGRL @SYS$INPUT
SET ECHO ON
SPOOL DISK$ALPHA:[ORACLE.LOG]ORA_OPEN_BACKUP_TBS3_PROLOG.LOG
CONNECT INTERNAL AS SYSDBA
ALTER TABLESPACE TBS3 BEGIN BACKUP;
EXIT
$ EXIT
$ ENDIF
$!
$ IF (F$TRNLNM("ABS_SAVE_REQUEST_NAME") .EQS. "ORA_OPEN_BACKUP_TBS4")
$ THEN
$ SVRMGRL @SYS$INPUT
SET ECHO ON
SPOOL DISK$ALPHA:[ORACLE.LOG]ORA_OPEN_BACKUP_TBS4_PROLOG.LOG
CONNECT INTERNAL AS SYSDBA
ALTER TABLESPACE TBS4 BEGIN BACKUP;
EXIT
$ EXIT
$ ENDIF
$!
$ IF (F$TRNLNM("ABS_SAVE_REQUEST_NAME") .EQS. "ORA_OPEN_BACKUP_TBS5")
$ THEN
$ SVRMGRL @SYS$INPUT
SET ECHO ON
SPOOL DISK$ALPHA:[ORACLE.LOG]ORA_OPEN_BACKUP_TBS5_PROLOG.LOG
CONNECT INTERNAL AS SYSDBA
ALTER TABLESPACE TBS5 BEGIN BACKUP;
EXIT
$ EXIT
Using ABS to Backup Oracle Databases N–9

Using ABS to Backup Oracle Databases
N.3 Backing Up an Open Database
$ ENDIF
$!
$ IF (F$TRNLNM("ABS_SAVE_REQUEST_NAME") .EQS. "ORA_OPEN_BACKUP_TBS6")
$ THEN
$ SVRMGRL @SYS$INPUT
SET ECHO ON
SPOOL DISK$ALPHA:[ORACLE.LOG]ORA_OPEN_BACKUP_TBS6_PROLOG.LOG
CONNECT INTERNAL AS SYSDBA
ALTER TABLESPACE TBS6 BEGIN BACKUP;
EXIT
$ EXIT
$ ENDIF
$!
$ IF (F$TRNLNM("ABS_SAVE_REQUEST_NAME") .EQS. "ORA_OPEN_BACKUP_RDO")
$ THEN
$ SVRMGRL @SYS$INPUT
SET ECHO ON
SPOOL DISK$ALPHA:[ORACLE.LOG]ORA_OPEN_BACKUP_RDO_PROLOG.LOG
CONNECT INTERNAL AS SYSDBA
ALTER SYSTEM ARCHIVE LOG CURRENT;
ALTER SYSTEM SWITCH LOGFILE;
ALTER DATABASE BACKUP CONTROLFILE TO
’DISK$ALPHA:[ORACLE.DB_APITEST]COPY_OF_CONTROL_FILE.CON’;
EXIT
$ EXIT
$ ENDIF
$!
$ EXIT

The storage policy, ORA_OPEN_BACKUP_SP, supports the use of three drives at one time.
The following shows the creation of the storage policy:

$!
$! CREATE STORAGE POLICY
$!
$ ABS CREATE STORAGE_CLASS ORA_OPEN_BACKUP_SP -
/MAXIMUM_SAVES=3 -
/TYPE_OF_MEDIA=TK89

$ ABS SHOW STORAGE_CLASS ORA_OPEN_BACKUP_SP/FULL

Storage Class

Name - ORA_OPEN_BACKUP_SP
Version - 1
UID - F28D2E91-2A42-11D4-9453-474F4749524C
Execution Node Name - CURLEY
Archive File System
Primary Archive Location -
Staging Location -
Primary Archive Type - SLS/MDMS
Owner - CURLEY::DBA
Access Right - CURLEY::DBA
Access Granted - READ, WRITE, SET, SHOW, DELETE, CONTROL
Tape Pool - None
Volume Set Name -
Retention Period - 365
Consolidation Criteria
Count - 0
Size - 0
Interval - 7 00:00:00
Catalog Name - ABS_CATALOG
Maximum Saves - 3
Media Management Info
Media Location - None
Type of Media - TK89
Drive List - None
Using ABS to Backup Oracle Databases N–10

Using ABS to Backup Oracle Databases
N.3 Backing Up an Open Database
N.3.2 Creating ABS Save Requests for an Open Database Backup

This section shows the commands necessary to create the ABS save requests for an open data-
base backup. These save requests are implemented for a jukebox that has three tape drive. The
controlling save request, ORA_OPEN_BACKUP, is the only save request that is scheduled, the
rest have a scheduling policy of ON_DEMAND. The ORA_OPEN_BACKUP save request
backs up tablespaces TBS1 and TBS2. This keeps one tape drive busy while the other two
backup the rest of the database. After all tablespaces are backed up, the ORA_OPEN_BACKUP
save request starts the ORA_OPEN_BACKUP_RDO save request to archive the redo log files
and then backup the archived log files and the control file.

The following shows the creation of the save requests and the scheduling of
ORA_OPEN_BACKUP at 23:00.

$!
$! CREATE SAVE REQUESTS
$!
$ ABS SAVE /NOSTART DISK$ALPHA:[ORACLE.DB_APITEST]ORA_SYSTEM.DBS -
/AGENT_QUALIFIER="/IGNORE=(INTERLOCK,NOBACKUP)" -
/NAME=ORA_OPEN_BACKUP_SYS -
/ENVIRONMENT=ORA_OPEN_BACKUP_ENV -
/SCHEDULE_OPTION=DAILY -
/STORAGE_CLASS=ORA_OPEN_BACKUP_SP
$!
$ ABS SAVE /NOSTART DISK$ORACLE3:[APITEST_TBS3]APITEST_TBS3.DF -
/AGENT_QUALIFIER="/IGNORE=(INTERLOCK,NOBACKUP)" -
/NAME=ORA_OPEN_BACKUP_TBS3 -
/SCHEDULE_OPTION=ON_DEMAND -
/ENVIRONMENT=ORA_OPEN_BACKUP_ENV -
/STORAGE_CLASS=ORA_OPEN_BACKUP_SP
$!
$ ABS SAVE /NOSTART DISK$ORACLE4:[APITEST_TBS4]APITEST_TBS4.DF -
/AGENT_QUALIFIER="/IGNORE=(INTERLOCK,NOBACKUP)" -
/NAME=ORA_OPEN_BACKUP_TBS4 -
/SCHEDULE_OPTION=ON_DEMAND -
/ENVIRONMENT=ORA_OPEN_BACKUP_ENV -
/STORAGE_CLASS=ORA_OPEN_BACKUP_SP
$!
$ ABS SAVE /NOSTART DISK$ORACLE5:[APITEST_TBS5]APITEST_TBS5.DF -
/AGENT_QUALIFIER="/IGNORE=(INTERLOCK,NOBACKUP)" -
/NAME=ORA_OPEN_BACKUP_TBS5 -
/SCHEDULE_OPTION=ON_DEMAND -
/ENVIRONMENT=ORA_OPEN_BACKUP_ENV -
/STORAGE_CLASS=ORA_OPEN_BACKUP_SP
$!
$ ABS SAVE /NOSTART DISK$ORACLE6:[APITEST_TBS6]APITEST_TBS6.DF -
/AGENT_QUALIFIER="/IGNORE=(INTERLOCK,NOBACKUP)" -
/NAME=ORA_OPEN_BACKUP_TBS6 -
/SCHEDULE_OPTION=ON_DEMAND -
/ENVIRONMENT=ORA_OPEN_BACKUP_ENV -
/STORAGE_CLASS=ORA_OPEN_BACKUP_SP
$!
$ ABS SAVE /NOSTART DISK$ORACLE1:[APITEST_TBS1]APITEST_TBS1.DF -
/NAME=ORA_OPEN_BACKUP -
/AGENT_QUALIFIER="/IGNORE=(INTERLOCK,NOBACKUP)" -
/SCHEDULE_OPTION=DAILY -
/ENVIRONMENT=ORA_OPEN_BACKUP_ENV -
/STORAGE_CLASS=ORA_OPEN_BACKUP_SP
$ ABS SET SAVE ORA_OPEN_BACKUP -
DISK$ORACLE2:[APITEST_TBS2]APITEST_TBS2.DF/ADD
$!
$ ABS SAVE /NOSTART DISK$ALPHA:[ORACLE.DB_APITEST]*.ARC -
/NAME=ORA_OPEN_BACKUP_RDO -
/SCHEDULE_OPTION=ON_DEMAND -
/ENVIRONMENT=ORA_OPEN_BACKUP_ENV -
/STORAGE_CLASS=ORA_OPEN_BACKUP_SP
$ ABS SET SAVE ORA_OPEN_BACKUP_RDO -
DISK$ALPHA:[ORACLE.DB_APITEST]COPY_OF_CONTROL_FILE.CON/ADD
Using ABS to Backup Oracle Databases N–11

Using ABS to Backup Oracle Databases
N.3 Backing Up an Open Database
$!
$! NOW TO START IT
$!
$ ABS SET SAVE ORA_OPEN_BACKUP/START="23:00"
Using ABS to Backup Oracle Databases N–12

Glossary

d-
,

s or

ume.

 ABS)
uch as

hes

. The
dard
This glossary contains terms defined for the Archive Backup System for OpenVMS (ABS). It
also contains terms associated with the following products when related to ABS:

• Media and Device Management Services for OpenVMS (MDMS)

• Storage Library System for OpenVMS (SLS)

absolute time

A data-entry format for specifying the date or time of day. The format for absolute time is [d
mmm-yyyy[:]][hh:mm:ss.cc]. You can specify a date and time, or use the keywords TODAY
TOMORROW, or YESTERDAY.

access port

The port on a DCSC-controlled silo where volumes can be inserted into the silo.

active server process

The MDMS server process that is currently active. The active server process responds to
requests issued from an MDMS client process.

allocate

To reserve something for private use. In MDMS software, a user is able to allocate volume
drives.

allocated

The state of a drive or volume when a process is granted exclusive use of that drive or vol
The drive or volume remains allocated until the process gives up the allocation.

allocated state

One of four volume states. Volumes that are reserved for exclusive use by a user (such as
are placed in the allocated state. Allocated volumes are available only to the user name (s
ABS) assigned to that volume.

ANSI

The abbreviation for the American National Standards Institute, an organization that publis
computer industry standards.

ANSI-labeled

A magnetic tape that complies with the ANSI standards for label, data, and record formats
format of VMS ANSI-labeled magnetic tape volumes is based on Level 3 of the ANSI stan
for magnetic tape labels and file structure.
 Glossary–1

lumes.

hese

ls, and

l

S

es:

 the
archive

A repository of data that consists of

• Volumes that contains zero or more archive files.

• One or more catalogs that contain information about archived data that is stored on vo

• A set of services used to define the storage environment configuration and site policy. T
services are also used to move data between the ABS client and the MDMS volume.

archive file system

The file system that contains the archived data.

archive object

The data object that resides in offline storage.

archiving

Saving data for the purpose of long-term storage.

ASCII

The abbreviation for the American Standard Code for Information Interchange.

This code is a set of 8-bit binary numbers representing the alpha- bet, punctuation, numera
other special symbols used in text representation and communications protocols.

back up

To make duplicate copies of one or more files, usually onto different media than the origina
media. This provides the availability to restore the original data if it is lost or corrupted.

backup agent

The client or utility that performs the actual save or restore operation. Examples are the VM
BACKUP Utility and the RMU Backup Utility.

backup engine

The backup engine moves data to and from the storage policy. Examples of backup engin
VMS BACKUP, RMU BACKUP, and UBS.

BACKUP format

Standard OpenVMS BACKUP format. The BACKUP format is the recording format used by
VMS Backup utility to back up data to save sets.
Glossary–2

backup management domain

A node or OpenVMS Cluster system that has control over creating save requests. A backup man-
agement domain is usually controlled by a single storage administrator.

bind

The act of logically binding volumes into a magazine. This makes the volumes a logical unit that
cannot be separated unless an UN- BIND operation is done on the volumes.

blocking factor

The number of records in a physical tape block. The length of a physical block written to mag-
netic tape is determined by multiplying the record length by the blocking factor. For example, if
a record length of 132 and a blocking factor of 20 are specified, the length of each physical block
written to tape will be 2640 bytes (or characters).

The blocking factor is only used when MDMS software is writing an EBCDIC tape.

catalog

Contains records of data movement operations. Each time a save request is initiated, the history
of the data movement operation is recorded in an associated ABS central security domain: The
node or OpenVMS Cluster system where ABS policy server is installed. This domain controls
all ABS pol- icy objects, particularly storage and environment policies.

client node

Client nodes send database requests to the server node.combination time: A data-entry format
for specifying date and time. Combination time consists of an absolute time value plus or minus
a delta time value.

Examples:

command

An instruction, generally an English word, entered by the user at a terminal. The command
requests the software to perform a pre- defined function.

CRC

The acronym for cyclic redundancy check. It is a verification process used to ensure data is cor-
rect.

consolidation count

The criteria under which ABS creates new volume sets.

“TODAY+7-” Indicates current date plus seven days

“TODAY+7” Indicates current date plus seven hours

“TOMORROW-1” Indicates current date at 23:00 hours
 Glossary–3

ther

e

s dif-

bpi.

 from

g
consolidation interval

The number of days (in VMS time format) between the creation of new volume sets.

consolidation size

The desired maximum number of volumes allowed in a volume set.

data object

A data object specification, such as an OpenVMS file name or an Rdb/VMS database file name.

data movement request

Either a save or restore request initiated through either the DCL command interface or ABS
graphical user interface.

deallocate

To relinquish ownership of a drive, volume, or volume set.

• When a drive is deallocated, it is then available for allocation by other processes.

• When a volume set is deallocated, it is either immediately available for allocation by o
users or moved into a transition state.

deassign date

The day on which an allocated volume is scheduled to go into the transition state or the fre
state.

default

A value or operation automatically included in a command or field unless the user specifie
ferently.

density

The number of bits per inch (bpi) on magnetic tape. Typical values are 6250 bpi and 1600

device

A physical device, such as a tape drive or disk device.

down state

One of four volume states. Volumes that are either damaged, lost, or temporarily removed
the MDMS volume database for cleaning are placed in the down state.

EBCDIC

Extended Binary Coded Decimal Interchange Code. EBCDIC is an unlabeled IBM recordin
format. Volumes in EBCDIC format do not have records in the MDMS volume database.
Glossary–4

t-
environment policy

ABS policy object that defines the environment in which data ABS save and restore requests
occur.

expiration

The date and time at which an archived data is no longer considered useful. The archived data
can be deleted and its space removed.

format

See recording format.

free state

The volume state that allows volumes to be selected by users or other software applications.

GUI

Graphical User Interface

in port

The physical opening in a jukebox where volumes can be imported.

interface

A shared physical or logical boundary between computing system components. Interfaces are
used for sending and/or accepting information and control between programs, machines, and
people.

inventory

The act of automatically updating the MDMS database. MDMS can mount each volume located
in a magazine and update the MDMS volume database through this process.

I/O station

A jukebox component that enables an operator to manually insert and retrieve volumes. The I/O
station consists of an I/O station door on the outside of the jukebox and an I/O station slot on the
inside. See also I/O station door and I/O station slot.

I/O station door

An actual door on the outside of the jukebox that can be opened and closed. Behind the I/O sta-
tion door is the I/O station slot.

I/O station slot

An I/O slot that holds a volume when it is entering or leaving the jukebox.

label

• Information recorded at a fixed location on the volume that identifies the volume to sof
ware.

• The physical printed label attached to the outside of the volume to identify it.

labeled
 Glossary–5

A recording format that includes a volume label.

LEBCDIC

Labeled EBCDIC format. See also EBCDIC.

load

The process which makes a volume physically available to the computer system, such as for read
or write operations.

local symbol

A symbol meaningful only to the module or DCL command procedure that defines it.

log file

Any file into which status and error messages are written to reflect the progress of a process.

MDMS server node

The active server node to which all MDMS database requests are sent to be serviced. In a high-
availability configuration, when the active server node fails, another node (see MDMS standby
server process) in the OpenVMS Cluster system becomes the active server node.

MDMS software

The MDMS software is an OpenVMS software service that enables you to implement media and
device management for your storage management operations. MDMS provides services to SLS,
ABS, and HSM.

MDMS standby server process

Any MDMS server process that is not currently active. The standby server process waits and
becomes active if the active server process fails.

magazine

A physical container that holds from 5 to 11 volumes. The magazine contains a set of logically
bound volumes that reside in the MDMS database.

magazine database

The MDMS database that contains the magazine name and the volume names associated with
that magazine.

media

A mass storage unit. Media is referred to in this document as a volume. Volumes provide a phys-
ical surface on which data is stored. Examples of physical volumes are magnetic tape, tape car-
tridge, and optical cartridge.

media type

A set of site-specific names associated with volume densities and drives.
Glossary–6

.
e stor-

rives,

line

evices
 elec-

 a
rator to

o per-
ystem
nearline storage

Storage in which file headers are accessible through the operating system, but accessing data
requires extra intervention.

Nearline storage employs a robotic device to move volumes between drives and volume storage
locations. Nearline storage is less costly for each megabyte of data stored. Access times for data
in nearline storage may vary. Access to data may be nearly instantaneous when a volume con-
taining the data is already loaded in a drive. The time required for a robotic device to move to the
most distant storage location, retrieve a volume, load it into a drive, and position the volume
determines the maximum access time.

The devices of nearline storage technology include, but are not limited to, automated tape librar-
ies and optical jukeboxes.

offline storage

Storage in which neither the file headers nor the data is accessible by the operating system and
requires extra intervention.

Offline storage requires some type of intervention to move volumes between drives and the vol-
umes’ storage location. Offline storage is the least costly for each megabyte of data stored
Access times for data in offline storage vary for the same reasons as described for nearlin
age. For archive data stored in a remote vault, access time can take more than a day.

The devices of offline storage technology include, but are not limited to, standalone tape d
optical disk drives, and sequential stack loader tape drives.

online storage

Storage in which file headers and data can be accessed through the operating system. On
storage is the most costly for each megabyte of data stored.

As a trade off, online storage also offers the highest access performance. Online storage d
offer continuous service. The devices of online storage technology include disk storage and
tronic (RAM) storage that uses disk I/O channels.

OPCOM

OpenVMS Operator Communication Manager. An online communication tool that provides
method for users or batch jobs to request assistance from the operator, and allows the ope
send messages to interactive users.

OPER privilege

The level of privilege required by a system operator to suspend an MDMS operation and t
form a variety of maintenance procedures on volumes, as well as archive files and saved s
files.

out port

The physical opening in a jukebox where volumes can be exported from the jukebox.
 Glossary–7

ain

ess to

ed to
me.

mples

s that
 or

ne or
s-11
policy

The decisions and methods in which you implement your ABS policy. This includes when and
how often you back up or archive data from online to nearline or offline storage.

policy engine

The component in ABS that makes intelligent decisions based upon the implementation of your
ABS policy.

policy objects

The method in which ABS enables you to implement your ABS policy. ABS provides the fol-
lowing policy objects:

• Storage policy

• Environment policy

• Save request

• Restore request

policy server

ABS server component. Placement of this component determines the central security dom
(CSD).

pool

A set of volumes in the free state. Those volumes can be allocated by users who have acc
the volume pool. The storage administrator creates and authorizes user access to pools.

record

A set of related data treated as a unit of information. For example, each volume that is add
the MDMS volume database has a record created that contains information about the volu

record length

The length of a record in bytes. See also blocking factor.

recorded label

The label recorded on the volume.

recording format

The unique arrangement of data on a volume according to a predetermined standard. Exa
of recording format are BACKUP, EBCDIC, and ANSI.

restore process

The method by which the contents of a file or disk are recovered from a volume or volume
contain the saved data. ABS software will restore data by querying ABS catalog for the file
disk name specified in the restore request, and then locate the BACKUP save sets from o
more volumes, extract the data from those save sets, and place the information onto a File
structured disk where the restored data can be accessed by a user.

restore request
Glossary–8

A request to restore data from the archives to either its original location or an alternate location.
Restore re- quests are initiated either through the DCL command interface or ABS graphical user
interface.

requester

The user who creates a save or restore request.

requester profile

The requester profile is the profile of the user who is creating the save or restore request. This
profile is captured at the time the request is created.

restore request

ABS policy object that defines the request for the restoration of data.

robot device

A tape or optical drive that provides automatic loading of volumes, such as a TF867 or a TL820.

save process

The method by which copies of files are made on magnetic or optical volumes for later recovery
or for transfer to another site.

For BACKUP formatted volumes, an ABS save operation creates BACKUP save sets on mag-
netic tape volume, a system disk, or optical volume.

save request

ABS policy object that defines the request for saving data.

save set

A file created by the VMS Backup Utility on a volume. When the VMS Backup Utility saves
data, it creates a file in BACKUP format called a save set on the specified output volume. A sin-
gle BACKUP save set can contain numerous files. Only BACKUP can interpret save sets and
restore the data stored in the save set.

slot

A vertical storage space for storing a volume. The storage racks and cabinets used in data centers
contain multi-row slots that are labeled to easily locate stored volumes.

storage administrator

One or more privileged users responsible for installing, configuring, and maintaining ABS soft-
ware. This user has enhanced ABS authorization rights and privileges and controls the central
security domain (CSD) by creating and maintaining ABS storage and environment policies.

storage policy

ABS policy object that defines where to store data saved using ABS.

SYSPRV privilege

The level of privilege required to install the software and add user names to the system.
 Glossary–9

’s right
tion:
system backup

An ABS system typically saves the system disk, also known as a full disk backup. The system
backup can direct ABS software to perform automotive save operations on a predetermined
schedule.

tape

See volume.

transition state

Volumes in the transition state are in the process of being deallocated, but are not yet fully deal-
located. The transition state provides a grace period during which a volume can be reallocated to
the original owner if necessary.

UASCII

Unlabeled ASCII format. See also ASCII.

UIC

User identification code. The pair of numbers assigned to users, files, pools, global sections,
common event flag clusters, and mailboxes. The UIC determines the owner of a file or ABS pol-
icy object. UIC-based protection determines the type of access available to the object for its
owner, members of the same UIC group, system accounts, and other (world) users.

UID

A globally unique identifier for this instance of an object.

unbind

The act of unbinding a volume or volumes from a magazine.

unlabeled

A recording format that does not include a recorded label.

user backup

A save request created by an individual user (not the system) when they would like to make cop-
ies of a file or set of files for later recovery or for transfer to another site.

user profile

The set of information about a user that defines the user’s right to access data or the user
to access an ABS policy object. For ABS on OpenVMS, this includes the following informa

• User name

• UIC

• Privileges

• Access right identifiers

vault

An offsite storage location to where volumes are transferred for safekeeping.
Glossary–10

d.

lume
e pol-

:

at is

ber.
VMS Backup Utility

An OpenVMS Operating System utility that performs save and restore operations on files, direc-
tories, and disks using the BACKUP recording format.

volume

A physical piece of media (volume) that is known logically to the MDMS volume database. A
volume can be a single magnetic tape or disk, or as in the case of an optical cartridge, can refer to
one side of double-sided media. A volume is assigned a logical name, known as the volume
label.

volume ID

The volume’s internal identification used to verify that the correct volume has been selecte
The volume label should be the same as the volume ID.

volume name

Same as volume ID.

volume set

One or more volumes logically connected in a sequence to form a single volume set. A vo
set can contain one or more save sets. ABS adds volumes to a volume set until the storag
icy’s consolidation criteria has been met or exceeded.

volume state

A volume status flag. In MDMS software, volumes are placed in one of the following states

• Free

• Allocated

• Transition

• Down

wildcard character

A nonnumeric or nonalphanumeric character such as an asterisk (*) or percent sign (%) th
used in a file specification to indicate “ALL” for a given field or portion of a field. Wildcard
characters can replace all or part of the file name, file type, directory name, or version num
 Glossary–11

Index

A

ABS
catalogs 1-2
client

OpenVMS 2-1
policy database 1-2
policy objects 1-2, 1-4, 10-1

ABS policy
configuring 3-1
customizing 3-1

ABS Policy Objects J-2
Catalog J-2
Execution Environment J-2
Restore Request J-2
Save Request J-2
Storage Class J-2

Access contol
environment policy 8-7

Access control
restore request 10-8
storage policy 7-7

Archive file system 1-2, 1-7, 7-1
Files-11 1-2, 1-7
Files–11 3-5
MDMS 1-2, 1-7, 3-4

Authorizing
save request users 9-10

B

Backup
Oracle database

Closed N-2
Open N-5

Backup agent 1-2, 1-7
restore request

qualifiers 10-6
save request

qualifiers 9-6
Backup management 4-3

domain 4-3
centralized 4-4
combined 4-6
distributed 4-5

Backup strategies 5-1, 5-4

disaster recovery A-1
procedure A-4

OpenVMS clients 5-5, 5-9
schedules D-1
system backup process 5-1
user backup process 5-2

C

Catalog 1-2, 1-6, 15-1
creating 15-1

SLS type 15-3
staging type 15-4

improving performance 15-5
Oracle Rdb database 5-13
Oracle Rdb storage areas 5-13
showing 15-4
storage policy 7-6

Catalog Cleanup Utility C-1, C-2
log file C-3
shutting down C-3
starting C-2

Central security domain 4-1
Clients

NT 2-2
OpenVMS 2-1
UNIX 2-2

Compression
UNIX clients 8-6

Configuring
NT client 2-2
NTsystem backups 5-9
OpenVMS client backups 5-5, 5-9
OpenVMS client-server 2-1
system A-1
system backups 5-5
UNIX client 2-2
UNIX system backups 5-9

Converting ABS to SLS J-1
CRC 8-4
CSD

see Central security domain 4-1
Cyclic Redundancy Check

see CRC 8-4
Index–1

D

Data
deleting 8-5
finding 13-1
retaining 7-5

Data object
disk name 10-1
file name 10-1

Data Restore J-4
Full restore J-5
Selective file restore J-4

Database
catalog 1-6

Database Cleanup Utility C-1
log file C-2
shutting down C-2
starting up C-1

Deleting
evironment policies 12-1
original data 8-5
storage policies 12-1

Disaster recovery A-1
Drive 3-5

enviroment policy 8-6
storage policy 7-4

E

Environment policy 1-6, 8-1
access control 8-7
CRC 8-4
creating 8-2
customizing 3-7
data verification 8-4
deleting 12-1
modifying 12-1
naming 8-2
number of drives 8-6
processing commands 8-4
requirements 8-1
worksheet E-2

Error messages G-1, H-1

F

Files–11
archive file system 3-5

Full Operation J-15

G

Graphical user interface
see GUI 6-1

GUI 6-1
displaying on an NTclient 6-2
displaying on an OpenVMS client 6-1
monitoring job status 14-1
standard buttons 6-3

I

Incremental Operation J-15
Interfaces 1-3

CLI 1-10
GUI 1-10

L

Location 3-5
restored data 10-7
storage policy 7-4

Lookup
by archived dates 13-3
by file type 13-1
data 13-1

by node 13-2
storage policy 13-3

M

MDMS
archive file system 3-4
drive 3-5
location 3-5
pool 3-5

Media type 3-4
definitions 1-4
MDMS 3-4
storage policy 7-3

N

Node
storage policy 7-6

NTclient
displaying the GUI 6-2
large disk considerations F-2
saving 9-3
saving data 9-1
system backups

configuring 5-9
Index–2

NTsystem backups
configuring policy objects 5-9

O

OpenVMS client
displaying the GUI 6-1
recovering A-6
saving 9-2
saving data 9-1

Operations
Full J-15
Incremental J-15
Selective J-15
System Backups J-13
User Requested J-16

Oracle database backup
Closed N-2
Open N-5

Oracle Rdb
databases

catalog entries 5-13
restoring 5-14
saving 9-1, 9-2
system backups 5-12

storage areas 5-12
catalog entries 5-13
finding catalog entries 5-14
restoring 5-14
saving 9-3
system backups 5-12

P

Policy
ABS 3-1
database 1-2
objects 1-2, 1-4

Policy database 1-2
Policy objects 1-2, 1-4

configuring NTclient system backups 5-9
configuring OpenVMS system backups 5-5
configuring user backups 5-7
environment policy 1-6
restore request 1-4, 10-1
save request 1-4, 3-2, 9-1
storage policy 1-5, 3-4

Pool 3-5
storage policy 7-3

Postprocessing command
environment policy 8-4
restore request 10-4

save request 9-4
Preprocessing command

environment policy 8-4
restore request 10-4
save request 9-4

Processing commands
restore request 10-4
save request 9-4

R

Request
restore 1-4
save 1-4

Requirements
storage management 3-1

Restore request 1-4, 10-1
access control 10-8
deleting 12-1
modifying 12-1
naming 10-1
output location 10-7
restrictions 10-3
scheduling 10-6
selection criteria 10-6
storage policy 10-6
time formats B-1

Restoring
Oracle Rdb databases and storage areas 5-14

Restrictions
restore request 10-3
save request 9-3

S

Save request 1-4
access controls 9-10
agent specific qualifiers 9-6
backup agent qualifiers 9-6
configuring NTsystem backups 5-11
configuring OpenVMS system backups 5-6
configuring UNIX system backups 5-11
configuring user backups 5-9
creating 9-1
data syntax 9-2
deleting 12-1
modifying 12-1
name 9-1
policy object 9-1
postprocessing command 9-4
preprocessing command 9-4
restrictions 9-3
Index–3

saving file versions 9-6
scheduling 9-6
selection criteria 9-6
simultaneous 7-6
time formats B-1
types 3-2
worksheet E-3

Scheduling
backups D-1

Selection criteria
restore request 10-6
save request 9-6

Selective Operation J-15
Shutdown

Catalog Cleanup Utility C-3
Database Cleanup Utility C-2

SLS to ABS J-1
Startup

Catalog Cleanup Utility C-2
Database Cleanup Utility C-1

Storage management
requirements 3-1

Storage policy 1-5, 3-4
access control 7-7
catalog 7-6
creating 7-2
customizing 3-5
deleting 12-1
drive 7-4
execution node 7-6
location 7-4
lookup data 13-3
media type 7-3
modifying 12-1
naming 7-2
pool 7-3
requirements 7-2
restore request 10-6
retaining data 7-5
running simultaneous save requests 7-6
tape options 7-3
worksheet E-1

Symbolic links
environment policy 8-7

System Backups J-13
System backups 5-1

ABS clients F-4
configuring 5-5

NTsave requests 5-11
OpenVMS save requests 5-6
UNIX save requests 5-11

configuring policy objects 5-5

NTclient F-2
Oracle Rdb

databases 5-12
storage areas 5-12

UNIX client F-2

U

UNIX client
compression options 8-6
environment policy 8-6
large disk considerations F-2
saving 9-3
saving data 9-1
symbolic links 8-7
system backups

configuring 5-9
User backup 4-2

restrictions 4-2
User backups 5-2

configuring 5-7
save requests 5-9

configuring policy objects 5-7
process context 5-2
user profile 8-5
user profile process 5-2

User profile
environment policy 8-5

User Requested Operation J-16
Utilities

Catalog Cleanup Utility C-1
Database Cleanup Utility C-1

V

Volume 7-4
usage F-4

Volume sets 7-4
creating 7-4
Index–4

	Archive Backup System for OpenVMS
	Guide to Operations
	October 2000
	Preface
	Intended Audience
	Conventions
	Related Products
	Associated Documents

	Part I
	ABS Operations

	1
	What Is Archive Backup System for OpenVMS?
	1.1 ABS Operational Environment
	Figure 1–1 ABS Operational Environment

	1.2 ABS Policy Objects
	1.2.1 Save Request
	1.2.2 Restore Request
	Figure 1–2 ABS Save or Restore Request

	1.2.3 Storage Policy
	1.2.4 Environment Policy

	1.3 ABS Catalogs
	Figure 1–3 ABS Catalogs

	1.4 Archive File System
	1.5 Backup Agent
	1.6 Hierarchical System Management for OpenVMS Support
	1.7 ABS Supports Stacker Configured Devices
	1.8 ABS Provides Fast Tape Positioning
	1.9 Scheduler Interface Options
	1.10 ABS Interfaces

	2
	ABS Client-Server Technology
	2.1 ABS OpenVMS Client-Server Configuration
	Figure 2–1 ABS OpenVMS Client-Server Configuration

	2.2 ABS UNIX or NT Client Configuration
	Figure 2–2 ABS UNIX or NT Client Configuration
	Table 2–1 Differences Between ABS OpenVMS and UNIX or NT Clients

	3
	Customizing Your ABS Policy
	Figure 3–1 ABS Policy
	3.1 Deciding What Data to Save
	Table 3–1 Deciding What Data To Save

	3.2 Deciding When to Save Data
	3.3 Deciding Where to Save Data
	Table 3–2 Archive Type
	3.3.1 MDMS Archive Type
	3.3.2 Files–11 Archive Type
	Figure 3–2 Storage Policy/Archive Type Association

	3.3.3 Customizing the Storage Policies Provided by ABS
	Table 3–3 Customizing ABS Provided Storage Policies
	1.
	2.
	3.
	4.
	5.

	3.4 Deciding How to Move Data
	3.4.1 Customizing the Environment Policies Provided By ABS
	Table 3–4 Customizing ABS Provided Environment Policies
	1.
	2.
	3.
	4.

	3.4.2 Changing the Policy Engine Location

	4
	Data Safety
	4.1 Central Security Domain
	Figure 4–1 Central Security Domain on an OpenVMS Cluster
	Assumptions
	User Backup Restrictions

	4.2 Backup Management Domains
	4.2.1 Centralized Backup Management Domain
	Scenario: Centralized Backup Management Domain on a Single Node or OpenVMS Cluster System
	Figure 4–2 Centralized Backup Management Domain On An OpenVMS Cluster

	4.2.2 Distributed Backup Management Domain
	Scenario: Distributed Backup Management Domain
	Figure 4–3 Distributed Backup Management Domain on an OpenVMS Cluster

	4.2.3 Combined Backup Management Domain
	Scenario: Combined Backup Management Domain
	Figure 4–4 Combined Backup Management Domains on an OpenVMS Cluster
	1. On CLSTRA, storage and environment policies that can be accessed by all the backup management ...
	2. Storage and environment policies intended for use by only one remote system (NODEA) must have ...
	3. Storage and environment policies intended for use by more than one remote system (NODEB and NO...
	4. CLSTRB - This OpenVMS Cluster system is a central security domain that has only one, single ba...

	5
	Backup Strategies
	5.1 How ABS Implements Its System Backup Strategy
	5.1.1 System Backup Process
	Table 5–1 System Backup Process
	1.
	2.
	3.
	4.
	5.
	6.
	7.
	8.
	9.
	10.

	5.2 How ABS Implements Its User Backup Strategy
	5.2.1 User Process Context
	5.2.2 User Profile Process
	5.2.3 User Backup Process
	Table 5–2 User Backup Process
	1.
	2.
	3.
	4.
	5.
	6.
	7.
	8.
	9.
	10.
	11.
	12.

	5.3 Differences Between System and User Backup Operations
	Table 5–3 Major Differences Between System and User Backup Operations

	5.4 Configuring ABS for OpenVMS Client Backup Operations
	5.4.1 Creating ABS Policy Objects For OpenVMS Client System Backup Operations
	Table 5–4 Creating Storage and Environment Policies for OpenVMS Client System Backup Operations
	1.
	2.

	5.4.2 Creating Save Requests for OpenVMS Client System Backup Operations
	Table 5–5 Creating System Backup Save or Restore Requests For OpenVMS Client
	1.
	2.

	5.4.3 Creating ABS Policy Objects for OpenVMS Client User Backup Operations
	Table 5–6 Creating Storage and Environment Policies for OpenVMS Client User Backup Operations
	1.
	2.
	3.
	4.

	5.4.4 Creating Save Requests for OpenVMS Client User Backup Operations
	Table 5–7 Creating Save Requests for OpenVMS Client User Backup Operations
	1.

	5.5 Configuring ABS for NT and UNIX Client Backup Operations
	5.5.1 Creating ABS Policy Objects For NT and UNIX Client System Backup Operations
	Table 5–8 Creating Storage and Environment Policies for NT/UNIX Client System Backup Operations
	1.
	2.

	5.5.2 Creating Save Requests for NT and UNIX Client System Backup Operations
	Table 5–9 Creating Storage and Environment Policies for NT/UNIX Client System Backup Operations
	1.
	2.

	5.6 Oracle Rdb Databases and Storage Areas Backup Operations
	5.6.1 Saving Individual Storage Areas
	5.6.2 Catalog Entries
	5.6.2.1 Oracle Rdb Database Catalog Entries:
	5.6.2.2 Oracle Rdb Storage Area Catalog Entries:

	5.6.3 Searching for Storage Areas in the Catalog
	1. The following DCL example specifies the correct storage area syntax: $ ABS LOOKUP “DISK$RDB_DI...
	2. The following DCL example finds all storage areas for a specific database: $ ABS LOOKUP “DISK$...
	3. The following GUI example finds all storage areas with the name AREA3 for any Oracle Rdb datab...
	4. The following GUI example finds all instances of saved data on a specific disk (including stor...

	5.6.4 Restoring Storage Areas and Databases

	5.7 Cataloging Copied Backup Savesets

	6
	Displaying ABS Graphical User Interface
	6.1 Displaying ABS GUI On an OpenVMS System
	Table 6–1 Displaying ABS GUI on an OpenVMS System
	1.
	2.

	Figure 6–1 ABS Main Window

	6.2 Displaying ABS GUI on an NT System
	Table 6–2 Displaying the GUI On an NT System Using eXcursion and DCL Commands
	1.
	2.
	3.
	4.

	Table 6–3 Displaying ABS GUI Using eXcursion Menu Options
	1.
	2.
	3.
	4.
	5.
	6.
	7.
	8.
	9.
	10.
	11.
	12.
	13.

	6.3 Standard X Window for Motif Buttons

	7
	Creating Storage Policies
	7.1 Using ABS Policy Worksheets
	Step 1. Remove the worksheets from Appendix E. If possible, make copies of the worksheets so that...
	Step 2. Review Chapter 7, Chapter 8, and Chapter 9.
	Step 3. Determine the GUI fields that you need to configure for your ABS policies and record thos...
	Step 4. When you have completed the worksheets, create your ABS policy according to the completed...

	7.2 Requirements
	7.3 Creating an ABS Storage Policy
	Table 7–1 Creating an ABS Storage Policy
	1.
	2.
	3.

	7.4 Storage Policy Name
	7.5 Save Data To
	Table 7–2 Selecting Tape or Disk Storage
	1.
	2.
	3.

	7.5.1 Tape Options
	7.5.1.1 Media Type
	7.5.1.2 Pool
	7.5.1.3 Drives
	7.5.1.4 Location
	7.5.1.5 Criteria Under Which ABS Creates Volume Sets
	7.5.1.5.1 Days Before Creating a New Volume Set
	7.5.1.5.2 Save Sets Per Volume Set
	7.5.1.5.3 Volumes Per Volume Set

	7.5.1.6 Clear Volume Set List From Storage Policy
	Step 1. Follow the steps in Table 12–2 to access the Modify or Delete Policies & Requests window....
	Step 2. Click Tape Options Result: ABS displays the Tape Options window.
	Step 3. Click Clear Volume Set Result: ABS displays a list of volume set names that will be clear...
	Step 4. Click OK to clear the list of volume set names. Result: The volume set list disappears an...
	Step 5. Click OK on the Tape Options window. Result: ABS displays the following message: Clearing...

	7.6 Retain Data For
	Table 7–3 Options to Save the Data

	7.7 Catalog and Execution Node
	7.7.1 Selecting ABS Catalog
	7.7.2 Selecting the Node of Execution

	7.8 Number of Streams
	7.9 Storage Policy Access Control
	Table 7–4 Enabling Access Control to the Storage Policy
	1.
	2.
	3.
	4.

	7.10 Submitting the Storage Policy
	1. Click OK on the main window to submit the storage policy to ABS policy database. Result: ABS d...
	2. Click OK to submit the storage policy, or click Cancel to cancel the submit operation. If you ...

	8
	Creating Environment Policies
	8.1 Using ABS Policy Worksheets
	8.2 Requirements
	8.3 Creating an ABS Environment Policy
	Table 8–1 Creating an ABS Environment Policy
	1.
	2.
	3.

	8.4 Environment Policy Name
	8.5 Save and Restore Environment Options
	8.5.1 Who to Notify
	8.5.1.1 How to Notify and Who to Notify
	Table 8–2 Selecting the Notification Options
	1.
	2.
	3.
	4.

	8.5.1.2 When to Notify
	8.5.1.3 Type of Notification

	8.5.2 Data Verification
	8.5.3 Listing
	8.5.4 Pre- and Post- Processing Commands
	8.5.5 Original File
	8.5.6 Retry Options
	8.5.7 User Profile
	8.5.8 Open Files
	8.5.9 Tape Drives
	8.5.10 Compression
	8.5.11 Links Option
	8.5.12 Span Filesystems

	8.6 Environment Policy Access Control
	Table 8–3 Enabling Access to an ABS Environment Policy
	1.
	2.
	3.
	4.

	8.7 Submitting the Environment Policy
	1. Click OK on the main window to submit the environment policy to ABS policy database. Result: A...
	2. Click OK to submit the environment policy, or click Cancel to cancel the submit operation. If ...

	9
	Creating Save Requests
	9.1 Save Request Name
	9.2 What Data To Save
	Table 9–1 Adding Disk or File Names To A Save Request
	1.
	2.
	3.
	4.
	5.

	Table 9–2 Correctly Entering the Disk Name or File Name
	9.2.1 Save Request Restrictions
	9.2.2 Pre- and Post- Processing Commands
	9.2.3 Selection Criteria
	9.2.4 Agent Qualifier

	9.3 When to Save Data
	9.3.1 Immediately Executing the Save Request
	Step 1. Click Start and select NOW (default)
	Step 2. Click Schedule and select One Time Only (default)

	9.3.2 Repetitive Scheduling of Save Request
	1. Click Start and select one of the following options:
	2. Click Schedule. See the following descriptions of the scheduling options:

	9.4 Where and How
	9.5 Save Request Access Control
	Table 9–3 Enabling Access To An ABS Save Request
	1.
	2.
	3.
	4.
	5.

	9.6 Submitting the Save Request

	10
	Creating Restore Requests
	10.1 Restore Request Name
	Step 1. Double-click the default restore request name to select it (the name becomes highlighted)
	Step 2. Enter the new restore request name

	10.2 What Data To Restore
	Table 10–1 Adding Disk or File Names To A Restore Request
	1.
	2.
	3.
	4.

	Table 10–2 Entering The Correct Syntax For A Restore Request
	10.2.1 Restore Request Restrictions
	10.2.2 Pre and Post- Processing Commands
	10.2.3 Selection Criteria
	10.2.4 Agent Qualifiers

	10.3 When
	Step 1. Click Start Time
	Step 2. Select NOW, TOMORROW, NEVER, or OpenVMS Time. If you select OpenVMS time, click the date ...

	10.4 Where and How
	10.5 Restore To
	Step 1. Click Restore To...
	Step 2. Enter the output location for the restored data. The location consists of the following i...

	10.6 Restore Request Access Controls
	Table 10–3 Enabling Access Control To A Restore Request
	1.
	2.
	3.

	10.7 Submitting the Restore Request

	11
	Scheduling Requests
	11.1 Setting the Scheduler Interface Option
	11.2 Changing between Scheduler Interface Option
	11.3 Scheduler Interface Option INT_QUEUE_MANAGER
	11.4 Scheduler Interface Option EXT_QUEUE_MANAGER
	11.5 Scheduler Interface Option EXT_SCHEDULER
	11.6 Scheduler Interface Option DECSCHEDULER
	11.7 Scheduler Interface Option NONE
	11.8 Scheduler Interface Internals

	12
	Modifying and Deleting ABS Policies and Requests
	Table 12–1 Requirements for Modifying and Deleting Policies and Requests
	Figure 12–1 Modify or Delete Requests And Policies Window
	12.1 Select Request or Policy
	Table 12–2 Modifying or Deleting an ABS Policy or Request
	1.
	2.
	3.
	4.

	13
	Looking Up Saved Data
	13.1 Data to Lookup
	13.1.1 File Type
	13.1.2 Entering the Correct Lookup Syntax
	Table 13–1 Entering The Correct Syntax For A Lookup Operation

	13.1.3 Node of Original Data
	Step 1. Click the box next to Node of Original Data.
	Step 2. Click one of the node names displayed in the node name list, or click Other and enter the...

	13.1.4 Storage or Catalog Name
	13.1.5 Archived Dates to Search
	Table 13–2 Finding Saved Data By Date
	1. Click the selection box next to Date Match and select On Exact Date
	2. Enter the exact date in the box next to the Date Archived option. To enter the correct date fo...
	1. Click the selection box next to Date Match and select On Or Before
	2. Enter the before date in the box next to the Date Archived option. To enter the correct date f...
	1. Click the selection box next to Date Match and select On Or After
	2. Enter the after date in the box next to the Date Archived option. To enter the correct date fo...

	13.2 Submitting the Lookup Operation

	14
	Monitoring Job Status
	Step 1. From the system prompt, define the following logical name: $ DEFINE/SYSTEM/EXEC ABS$MONIT...
	Step 2. Display ABS GUI.
	Step 3. Click Job Status from the main ABS GUI window.
	Step 4. Click the job name that you want to check.
	Step 5. Click Show Status. Result: ABS displays the status of the job.
	Step 6. Click Stop if you want to stop displaying the job status. You can select another job as d...
	Step 7. Click Close when you are finished.

	15
	Creating ABS Catalogs
	15.1 Creating An ABS Catalog
	Step 1. Define the following symbol to run ABS catalog utility: $ CATALOG_OBJ :== ABSSYSTEM:ABS...
	Step 2. Invoke the catalog utility symbol: $ CATALOG_OBJ
	15.1.1 Creating a BRIEF type catalog
	15.1.2 Creating a FULL_RESTORE type catalog
	15.1.3 Creating An SLS Type Catalog
	Table 15–1 Creating an ABS Catalog For SLS Restores
	1.
	2.
	3.
	4.
	5.

	15.1.4 Creating a Catalog using Staging Operation

	15.2 Showing a Catalog
	15.3 Modifying a Catalog
	15.4 Deleting a Catalog
	15.5 Improving Catalog Performance
	15.5.1 Converting ABS Catalogs
	15.5.2 Moving Target Catalogs to a Different Disk
	Table 15–2 Moving Target Catalogs to a Different Disk
	1.
	2.
	3.

	15.5.3 Moving Staging Catalog Entries

	15.6 Sizes of Catalog Files
	15.6.1 Technical Details

	15.7 What size is the ABS catalog?

	Part II
	MDMS Operations

	16
	What is MDMS?
	16.1 MDMS Objects
	Table 16–1 MDMS Object Records and What they Manage

	16.2 MDMS Interfaces

	17
	MDMS Configuration
	17.1 The MDMS Management Domain
	Figure 17–1 The MDMS Domain
	17.1.1 The MDMS Database
	Table 17–1 MDMS Database Files and Their Contents
	17.1.1.1 Database Performance
	17.1.1.2 Database Safety
	To Make Backup Copies of the MDMS Database
	Table 17–2 How to Back Up the MDMS Database Files
	1.
	2.
	3.
	4.
	5.
	6.

	To Process the MDMS Database for an Image Backup of the Device
	Table 17–3 Processing MDMS Database Files for an Image Backup
	1.
	2.
	3.
	4.

	17.1.1.3 Moving the MDMS Database
	Table 17–4 How to Move the MDMS Database
	1.
	2.
	3.
	4.
	5.
	6.
	7.
	8.
	9.
	10.

	17.1.2 The MDMS Process
	17.1.2.1 Server Availability
	17.1.2.2 The MDMS Account
	Example 17–1 MDMS User Account

	17.1.3 The MDMS Start Up File
	Table 17–5 MDMS$SYSTARTUP.COM Logical Assignments
	17.1.3.1 MDMS$DATABASE_SERVERS - Identifies Domain Database Servers
	Table 17–6 Network Node Names for MDMS$DATABASE_NODES

	17.1.3.2 MDMS$LOGFILE_LOCATION
	17.1.3.3 MDMS Shut Down and Start Up
	How to Shut Down MDMS
	How to Restart MDMS
	How to Start Up MDMS

	17.1.4 Managing an MDMS Node
	17.1.4.1 Defining a Node’s Network Connection
	1. If the node is part of a DECnet (Phase IV) network, then the name of the node object must matc...
	2. If the node is part of a DECnet-Plus (Phase V) network, the DECnet-Plus full name must be supp...
	3. If the node is part of an Internet or Intranet using TCP/IP, the TCP/IP full name must be supp...
	4. Depending on which network or networks are available or should be used, the node's trans�port ...

	17.1.4.2 Defining How the Node Functions in the Domain
	Designating Potential Database Servers
	Disabling and Enabling MDMS Nodes

	17.1.4.3 Enabling Interprocess Communication
	17.1.4.4 Describing the Node
	17.1.4.5 Communicating with Operators

	17.1.5 Managing Groups of MDMS Nodes
	Figure 17–2 Figure 10– 2 Groups in the MDMS Domain

	17.1.6 Managing the MDMS Domain
	17.1.6.1 Domain Configuration Parameters
	Operator Communications for the Domain
	Resetting the Request Identifier Sequence

	17.1.6.2 Domain Options for Controlling Rights to Use MDMS
	ABS Users
	MDMS Client Applications
	Default Rights for Various System Users

	17.1.6.3 Domain Default Volume Management Parameters
	Table 17–7 Default Volume Management Parameters

	17.1.7 MDMS Domain Configuration Issues
	17.1.7.1 Adding a Node to an Existing Configuration
	Table 17–8 Adding a Node to an Existing Configuration
	1.
	2.
	3.
	4.
	5.
	6. If the new node is a database server, then add the node by its network transport names to the ...

	17.1.7.2 Removing a node from an existing configuration

	17.2 Configuring MDMS Drives, Jukeboxes and Locations
	17.2.1 Configuring MDMS Drives
	17.2.1.1 How to Describe an MDMS Drive
	17.2.1.2 How to Control Access to an MDMS Drive
	17.2.1.3 How to Configure an MDMS Drive for Operations
	17.2.1.4 Determining Drive State
	17.2.1.5 Adding and Removing Managed Drives

	17.2.2 Configuring MDMS Jukeboxes
	17.2.2.1 How to Describe an MDMS Jukebox
	17.2.2.2 How to Control Access to an MDMS Jukebox
	17.2.2.3 How to Configure an MDMS Jukebox for Operations.
	17.2.2.4 Attribute for DCSC Jukeboxes
	17.2.2.5 Attributes for MRD Jukeboxes
	17.2.2.6 Determining Jukebox State
	17.2.2.7 Magazines and Jukebox Topology
	Figure 17–3 Jukebox Topology
	Towers, Faces, Levels, and Slots
	Restrictions for Using Magazines
	TL896 Example
	Figure 17–4 Magazines

	17.2.3 Summary of Drive and Jukebox Issues
	17.2.3.1 10.2.3.1 Enabling MDMS to Automatically Respond to Drive and Jukebox Requests
	17.2.3.2 Creating a Remote Drive and Jukebox Connection
	Table 17–9 Actions for Configuring Remote Drives
	1.
	2.
	3.

	17.2.3.3 How to Add a Drive to a Managed Jukebox
	17.2.3.4 Temporarily Taking a Managed Device From Service
	17.2.3.5 Changing the Names of Managed Devices
	Table 17–10 Changing the Names of Managed Devices
	1.
	2.
	3.
	4.
	5.
	6.

	17.2.4 Locations for Volume Storage
	Figure 17–5 Volume Locations
	Figure 17–6 Named Locations

	17.3 Sample MDMS Configurations

	18
	Basic MDMS Operations
	18.1 MDMS User Interfaces
	18.1.1 Command Line Interface
	18.1.1.1 Command Structure
	18.1.1.2 Process Symbols and Logical Names for DCL Programming
	18.1.1.3 Creating, Changing, and Deleting Object Records With the CLI
	18.1.1.4 Add and Remove Attribute List Values With the CLI
	Command Features
	Command Examples

	18.1.1.5 Operational CLI Commands
	Table 18–1 Operational CLI Commands

	18.1.1.6 Asynchronous Requests

	18.1.2 Graphic User Interface
	18.1.2.1 Object Oriented Tasks
	Viewing Object Records with the GUI
	Operational Actions With the GUI
	Table 18–2 Operational Actions With the GUI

	18.1.2.2 Combined Tasks
	Add Devices and Volumes
	Delete Devices and Volumes
	Site to Site Rotation
	Service a Jukebox

	18.2 Access Rights for MDMS Operations
	18.2.1 Description of MDMS Rights
	18.2.1.1 Low Level Rights
	18.2.1.2 High Level Rights
	MDMS User
	MDMS Application
	MDMS Operator
	The Default Right

	18.2.2 Granting MDMS Rights
	Table 18–3 Reviewing and Setting MDMS Rights
	1.
	2.
	3.
	4.
	5.

	18.3 Creating, Modifying, and Deleting Object Records
	18.3.1 Creating Object Records
	18.3.1.1 Naming Objects
	18.3.1.2 Differences Between the CLI and GUI for Naming Object Records
	Naming Examples

	18.3.2 Inheritance on Creation
	18.3.3 Referring to Non-Existent Objects
	18.3.4 Rights for Creating Objects
	18.3.5 Modifying Object Records
	18.3.6 Protected Attributes
	18.3.7 Rights for Modifying Objects
	Table 18–4 Low Level Rights

	18.3.8 Deleting Object Records
	18.3.9 Reviewing Managed Objects for References to Deleted Objects
	Table 18–5 Reviewing Managed Objects for References to Deleted Objects

	18.3.10 Reviewing DCL Command Procedures for References to Deleted Objects
	Table 18–6 Reviewing DCL Commands for References to Deleted Objects

	18.3.11 Rights for Deleting Objects

	19
	Connecting and Managing Remote Devices
	19.1 The RDF Installation
	19.2 Configuring RDF
	19.3 Using RDF with MDMS
	19.3.1 Starting Up and Shutting Down RDF Software
	19.3.2 The RDSHOW Procedure
	19.3.3 Command Overview
	19.3.4 Showing Your Allocated Remote Devices
	19.3.5 Showing Available Remote Devices on the Server Node
	19.3.6 Showing All Remote Devices Allocated on the RDF Client Node

	19.4 Monitoring and Tuning Network Performance
	19.4.1 DECnet Phase IV
	Pipeline quota
	Line receive buffers

	19.4.2 DECnet-Plus (Phase V)
	19.4.3 Changing Network Parameters
	19.4.4 Changing Network Parameters for DECnet (Phase IV)
	Table 19–1 How to Change Network Parameters

	19.4.5 Changing Network Parameters for DECnet-Plus(Phase V)
	19.4.6 Resource Considerations
	Large request packets
	NETACP BYTLM

	19.4.7 Controlling RDF’s Effect on the Network
	19.4.8 Surviving Network Failures

	19.5 Controlling Access to RDF Resources
	19.5.1 Allow Specific RDF Clients Access to All Remote Devices
	1. Edit TTI_RDEV:CONFIG_MIAMI.DAT
	2. Before the first device designation line, insert the /ALLOW qualifier

	19.5.2 Allow Specific RDF Clients Access to a Specific Remote Device
	1. Edit TTI_RDEV:CONFIG_MIAMI.DAT
	2. Find the device designation line (for example, DEVICE 1MUA0:)
	3. At the end of the device designation line, add the /ALLOW qualifier:

	19.5.3 Deny Specific RDF Clients Access to All Remote Devices
	1. Edit TTI_RDEV:CONFIG_MIAMI.DAT
	2. Before the first device designation line, insert the /DENY qualifier:

	19.5.4 Deny Specific RDF Clients Access to a Specific Remote Device
	1. Edit TTI_RDEV:CONFIG_MIAMI.DAT
	2. Find the device designation line (for example, DEVICE 1MUA0:)
	3. At the end of the device designation line, add the /DENY qualifier:

	19.6 RDserver Inactivity Timer
	19.7 RDF Error Messages

	20
	MDMS Management Operations
	20.1 Managing Volumes
	20.1.1 Volume Life Cycle
	Figure 20–1 Volume States
	Table 20–1 MDMS Volume State Transitions

	20.1.2 Volume States by Manual and Automatic Operations
	20.1.2.1 Creating Volume Object Records
	20.1.2.2 Initializing a Volume
	20.1.2.3 Allocating a Volume
	20.1.2.4 Holding a Volume
	20.1.2.5 Freeing a Volume
	20.1.2.6 Making a Volume Unavailable

	20.1.3 Matching Volumes with Drives
	20.1.4 Magazines for Volumes
	Figure 20–2 Magazines

	20.1.5 Symbols for Volume Attributes

	20.2 Managing Operations
	20.2.1 Setting Up Operator Communication
	Table 20–2 Setting Up Operator Communication
	1.
	2.
	3.

	20.2.1.1 Set OPCOM Classes by Node
	20.2.1.2 Identify Operator Terminals
	20.2.1.3 Enable Terminals for Communication

	20.2.2 Activities Requiring Operator Support
	Table 20–3 Operator Management Features

	20.3 Serving Clients of Managed Media
	20.3.1 Maintaining a Supply of Volumes
	20.3.1.1 Preparing Managed Volumes
	Meeting Situational Demands
	Meeting Application Needs
	Static Volume Attributes

	20.3.2 Servicing a Stand Alone Drive
	Table 20–4 Configuring MDMS to Service a Stand Alone Drive
	1.
	2.
	3.

	20.3.3 Servicing Jukeboxes
	20.3.3.1 Inventory Operations
	Inventory for Update
	Inventory to Create Volume Object Records
	Table 20–5 How to Create Volume Object Records with I�NVENTORY
	1.
	2.
	3.
	4.

	20.3.4 Managing Volume Pools
	Figure 20–3 Pools and Volumes
	20.3.4.1 Volume Pool Authorization
	20.3.4.2 Adding Volumes to a Volume Pool
	20.3.4.3 Removing Volumes from a Volume Pool
	20.3.4.4 Changing User Access to a Volume Pool
	20.3.4.5 Deleting Volume Pools

	20.3.5 Taking Volumes Out of Service
	20.3.5.1 Temporary Volume Removal
	20.3.5.2 Permanent Volume Removal

	20.4 Rotating Volumes from Site to Site
	20.4.1 Required Preparations for Volume Rotation
	20.4.2 Sequence of Volume Rotation Events
	Table 20–6 Sequence of Volume Rotation Events
	1.
	2.
	3.
	4.
	5.
	6.

	20.5 Scheduled Activities
	20.5.1 Logical Controlling Scheduled Activities
	20.5.2 Job Names of Scheduled Activities
	20.5.3 Log Files for Scheduled Activities
	20.5.4 Notify Users When Volumes are Deallocated

	21
	MDMS High Level Tasks
	21.1 Creating Jukeboxes, Drives, and Volumes
	Figure 21–1 Configuring Volumes and Drives
	Table 21–1 Creating Devices and Volumes
	1.
	2.
	3.
	4.
	5.
	6.
	7.
	8.
	9.
	10.
	11.
	12.
	13.
	14.
	15.
	16.
	17.

	21.2 Deleting Jukeboxes, Drives, and Volumes
	Table 21–2 Deleting Devices and Volumes
	1.
	2.
	3.
	4.
	5.
	6.
	7.
	8.
	9.
	10.

	21.3 Rotating Volumes Between Sites
	Figure 21–2 Volume Rotation
	Table 21–3 Rotating Volumes Between Sites
	1.
	2.
	3.
	4.
	5.
	6.

	21.4 Servicing Jukeboxes Used for Backup Operations
	Figure 21–3 Magazine Placement
	Table 21–4 Servicing Jukeboxes
	1.
	2.
	3.
	4.
	5.

	A
	Preparing For Disaster Recovery
	A.1 Efficiently Configuring Your System
	A.2 Preparing for Disaster Recovery
	Table A–1 Disaster Recovery Tasks
	1.
	2.
	3.
	4.

	Figure A–1 Special Save Request

	A.3 Recovering ABS From A Disaster Situation
	Table A–2 Recovering ABS
	1.
	2.
	3.
	4.
	5.
	6.
	7.
	1. Mount the volumes from the most recent to the least recent, determined by the report.
	2. Dismount the restore disk: $ DISMOUNT output_device
	3. Mount the restore disk Files-11: $ MOUNT output_device volume_name
	4. Mount the tape drive foreign: $ MOUNT/FOREIGN tape_device:
	5. Skip to the position on the save set where the incremental backup resides (supplied in report)...
	6. Issue the backup command using the /INCREMENTAL qualifier: $ BACKUP tape_device: save_set_name...

	A.4 Recovering ABS Client Nodes

	B
	ABS Time Formats
	B.1 Start Time Format
	Table B–1 Start Time Formats

	B.2 Explicit Interval

	C
	ABS Cleanup Utilities
	C.1 Database Cleanup Utility
	C.1.1 Starting Up the Database Cleanup Utility
	C.1.2 Changing the Database Cleanup Utility Default Behavior
	C.1.3 Database Cleanup Utility Log File
	C.1.4 Shutting Down the Database Cleanup Utility
	Table C–1 Shutting Down the Database Cleanup Utility

	C.2 Catalog Cleanup Utility
	C.2.1 Starting Up the Catalog Cleanup Utility
	C.2.2 Changing the Catalog Cleanup Utility Default Behavior
	C.2.3 Catalog Cleanup Utility Log File
	Table C–2 Defining the Catalog Cleanup Utility Logical Names

	C.2.4 Shutting Down the Catalog Cleanup Utility
	C.2.4.1 Restarting the Catalog Cleanup Utility

	C.2.5 ABS Catalog Cleanup Utility Process
	1. A OpenVMS batch job. This job runs each day to perform catalog cleanups and is invoked by SYS$...
	2. The logical name ABS_CATALOG_CLEANUP. How this logical is defined determines whether the curre...

	D
	Log–n Backup Schedules
	Figure D–1 Log–n Backup Schedules

	E
	ABS Worksheets
	E.1 Storage Policy Worksheet
	Table E–1 Storage Policy Worksheet

	E.2 Environment Policy Worksheet
	Table E–2 Environment Policy Worksheet

	E.3 Save Request Worksheet
	Table E–3 Save Request Worksheet

	F
	Troubleshooting
	F.1 Logical Names Provide Additional Tracing
	F.2 Troubleshooting Assistance for NT Clients
	Table F–1 Assigning a System Variable for NT Troubleshooting
	1.
	2.
	3.
	4.
	5.
	6.
	7.
	8.
	9.

	F.3 Verifying NT and UNIX Client Quotas
	F.4 Considerations for Saving Large Disks on UNIX and NT Clients
	Step 1. Divide the size of the disk (in bytes) by 99999
	Step 2. Divide the resulting number by 512
	Step 3. Round up to the next whole number
	Table F–2 Modifying the Blocking Factor
	1.
	2.
	3.
	4.
	5.
	6.
	7.

	F.5 Using The Same Volume Set For Multiple Types of ABS Clients
	F.6 ABS Log Files
	Table F–3 ABS Log Files

	F.7 New Logical Name Added To Increase Stack Size On Alpha Systems
	F.8 Additional Error Messages
	F.9 Upgrading ABS
	Step 1. Start up ABS using @SYS$STARTUP:ABS$STARTUP.COM
	Step 2. Shut down ABS using @SYS$MANAGER:ABS$SHUTDOWN.COM
	Step 3. Upgrade ABS using @SYS$UPDATE:VMSINSTAL

	F.10 Logical To Assist with Server Connection Problems
	F.11 AUDIT Flags in ABS$POLICY_CONFIG.DAT
	F.12 Troubleshooting MDMS Related Problems
	F.13 Information Required When Reporting Problems

	G
	ABS Error Messages

	H
	MDMS Error Messages

	I
	SLS and ABS Comparisons
	Table I–1 Comparing SLS and ABS Backup Attributes

	J
	SLS To ABS Conversion
	J.1 SLS To ABS Conversion
	J.2 Why Convert from SLS to ABS?
	J.2.1 Consolidated Policy Management
	J.2.2 More Intuitive Policy Organization
	J.2.3 Better Logging and Diagnostic Capabilities
	J.2.4 UNIX and NT Clients
	J.2.5 Automatic Full and Incremental Operations
	J.2.6 More versatile User requested Operations
	J.2.7 Disk Storage Classes

	J.3 SLS and ABS System Backup Policy Overview
	J.3.1 SLS Policy with ABS Equivalents
	J.3.1.1 System Backup Policy Configuration
	Table J–1 DCL Symbols and ABS Equivalent

	J.3.1.2 Defining Your System Backup Policy
	J.3.1.3 Restoring Data
	Selective File Restores
	Full Restore Operations

	J.3.1.4 Media Management

	J.3.2 ABS Overview with SLS Equivalents
	J.3.2.1 Policy Configuration
	J.3.2.2 Storage Class
	Table J–2 Storage Class Parameter and SBK File Equivalent

	J.3.2.3 Execution Environment
	Table J–3 ABS and SBK Equivalent

	J.3.2.4 Save Request
	Table J–4 Save Request and SBK Equivalent

	J.3.2.5 Restore Request
	Table J–5 Restore Request Parameter Information

	J.3.2.6 Catalog
	Table J–6 ABS Parameter and SLS Equivalent

	J.4 SLS and ABS Operation Overview
	J.4.1 Scheduling
	J.4.1.1 SBK Symbols for Scheduling
	J.4.1.2 ABS Scheduler Interface Options

	J.4.2 Types of Operations
	J.4.2.1 System Backups
	J.4.2.2 Full and Incremental Operations
	J.4.2.3 Selective Operations
	J.4.2.4 User Requested Operations
	1. Create an MDMS Pool for the user and specify that the user is authorized to access volumes in ...
	2. Create a personal catalog for the user using the ABS_CATALOG_OBJECT utility. If desired, you c...
	3. Create an ABS Storage Class for the user, identifying the Owner as the user, and granting the ...
	4. Create an ABS Execution Environment for the user, or let it default to the DEFAULT_ENV object ...
	5. Notify the user of their Storage Class Name. This Storage Class should be included on all of t...

	J.4.3 Media and Device Management
	J.4.3.1 New Media Manager
	J.4.3.2 Volume Set Management
	J.4.3.3 Consistency of Volume and Drive Management

	J.4.4 Cataloging
	J.4.4.1 SLS History Sets
	J.4.4.2 ABS Catalogs
	J.4.4.3 Restoring data with ABS from SLS History Sets
	1. Create an ABS Catalog with the type of SLS. This is done using the ABS_CATALOG_OBJECT utility,...
	2. Create a read only Storage Class in ABS which references the SLS type catalog. The Storage Cla...
	3. Issue ABS Lookup or ABS Restore commands using the Storage Class created above. The SLS Histor...

	J.5 Conversion Process
	J.5.1 Steps for Conversion
	J.5.1.1 Convert the MDMS Database
	J.5.1.2 Determine your use of SLS
	J.5.1.3 Converting SLS System Backups to ABS
	Determine valid SBK files
	Convert the Valid SBK Files to ABS Policy
	Evaluate the ABS Conversion Command Files
	Naming Conventions Used
	Consolidate ABS Policy Objects
	Consolidating Storage Classes
	Table J–7 Storage Class Parameter

	Consolidating Execution Environments
	Table J–8 Execution Environment Parameter

	Implement ABS Policy
	Executing the Command Procedures
	Integrating the Prolog and Epilog Commands

	SBK Symbols and ABS Logicals
	Disable the SLS SBK Files

	J.5.1.4 Converting User Backup policy
	J.5.1.5 Monitor ABS Activity
	J.5.1.6 Restoring from SLS History Sets

	J.6 Conversion Utility Reference
	J.6.1 Command Syntax
	J.6.2 Output Command File naming and contents

	J.7 SBK Symbols in ABS Terminology
	Table J–9 SBK Symbols in ABS Terminology

	J.8 ABS Policy Attributes in SBK Terminology
	Table J–10 ABS Storage Classes and SLS SBK Equivalent
	Table J–11 ABS Execution Environment Parameter and SLS SBK Equivalent
	Table J–12 ABS Save Request Parameter and SLS SBK Equivalent

	K
	Differences Between MDMS Version 2 and MDMS Version 3
	K.1 Comparing STORAGE and MDMS Commands
	Table K–1 Comparing MDMS Version 2 and Version 3 Commands

	K.2 MDMS V2 Forms Interface Options
	Table K–2 Comparing MDMS V2 Forms and MDMS V3 Features

	K.3 TAPESTART.COM Command Procedure
	Table K–3 Comparison of TAPESTART.COM to MDMS Version 3 Features.

	L
	Sample Configuration of MDMS
	L.1 Configuration Order
	1. Location
	2. Media type
	3. Node
	4. Jukebox
	5. Drives
	6. Pools
	7. Volumes
	L.1.1 Configuration Step 1 Example - Defining Locations
	L.1.2 Configuration Step 2 Example - Defining Media Type
	L.1.3 Configuration Step 3 Example - Defining Domain Attributes
	L.1.4 Configuration Step 4 Example - Defining MDMS Database Nodes
	L.1.5 Configuration Step 5 Example - Defining a Client Node
	L.1.6 Configuration Step 6 Example - Creating a Jukebox
	L.1.7 Configuration Step 7 Example - Defining a Drive
	L.1.8 Configuration Step 8 Example - Defining Pools
	L.1.9 Configuration Step 9 Example - Defining Volumes using the /VISION qualifier

	M
	Converting SLS/MDMS V2.X to MDMS V3
	M.1 Operational Differences Between SLS/MDMS V2 & MDMS V3
	M.1.1 Architecture
	M.1.2 MDMS Interfaces
	A modern DCL interface
	A modern GUI interface

	M.1.3 Rights and Privileges
	M.1.4 The MDMS Domain
	M.1.5 Drives
	M.1.6 Jukeboxes
	M.1.7 Locations
	M.1.8 Media Types
	M.1.9 Magazines
	M.1.10 Nodes
	M.1.11 Groups
	M.1.12 Pools
	M.1.13 Volumes
	Table M–1 Volume Attributes

	M.1.14 Remote Devices

	M.2 Converting SLS/MDMS V2.X Symbols and Database
	1. Convert the symbols in SYS$STARTUP:TAPESTART.COM into the following objects:
	2. Convert the database authorization file, VALIDATE.DAT, into node objects.
	M.2.1 Executing the Conversion Command Procedure
	M.2.2 Resolving Conflicts During the Conversion
	Table M–2 Symbols in TAPESTART.COM

	M.3 Things to Look for After the Conversion
	Table M–3 Things to Look for After the Conversion

	M.4 Using SLS/MDMS V2.x Clients With the MDMS V3 Database
	M.4.1 Limited Support for SLS/MDMS V2 during Rolling Upgrade
	M.4.2 Upgrading the Domain to MDMS V3
	Step 1. Shut down all SLS/MDMS database servers in your SLS/MDMS domain.
	Step 2. Install version MDMS V3 on nodes, which have been acting as database servers before.
	Step 3. When the new servers are up-and-running check and possibly change the configuration and d...
	Step 4. Edit SYS$MANAGER:MDMS$SYSTARTUP.COM and make sure that:
	Step 5. To support load, unload and operator requests from old SLS/MDMS clients you have to edit ...
	Step 6. Start SLS/MDMS V2 with @SYS$STARTUP:SLS$STARTUP.
	Step 7. Now you are ready to start up ABS, HSM or SLS.

	M.4.3 Reverting to SLS/MDMS V2
	Step 1. Shut down all applications using MDMS (i.e., ABS, HSM and SLS)
	Step 2. Shut down all MDMS V3 servers in the domain and deassign system logical name MDMS$VERSION...
	Step 3. . Convert the new database back to the old database files. Refer to section “Convert�ing ...
	Step 4. Edit TAPESTART.COM on all SLS/MDMS nodes, which should be database servers again. Add the...
	Step 5. Remove the call to MDMS$STARTUP.COM from your SYSTARTUP_VMS.COM.
	Step 6. Make sure a call to SLS$STARTUP.COM is included in your SYSTARTUP_VMS.COM.
	Step 7. Start up SLS/MDMS V2 and all applications using it.

	M.4.4 Restrictions

	M.5 Convert from MDMS Version 3 to a V2.X Volume Database

	N
	Using ABS to Backup Oracle Databases
	N.1 Example Oracle Database
	N.2 Backing up a Closed Database
	N.2.1 Creating ABS Environment and Storage Policies for a Closed Database Backup
	N.2.2 Creating ABS Save Requests for a Closed Database Backup

	N.3 Backing Up an Open Database
	N.3.1 Creating ABS Environment and Storage Policies for an Open Database Backup
	N.3.2 Creating ABS Save Requests for an Open Database Backup
	A
	B
	C
	D
	E
	F
	G
	I
	L
	M
	N
	O
	P
	R
	S
	U
	V

