
Porting XUI Applications to Motif
Order Number: AA–PGZFA–TE

August 1991

This guide describes how to convert XUI applications to OSF/Motif
applications.

Revision/Update Information: This is a new manual.

Operating System and Version: ULTRIX Version 4.2
VMS Version 5.4

Software Version: ULTRIX Worksystem Software
Version 4.2
VMS DECwindows Motif Version 1.0

Digital Equipment Corporation
Maynard, Massachusetts

August 1991

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may
be used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by Digital Equipment Corporation or its affiliated
companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is
subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in
Technical Data and Computer Software clause at DFARS 252.227-7013.

© Digital Equipment Corporation 1991. All Rights Reserved.

The postpaid Reader’s Comments forms at the end of this document request your
critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation: Bookreader,
CDA, DEC, DECnet, DECwindows, DECwrite, Digital, LinkWorks, LiveLink,
LN03, PrintServer, ReGIS, ULTRIX, ULTRIX Worksystem Software, VAX,
VAXcluster, VAXserver, VAXstation, VMS, VT, XUI, and the DIGITAL logo.

Open Software Foundation, OSF, OSF/Motif, and Motif are trademarks of the
Open Software Foundation, Inc.

UNIX is a registered trademark of UNIX System Laboratories, Inc.

ZK5640

This document was prepared using DECdocument, Version 3.3-1b.

Contents

About This Guide . ix

1 Introduction to Porting

1.1 Name Changes . 1–1
1.2 Toolkit . 1–2
1.3 Motif Window Manager . 1–2
1.4 User Interface Language . 1–3
1.5 User Interface Style . 1–3
1.6 Interoperability . 1–4

2 Converting Your XUI Files

2.1 Before Converting Your Files . 2–1
2.2 Running the Filters . 2–1
2.3 Interpreting Output from the Filters . 2–3

3 After Converting Your Files

3.1 Reviewing Conversion Output . 3–1
3.1.1 Creating a Listing of Differences . 3–1
3.1.2 Resolving Messages from Porting Filters 3–2
3.1.3 Reviewing the File for Readability . 3–3
3.1.4 Making Additional Name Changes . 3–3
3.1.5 Reviewing High-Level Conversions . 3–6
3.1.6 Checking Return Values . 3–7
3.1.7 Checking Compound String Usage . 3–8
3.1.8 Checking UIL Files . 3–9
3.2 Reviewing Motif Toolkit Components and Making Changes 3–9
3.2.1 Include Header Files . 3–9

iii

3.2.2 Motif Widgets . 3–10
3.2.2.1 Bulletin Board Widget . 3–12
3.2.2.2 Command Widget . 3–13
3.2.2.3 Drawing Area Widget . 3–13
3.2.2.4 File Selection Box Widget . 3–13
3.2.2.5 List Widget . 3–14
3.2.2.6 Main Window Widget . 3–14
3.2.2.7 Message Box Widget . 3–14
3.2.2.8 Push Button Widget . 3–15
3.2.2.9 Row Column Widget . 3–15
3.2.2.10 Scale Widget . 3–16
3.2.2.11 Scroll Bar Widget . 3–16
3.2.2.12 Scrolled Window Widget . 3–16
3.2.2.13 Separator Widget . 3–17
3.2.2.14 Text Widget . 3–17
3.2.3 Digital Extended Motif Widgets . 3–17
3.2.3.1 Color Mixing Widget . 3–18
3.2.3.2 Compound String Widget . 3–18
3.2.3.3 Help Widget . 3–18
3.2.3.4 Print Widget . 3–19
3.2.3.5 Structured Visual Navigation Widget 3–19
3.2.4 Custom Widgets (Widget Programmers Only) 3–20
3.2.4.1 Widget Hierarchy . 3–20
3.2.4.2 XmPrimitive Class Record . 3–20
3.2.4.3 Bit Gravity . 3–21
3.2.4.4 Keyboard Focus . 3–21
3.2.5 Callback Records . 3–22
3.2.6 Callback Structures . 3–23
3.2.6.1 Command Widget . 3–24
3.2.6.2 Drawing Area Widget . 3–24
3.2.6.3 File Selection Box Widget . 3–25
3.2.6.4 List Widget . 3–26
3.2.6.5 Row Column Widget . 3–26
3.2.6.6 Selection Box Widget . 3–27
3.2.6.7 Toggle Button Widget . 3–27
3.2.7 Compound String Usage . 3–28
3.2.8 Resolution Independence . 3–29
3.2.9 Scroll Bars . 3–29
3.2.10 Widget Layout . 3–30
3.3 Reviewing Intrinsics Features and Making Changes 3–30
3.3.1 Specifying Application Context . 3–31

iv

3.3.2 Reviewing X11 Release 4 Changes . 3–31
3.3.2.1 Routine Interfaces . 3–31
3.3.2.2 Widget Semantics . 3–32
3.3.3 Before Compiling Your Application . 3–33
3.4 Compiling and Linking the Application . 3–34
3.5 Testing the Application . 3–36
3.6 Making Changes Required by the Motif Window Manager 3–37
3.6.1 Check MWM-Client Interaction . 3–37
3.6.2 Checking Keyboard Focus . 3–38
3.6.3 Checking Key and Mouse Bindings . 3–38
3.7 Make Changes Required by the OSF/Motif Style Guide 3–38
3.7.1 Adding Menu Mnemonics . 3–39
3.7.2 Adding Keyboard Accelerators . 3–39
3.7.3 Adding Keyboard Traversal . 3–40
3.7.4 Checking Context-Sensitive Pop-up Menus 3–41

4 Giving Information to Application Users

4.1 Updating the Documentation . 4–1

A Summary of XUI and OSF/Motif Differences

A.1 Component Names . A–1
A.1.1 Widget Classes . A–2
A.1.2 Function Names . A–3
A.1.3 Resource Names . A–5
A.1.4 Enumeration Literal Names . A–8
A.1.5 Callback Reason Names . A–10
A.1.6 Compound Strings . A–11
A.1.7 Fontlist Names . A–12
A.1.8 Clipboard Names . A–12
A.1.9 Resource Manager Names . A–13
A.2 Terminology . A–14
A.3 Windows and Window Managers . A–15
A.4 Menus and Menu Items . A–16
A.4.1 Menu Bar and Standard Menus . A–17
A.4.2 File Menu Items . A–18
A.4.3 Edit Menu Items . A–20
A.4.4 Help Menu Items . A–21
A.5 Standard Message Boxes . A–22
A.6 Mouse Buttons Behavior . A–22

v

B Porting Filter Summary

C Intrinsics Routine Summary

Index

Tables

3–1 Porting Filter Messages . 3–2
3–2 Additional Name Changes Required for Conversion 3–4
3–3 Compound String Resources Not to Be Freed 3–28
3–4 VMS Shareable Images Required for Linking 3–34
3–5 ULTRIX Include Files (RISC Systems) 3–35
3–6 ULTRIX Libraries Required for Linking (RISC Systems) 3–35
3–7 ULTRIX Include Files (VAX Systems) 3–36
3–8 ULTRIX Libraries Required for Linking (VAX Systems) 3–36
A–1 Widget Class Name Changes . A–2
A–2 Function Name Changes . A–3
A–3 Resource Name Changes . A–5
A–4 Enumeration Literal Name Changes A–8
A–5 Callback Reason Names . A–10
A–6 Compound String Names . A–11
A–7 Fontlist Names . A–12
A–8 Clipboard Names . A–12
A–9 Resource Manager Names . A–13
A–10 Terminology Differences Between XUI and Motif A–14
A–11 Differences Between XUI and OSF/Motif Windows and

Window Managers . A–15
A–12 Motif Window Menu Items and Functions A–16
A–13 Differences Between the Motif and XUI Menus in the Menu

Bar . A–17
A–14 Differences Between File Menu Items A–18
A–15 Differences Between Edit Menu Items A–20
A–16 Differences Between Help Menu Items A–21
A–17 Differences in Mouse Buttons . A–22
B–1 Porting Filters: Names and Functions (VMS) B–1
B–2 Porting Filters: Names and Functions (ULTRIX) B–2

vi

C–1 Default and Explicit Application Context Routines C–1

vii

About This Guide

This guide is intended for application and widget programmers
who want to port their XUI applications and custom widgets to
OSF/Motif Version 1.1. Programmers should have experience
writing applications for the X Window System; this manual is not
a tutorial on writing Motif applications.

Related Documents
You will find the following documents useful during the porting
process:

• OSF/Motif Style Guide

• OSF/Motif Programmer’s Guide

• OSF/Motif Programmer’s Reference

• DECwindows Companion to the OSF/Motif Style Guide

• DECwindows Motif Guide to Application Programming

• DECwindows Extensions to Motif

• X Window System, Second Edition

• X Window System Toolkit: The Complete Programmer’s Guide
and Specification

ix

Conventions
This manual uses the following conventions:

italics In syntax and function descriptions,
italic type indicates terms that are
variable.

Return Unless otherwise specified, every
command line is terminated by pressing
the Return key.

. . . In examples, a horizontal ellipsis indi-
cates one of the following possibilities:

• Additional optional arguments in a
statement have been omitted.

• The preceding item or items can be
repeated one or more times.

• Additional parameters, values, or
other information can be entered.

.

.

.

A vertical ellipsis indicates the omission
of items from a code example or
command format; the items are omitted
because they are not important to the
topic being discussed.

Abbreviations and Acronyms
The following abbreviations and acronyms are used throughout
this manual:

MWM Motif Window Manager

UIL User Interface Language

UWS ULTRIX Worksystem Software

XUI X User Interface

x

1
Introduction to Porting

OSF/Motif is an industry-standard, cross-platform graphical user
interface that features three-dimensional visuals and consistent
operation and style. Porting your XUI application to Motif is a
four-step process, as shown in the following figure:

Update

documentation
application

Review

output
conversionConvert

XUI files
Read porting

overview

Chapter 1 Chapter 2 Chapter 3 Chapter 4

Follow these steps, in order, to ensure a complete and efficient
port of your application.

This chapter is the porting overview, and describes the following
Motif features and how these features affect your application:

• Name changes

• Toolkit

• Motif window manager (MWM)

• User Interface Language (UIL)

• User interface style

• Interoperability

1.1 Name Changes
Motif provides new, consistent names for the following:

• Widget classes

• Create functions

• Resource manager (Mrm) functions

• Resources

Introduction to Porting 1–1

• Enumeration literals

• Callback reasons

• String functions

• Fontlist functions

• Clipboard functions

You must change each instance in your application. Digital
provides a set of porting filters to make this process easier,
automatically changing the XUI names to Motif names. Chapter 2
describes how to convert your files using the porting filters.
Appendix A contains a summary of the name changes and of other
differences between XUI and Motif.

1.2 Toolkit
The Motif Toolkit features Motif widgets and Digital Extended
Motif widgets, as well as changes to the following:

• Include files

• Custom widget creation

• Callbacks

• Compound string memory use

• Resolution independence

• Scroll bars

• Widget layout

Chapter 3 describes the changes you must make to your
application in order to comply with the Motif Toolkit changes.

1.3 Motif Window Manager
Motif features a new window manager, with changes in the
following areas:

• Window manager-client interaction

• Keyboard focus

• Key bindings and mouse bindings

1–2 Introduction to Porting

Chapter 3 describes the changes you must make to your
application in order to comply with the Motif window manager
(MWM) changes. Section A.3 contains a summary of the
differences between XUI and Motif window managers.

1.4 User Interface Language
The Motif User Interface Language (UIL) features changes for
each object in the Motif Toolkit. These changes include new
names, consistent with the Toolkit, for the following:

• Controls (widgets and gadgets)

• Arguments (widget attributes)

• Reasons (callbacks)

Digital provides a set of porting filters to make this process easier,
automatically changing the XUI names to Motif names. Chapter 2
describes how to convert your files using the porting filters.

1.5 User Interface Style
The OSF/Motif Style Guide specifies the user interface
appearance and behavior of Motif applications. This includes
the following:

• Client area design

• Menus

• Controls

• Dialog boxes

• Keyboard traversal

Chapter 3 describes the changes you must make to your
application in order to comply with the OSF/Motif Style Guide.

See the OSF/Motif Style Guide and DECwindows Companion
to the OSF/Motif Style Guide for guidelines on designing and
implementing a Motif user interface.

Introduction to Porting 1–3

1.6 Interoperability
Motif applications are intended to run with the Motif window
manager. These same applications can also run with the older
XUI window manager. However, Digital recommends that you run
the applications with the MWM in order to take full advantage of
the function and appearance of Motif.

If your application users run Motif applications with the XUI
window manager, modal widgets will no longer be modal. In fact,
application shell windows might be unmapped from the window
manager, resulting in transparent windows.

1–4 Introduction to Porting

2
Converting Your XUI Files

Digital provides a set of porting filters to assist you in converting
your XUI files written in C or UIL to Motif files. The filters
replace occurrences of XUI names in the input source file with
the Motif names. The XUI names can be in the actual code,
within quotation marks, or in comments; the filters make the
replacement without checking context.

There are nine filters in all. Appendix B lists the individual filters
and the conversion each one performs. This chapter tells you how
to run the filters and what to expect.

2.1 Before Converting Your Files
Before you convert your XUI files, set up two directories: one for
XUI and one for Motif. This will make it easier to keep track
of the original files and aid in verifying the changes after the
conversion. Also, if you are going to support both Motif and XUI
on your system, separate directories reduce user and programmer
confusion about which files to use.

Also decide how you will create the user interface. If your
application uses toolkit calls to create the user interface and you
are planning to convert to User Interface Language (UIL), convert
to UIL before converting your source files. The main reason is the
porting filters themselves: they convert UIL files more efficiently.
Converting to UIL could reduce the time required to port your
application, especially if your application is written in a language
other than C.

2.2 Running the Filters
The porting filters are run either from a command procedure
(VMS) or a script file (ULTRIX). You can specify a single file or
a directory of files as input to the filters. Read the section that
applies to your operating system.

Converting Your XUI Files 2–1

VMS Systems

VMS
On VMS systems, the porting filter command procedure is named
DECW$DXM_PORT.COM and is in the DECW$EXAMPLES
directory. The command line to run the procedure has the
following format:

@DECW$EXAMPLES:DECW$DXM_PORT source-name output-name [LOG]

source-name A file name or a directory name. If you do not specify
a source-name, the command procedure prompts you
for a name.

If you specify a directory name, all *.C, *.H, and *.UIL
files in the directory are converted.

output-name A file name or directory name. If you specified a file
name for source-name, specify a file name. If you
specified a directory name for source-name, specify a
directory name.

If you do not specify an output-name, the command
procedure prompts you for a name.

If you specify a directory name and the output
directory does not exist, the command procedure
automatically creates one.

LOG An optional parameter. This displays messages on
your display screen as the filters are running.

The command procedure places multiple versions of the output
files in the output directory, one version for each filter. Save
the source version and the latest output version; delete all other
versions to free up disk space.

Instead of running the filters from the command procedure, you
can also run a filter individually. However, to get the most benefit
from the filters, run the filters from the command procedure.

Examples
The following example converts all *.C, *.H, and *.UIL files in the
directory [JONES.XUI_FILES] and writes the converted files in
the directory [JONES.MOTIF_FILES].

$ @DECW$EXAMPLES:DECW$DXM_PORT [JONES.XUI_FILES] - Return

_$ [JONES.MOTIF_FILES]

2–2 Converting Your XUI Files

The following example converts the file MODULE.C, writes the
converted file NEW_MODULE.C in the same directory, and
displays messages on the screen as the filters are running.

$ @DECW$EXAMPLES:DECW$DXM_PORT MODULE.C NEW_MODULE.C LOG

ULTRIX Systems

ULTRIX
On ULTRIX systems, the porting filter script is named DXm_port
and is in the /usr/lib/DXM/tools/filter directory (RISC systems)
and /usr/lib/DXV/tools/filter directory (VAX systems). For both
systems, the command line to run the script file has the following
format:

DXm_port source-name

source-name A directory name. All *.c, *.h, and *.uil files will be
converted.

The filters place the converted files in the source directory with
the suffix _motif appended. For example, if a source file was
named module.c, the converted file is named module.c_motif.

Example
The following example converts all *.c, *.h, and *.uil files in the
directory /usr/users/jones/xui and writes the converted files in
the same directory with the _motif suffix. The system is a RISC
system.

system> /usr/lib/DXM/tools/filter/DXm_port /usr/users/jones/xui

2.3 Interpreting Output from the Filters
In most cases, the filters translate XUI names to Motif names.
However, if the filters find an XUI name they cannot translate
or an XUI name with multiple possible translations, the filters
write a message in the output file identifying the problem. Review
these messages and any suggestions in the output file and decide
whether they are appropriate for your application.

Converting Your XUI Files 2–3

For example, one filter translates high level XUI subroutine
calls to Motif low-level creation calls, writing new low-level code
directly into the input source file. In this case, you would look
over the new code, check the description and syntax against the
OSF/Motif Programmer’s Reference, and decide whether it is
appropriate for your application.

See Chapter 3 for information on reviewing output from the
porting filters.

2–4 Converting Your XUI Files

3
After Converting Your Files

After you have converted your files, do the following steps to
complete the conversion:

1. Review conversion output and make additional changes.

2. Review Motif Toolkit components and make changes, as
needed.

3. Review Intrinsics changes and make changes, as needed.

4. Compile and link your application.

5. Test the application.

6. Make changes required by the Motif Window Manager.

7. Make changes required by the OSF/Motif Style Guide.

3.1 Reviewing Conversion Output
To review the conversion output, first create a listing of differences
between the source files and the output from the porting filters.
Then, check specific areas in your program. The following sections
describe how to generate a listing of differences and which areas
of your program to check.

3.1.1 Creating a Listing of Differences
To create a listing of differences between a source file and the
output from the filters, type one of the following commands:

VMS
VMS Systems

$ DIFFERENCE/OUTPUT=listing-file input-file output-file

After Converting Your Files 3–1

ULTRIX
ULTRIX Systems

system> diff old-file new-file > listing-file

Print out the listing and review all differences to see if you agree
with them. Refer to the listing as you complete this section.

3.1.2 Resolving Messages from Porting Filters
Edit your files and search for three consecutive right angle
brackets (>>>); all filter messages begin with these characters.
The messages indicate those sections of code that you need to
evaluate. Table 3–1 lists the messages and their meaning.

Table 3–1 Porting Filter Messages

Message Meaning

>>>Developer decision: The filters changed the function for this section of code.

Review the changes, read the Motif documentation, and
determine whether the changes are appropriate. For
example, you might have to choose a dialog box mode
or specify additional parameters for a subroutine (the
filters suggest values for new parameters).

>>>Mapping unknown: The filters could not convert the XUI name to a Motif
name; no Motif name exists for the XUI name.

Review this section of your application code and the
Motif documentation. Because the filter cannot complete
the conversion, you must choose a Motif translation that
meets your application’s requirements.

>>>Mapping unsupported for this
symbol:

The filters could not convert the XUI to a Motif name;
the XUI name is unknown or not documented.

Review this section of your application code and the
Motif documentation. Choose a Motif translation that
meets your application’s requirements.

>>>Motif Transition: The filters have made significant changes in the routine
calls; the Motif routines should work the same as the
XUI routines.

Review this section of your application code and verify
that it is appropriate for your application. In some cases,
the message suggests alternative routines for you to
choose from. Be sure to verify the routine’s parameters
with the Motif documentation for correct usage.

3–2 After Converting Your Files

If a ‘‘Motif Transition’’ message appears in the output file, the
original section of code is left intact, set off from the rest of the
code by conditional statements. The filter message and suggested
new code follow the original section of code. For example:

#ifdef ORIGINAL_CODE
 * DwtSetArg("TRUE",arglist,0,XtNallowShellResize)
#endif

>>Motif Transition : Routine conversion
{
 XtSetArg(arglist[0],XtNallowShellResize,"TRUE");
}

3.1.3 Reviewing the File for Readability
To improve the readability of your file, check the following parts of
your program:

• Comments — The filters might have changed words
embedded in the comments, particularly XUI widget names,
argument names, and callback names in UIL files. Remove
the changes and make sure the comments describe the code
clearly.

In addition, if a section of code was translated by the filters
and the section included comments, the filters might have
used the comment words as values for the resources in
argument lists. Check the argument list resource values
carefully.

• Formatting — The filters might have affected the way data
declarations and other code are aligned. Adjust the code
alignment.

3.1.4 Making Additional Name Changes
Review all name changes made by the porting filters. Although
the filters make most of the necessary name changes, they do not
make all necessary changes. Therefore, search for the characters
or names in Table 3–2 and convert them to the appropriate Motif
name. Section A.1 contains a summary of all name changes.
Check the OSF/Motif Programmer’s Reference to verify all Motif
names.

After Converting Your Files 3–3

Table 3–2 Additional Name Changes Required for Conversion

Search File for: Replace with: Comments:

DECwDwtApplProg.h Xm.h Replace with the appropriate include files
(see Section 3.2.1).

DECwDwtWidgetProg.h XmP.h Replace with the appropriate include files
(see Section 3.2.1).

decw 1 Replace with the appropriate Motif name.

decw$include Xm, X11, Mrm, or DXm Used within #include statements; the
correct choice depends on the .h file.
Replace to ensure application portability.

DRM Mrm For consistency with Motif naming
conventions.

dwt 1 Replace with the appropriate Motif name.

DwtCallbackStructPtr XtCallbackList Replace when referencing callback lists
(see Section 3.2.5).

DwtCallbackStruct XtCallbackRec Replace when referencing callback lists
(see Section 3.2.5).

Dwt*Index Xm*Index Widget class indices used with
XmPartOffset and XmField macros
(* is a widget class name). For
example, change DwtCompositeIndex
to XmCompositeIndex.

DwtOffset XmOffset Replace the casting for the pointer to the
class instance offsets.

DwtOffsetPtr XmOffsetPtr Replace the casting for the pointer to the
class instance offsets.

external externalref Replace the label for external variables.

XmCreateLabel 1 If you do not want the label widget to
resize itself each time to hold a new
string, add the XmNrecomputeSize
resource to the argument list and set
it to FALSE.

XmStringCreateLtoR XmStringCreateSimple Replace if the original call was
DwtLatin1String.

1String is not replaced. See comments for action.

(continued on next page)

3–4 After Converting Your Files

Table 3–2 (Cont.) Additional Name Changes Required for Conversion

Search File for: Replace with: Comments:

XmNlabelString XmNmessageString Replace if part of argument list to
XmErrorDialog, XmInformationDialog,
XmMessageDialog, XmQuestionDialog,
XmWarningDialog, or XmWorkingDialog.

XmNmaximum XmNpaneMaximum Replace if part of argument list to
XmPanedWindow.

XmNminimum XmNpaneMinimum Replace if part of argument list to
XmPanedWindow.

XmNtopPosition XmNtopCharacter Replace if part of argument list to XmText.

XmNvalue XmNset Replace if part of argument list to
XmCreateToggleButton.

XtFree XmStringFree Replace if you are freeing XmString
memory.

XtRemoveAllCallbacks XtRemoveCallback or
XtRemoveCallbacks

Replace to remove individual callbacks
instead of all callbacks.

XtSetKeyboardFocus XmProcessTraversal For compatibility with Motif keyboard
traversal operation.

.ecallback 1 Remove the string because you do not
indirectly reference callback lists in Motif.
See the following example.

1String is not replaced. See comments for action.

The following example shows the changes you must make to
correctly reference a callback list.

Code output from filters

Code after additional changes

 if (ar_list.ecallback != NULL)

where:

 XtCallbackList ar_list; /* callback list */

 if (ar_list != NULL)

where:

 XtCallbackList ar_list; /* callback list */

1

1

After Converting Your Files 3–5

! Delete the .ecallback string.

3.1.5 Reviewing High-Level Conversions
One of the porting filters translates high-level XUI subroutine
calls to Motif low-level creation calls and writes new code in the
output file. The changes are indicated with the following message:

>>>Motif Transition : High-level widget routine conversion

When you see this message in your file, do the following:

• Check the OSF/Motif Programmer’s Reference and make sure
the arguments are valid.

• Check the defaults for the arguments and make sure they
are still valid. In some cases, the defaults for parameters in
Motif calls are different from the corresponding XUI calls. You
might have to include additional arguments in your argument
list if the defaults have changed in Motif. For example:

Code output from filters

 XtManageChild (
#ifdef ORIGINAL_CODE
 * DwtSeparator (menubar, "", 0, 0, 0)
#endif

>>>Motif Transition : High−level widget routine conversion
 Source does not have correct number of parameters
);

1

Code after additional changes

XtSetArg(al[ac], XmNorientation, XmHORIZONTAL); ac++;
ac = 0;

XtManageChild (XmCreateSeparator (menubar, "", al, ac)); 1

! Complete the conversion from the XUI name to the Motif
name and supply the correct number of parameters.

3–6 After Converting Your Files

• Check the ordering of the parameters on all calls. For
example:

Code output from filters

Code after additional changes

#ifdef ORIGINAL_CODE
 * DwtMainSetAreas (main_widget, menubar, work_area, NULL, NULL, NULL)
#endif

>>>Motif Transition : High−level widget routine conversion
XmMainWindowSetAreas(,main_widget,menubar, NULL, work_area, NULL, NULL

XmMainWindowSetAreas (main_widget, menubar, NULL, NULL, NULL, work_area);

};

1

1

! Reorder and format parameters.

3.1.6 Checking Return Values
In converting from XUI to Motif, the Motif routines might no
longer return the same number and types of return values
as before. Check the return values of the Motif routine in
the OSF/Motif Programmer’s Reference and your application
program’s logic in processing them. For example:

After Converting Your Files 3–7

Code input to filters

Code output from filters

XmString cs;
XmStringContext context;
int status;

status =
>>>Developer decision: XmStringInitContext
 (&context, cs);

if (status == FALSE) /* String specified is not a compound string */
 {
 return k_badstring;
 }
else if (status == FALSE) /* String passed is NULL */
 {
 *count = 0;
 return k_success;
 }

DwtCompString cs;
DwtCompStringContext context;
int status;

status = DwtInitGetSegment (&context, cs);

if (status == DwtFail) /* String specified is not a compound string */
 {
 return k_badstring;
 }
else if (status == DwtEndCS) /* String passed is NULL */
 {
 *count = 0;
 return k_success;
 }

1

1

! In this case, XmStringInitContext returns either TRUE or
FALSE. You would change your program’s logic and code to
accommodate this.

3.1.7 Checking Compound String Usage
Although the porting filters change the XUI compound string
routine names to Motif names, check the following for all
XmString* routines:

• Arguments — The order of arguments might be changed or
arguments might be missing.

• Character set — Check the OSF/Motif Programmer’s
Reference for a list of character sets.

3–8 After Converting Your Files

• Creation — Use XmStringCreateSimple to create a compound
string using the language environment of the widget.

• Memory resources — After you finish with a compound
string, use XmStringFree to free memory resources.

3.1.8 Checking UIL Files
For UIL files, check the following:

• Widget argument names — Replace the argument name
x with XmNx. See the OSF/Motif Programmer’s Guide for
additional information on UIL.

• Comments — Because the porting filters search and convert
more common words (for example, help, map, title, width, y,
and window), check the comments for readability.

3.2 Reviewing Motif Toolkit Components and Making
Changes

The following sections describe the Motif Toolkit components that
affect your application and the changes you must make to your
application in order to be compatible with the Toolkit. See the
OSF/Motif Programmer’s Guide for a complete description of the
Motif Toolkit.

3.2.1 Include Header Files
Motif requires a separate include file for each widget class used.
You must add the appropriate include files to your program. Be
sure to order your include files from the general to the more
specific.

To ensure you have the required include files in your program, do
the following:

• Search your program for all #include statements. Check all
include files in your program and make sure they are Motif
include files and not XUI include files. Change them as
necessary. If you are writing an application, you need at least
the following line in your program:

#include <Xm/Xm.h>

After Converting Your Files 3–9

If you are writing a widget, you need at least the following
line in your program:

#include <Xm/XmP.h>

• Search your program for all Xm calls, check against the
OSF/Motif Programmer’s Reference and determine whether
you need to add any include files to your program. Add the
appropriate include files.

For example, if your program makes calls to
XmCreateDrawingArea, find the entry in the OSF/Motif
Programmer’s Reference and look under the ‘‘Synopsis’’
heading. Add the following line to your program:

#include <Xm/DrawingA.h>

• Search for all Mrm calls. If you find any, add the following
line to your program:

#include <Mrm/MrmPublic.h>

• If you are going to use the Help widget, add the following line
to your program:

#include <DXm/DXmHelpB.h>

3.2.2 Motif Widgets
In addition to the name changes, Motif has also changed the
resources and function for the following widgets:

• Bulletin board

• Command

• Drawing area

• File selection box

• List

• Main window

• Message box

• Push button

• Row column

• Scale

• Scroll bar

3–10 After Converting Your Files

• Scrolled window

After Converting Your Files 3–11

• Separator

• Text

3.2.2.1 Bulletin Board Widget
The bulletin board widget (XmBulletinBoard) is equivalent to
the XUI dialog box widget (DwtDialogBox). If you are using the
bulletin board widget, check your application for the use of the
following resources. You might have to make some changes in
order to obtain the desired appearance and operation of your
widget.

• XmNautoUnmanage — Applies to both modal and modeless
dialog boxes. The default value is True. See the OSF/Motif
Programmer’s Reference to determine whether this default is
appropriate for your application.

• XmNbuttonFontList, XmNlabelFontList, and XmNtextFontList
— Replace DwtNfont. See the OSF/Motif Programmer’s
Reference for a description of the resources.

• XmNdialogStyle — For modal dialog boxes, this resource can
have one of the following values:

XmDIALOG_FULL_APPLICATION_MODAL
XmDIALOG_APPLICATION_MODAL
XmDIALOG_SYSTEM_MODAL

• XmNunitType — This is a resource for XmPrimitive,
XmManager, and XmGadget. The unit type can be set
explicitly for the widget. If it is not set, it is inherited from
the unit type of the parent widget. Be sure to check the
default unit type of the parent. To change a default value, use
XmSetFontUnit.

Focus callbacks will occur at different times.

The following XUI resources are not supported:

• DwtNautoUnrealize (use DXmNautoUnrealize; see
DECwindows Extensions to Motif)

• DwtNfontX

• DwtNfontY

• DwtNgrabKeySyms

3–12 After Converting Your Files

• DwtNgrabMergeTranslations

• DwtNtakeFocus

3.2.2.2 Command Widget
The command widget (XmCommand) is equivalent to the XUI
command window widget (DwtCommandWindow). If you are
using the command widget, check your application for the use
of the following resources. You will have to make some changes
in order to obtain the desired appearance and operation of your
widget.

• XmNcommand — Resource value type is compound string.

• XmNhistoryItems — Resource value type is compound string.

• DwtNtTranslation — Not supported; use XmNtextTranslations
instead.

3.2.2.3 Drawing Area Widget
The drawing area widget (XmDrawingArea) is equivalent to
the XUI window widget (DwtWindow). If you are using the
drawing area widget, check your application for the use of
XmNexposeCallback and XmNresizeCallback resources. The
bit gravity of the drawing area widget is NorthWestGravity.
When the drawing area is resized, your application might not
get an expose callback, particularly if there is no exposed area.
Therefore, if your application needs to know when a resize occurs,
use the XmNresizeCallback resource.

3.2.2.4 File Selection Box Widget
The file selection box widget (XmFileSelectionBox) is equivalent to
the XUI file selection widget (DwtFileSelection). If you are using
the file selection box widget, the following XUI resources are not
supported:

• DwtNfileToExternProc

• DwtNfileToInternProc

• DwtNmaskToExternProc

• DwtNmaskToInternProc

Check your application for the use of these resources and make
changes in order to obtain the desired appearance and operation
of your widget.

After Converting Your Files 3–13

3.2.2.5 List Widget
The list widget (XmList) is equivalent to the XUI list box widget
(DwtListBox). If you are using the list widget, check your
application for the use of the XmNselectionPolicy resource. Motif
defines additional selection callbacks:

• XmNbrowseSelectionCallback (default)

• XmNextendedSelectionCallback

• XmNmultipleSelectionCallback

• XmNsingleSelectionCallback

Decide which Motif selection policy is appropriate for your list and
make any changes to obtain the desired appearance and operation
of your widget.

The XUI resource DwtNextendConfirmCallback is not supported.

3.2.2.6 Main Window Widget
The main window widget (XmMainWindow) is equivalent to the
XUI main window widget (DwtMainWindow). If you are using
the main window widget, check your application for the use of
the XmMainWindowSetAreas function. The parameters are in
a different order from those used with XUI. See the OSF/Motif
Programmer’s Reference for the correct order and make any
changes.

The following XUI resources are not supported:

• DwtNacceptFocus

• DwtNfocusCallback

Check your application for the use of these resources and make
changes in order to obtain the desired appearance and operation
of your widget.

3.2.2.7 Message Box Widget
The message box widget (XmMessageBox) is equivalent to the
XUI message box widget (DwtMessageBox). If you are using the
message box widget, use the following convenience functions to
create a message box:

• XmCreateErrorDialog — Informs a user of an invalid action.

• XmCreateInformationDialog — Provides status information to
a user.

3–14 After Converting Your Files

• XmCreateMessageDialog — Interactively queries and responds
to a user.

• XmCreateQuestionDialog — Obtains information from a user.

• XmCreateWarningDialog — Informs a user of the results of an
action and enables the user to act on the results.

• XmCreateWorkingDialog — Provides work-in-progress
information to a user (for long operations).

The following XUI resources are not supported:

• DwtNnoCallback

• DwtNnoLabel

• DwtNsecondLabel

• DwtNsecondLabelAlignment

Check your application for the use of these resources and make
changes in order to obtain the desired appearance and operation
of your widget.

3.2.2.8 Push Button Widget
The push button widget (XmPushButton) is equivalent to the
XUI push button widget (DwtPushButton). The following XUI
resources are not supported:

• DwtNbordHighlight

• DwtNfillHighlight

Check your application for the use of these resources and make
changes in order to obtain the desired appearance and operation
of your widget.

3.2.2.9 Row Column Widget
The row column widget (XmRowcolumn) is equivalent to the XUI
menu widget (DwtMenu). If you are using the row column widget,
Motif requires the children of a menu bar to be homogeneous.

The XUI resource DwtNchangeVisAtts is not supported.

Check your application for the use of this resource and make
changes in order to obtain the desired appearance and operation
of your widget.

After Converting Your Files 3–15

3.2.2.10 Scale Widget
The scale widget (XmScale) is equivalent to the XUI scale
widget (DwtScale). If you are using the scale widget, check your
application for the use of the following resources. You might have
to make some changes in order to obtain the desired appearance
and operation of your widget.

• XmNorientation — The default is to display a vertical scale.

• XmNprocessingDirection — The default is to display the
maximum value on top.

• XmNshowValue — The default is to not display a slider value.

The following XUI resources are not supported:

• DwtNshowValueAutomatic

• DwtNslider

• DwtNsliderPixmap

3.2.2.11 Scroll Bar Widget
The scroll bar widget (XmScrollBar) is equivalent to the XUI scroll
bar widget (DwtScrollBar). If you are using the scroll bar widget,
check your application for the use of the XmNorientation resource.
This resource controls how the scroll bar is displayed. You
might have to make some changes in order to obtain the desired
appearance and operation of your widget. See Section 3.2.9 for
more information on scroll bars.

The following XUI resources are not supported:

• DwtNtranslations1

• DwtNtranslations2

3.2.2.12 Scrolled Window Widget
The scrolled window widget (XmScrolledWindow) is equivalent
to the XUI scroll window widget (DwtScrollWindow). If you are
using the scrolled window widget, check your application for the
use of the XmNscrollingPolicy resource. This resource controls
the scrolling of the work area. You must choose a value for
this resource. See the OSF/Motif Programmer’s Reference for a
description of this resource and possible values.

3–16 After Converting Your Files

3.2.2.13 Separator Widget
The separator widget (XmSeparator) is equivalent to the XUI
separator widget (DwtSeparator). If you are using the separator
widget, check your application for the use of the XmNmargin
resource. This resource specifies the left-right or top-bottom
spacing, depending on the value of XmNorientation. See the
OSF/Motif Programmer’s Reference for a description of this
resource and possible values.

3.2.2.14 Text Widget
The text widget (XmText) is equivalent to the XUI simple text
widget (DwtSText). If you are using the text widget, check your
application for the use of the XmNlosingFocusCallback resource.
This resource is the list of callbacks called before the widget loses
input focus. When the widget loses focus, the callback reason is
XmCR_LOSING_FOCUS.

The XUI resource DwtNhalfBorder is not supported.

3.2.3 Digital Extended Motif Widgets
The include files and resources have changed for the following
Digital Extended Motif widgets:

• Color mixing

• Compound string

• Help

• Print

• Structured Visual Navigation (SVN)

See the VMS DECwindows Motif Guide to Application
Programming for a description of these widgets and their
resources.

If you are using UIL, add the following line to your application
after the call to MrmInitialize:

DXmInitialize();

This calls MrmRegisterClass for all Digital Extended Motif
widgets. For application portability to operating systems that
do not support shared libraries, call MrmRegisterClass for each
widget used instead of calling MrmInitialize and DXmInitialize.
This reduces the size of the application images.

After Converting Your Files 3–17

3.2.3.1 Color Mixing Widget
If your application used the XUI color mix widget, do the
following:

• Add the following header file to your program:

#include <DXm/DXmColor.h>

• Check all resource names.

3.2.3.2 Compound String Widget
If your application used the XUI compound string text widget, do
the following:

• Add the following header file to your program:

#include <DXm/DXmCSText.h>

• Check all resource names.

3.2.3.3 Help Widget
If your application used the XUI help widget, you can use either
of the following:

• HyperHelp

• Help widget

HyperHelp
HyperHelp uses Bookreader windows as its display window. Users
can invoke HyperHelp from the Help menu, the help command,
the Help push button, or the Help key.

HyperHelp includes the following features:

• Proportional fonts, which are more legible than fixed fonts

• Graphics

• Formatted tables

• Hotspots (The ability to move around in the Help text by
clicking on parts of the text)

• The ability to create links between the online help and other
pieces of information, such as a mail message and other
Bookreader topics

3–18 After Converting Your Files

Help Widget
If you are using the help widget, do the following:

• Add the following header file to your program:

#include <DXm/DXmHelpB.h>

• Check all resource names, particularly XmNfontList resource.

Note

You cannot change the XmNtextFontList,
XmNlabelFontList, and XmNbuttonFontList resources by
using XtSetValues.

3.2.3.4 Print Widget
The print widget is a modeless widget that provides DECwindows
applications with a fast, convenient method to print one or more
files in multiple formats. If you want to use the print widget, do
the following:

• Add the following header file to your program:

#include <DXm/DXmPrint.h>

• Check all resource names.

3.2.3.5 Structured Visual Navigation Widget
The Structured Visual Navigation (SVN) widget presents the user
with data in a hierarchical structure. The user can navigate in
and select data from the structure. Your application is responsible
for creating the hierarchy and supplying the data to the SVN
widget; the actual data in the hierarchy is transparent to the SVN
widget. If you want to use Structured Visual Navigation widget,
do the following:

• Add the following header file to your program:

#include <DXm/DXmSvn.h>

• Check all resource names.

After Converting Your Files 3–19

3.2.4 Custom Widgets (Widget Programmers Only)
If you are a widget programmer and are porting custom widgets
to Motif, check the following:

• Widget hierarchy

• XmPrimitive class record

• Bit gravity

• Keyboard focus

3.2.4.1 Widget Hierarchy
In the Motif Toolkit widget hierarchy, XmManager is the
superclass for all composite widgets, XmPrimitive is the
superclass for all primitive widgets, and XmGadget is the
superclass for all gadgets.

Study the Motif widget hierarchy carefully. If your widget is a
subclass of an XUI widget class, you might have to recode your
program’s structure declarations and resources in order to get
your program to run.

See the OSF/Motif Programmer’s Guide for a complete map of the
OSF/Motif widget hierarchy.

3.2.4.2 XmPrimitive Class Record
The filters convert custom widgets that are a subclass of
DwtCommon to a subclass of XmPrimitive. You must change
the class record initialization to finish the conversion.

3–20 After Converting Your Files

For example:

Code output from filters

Code after additional changes

1

1

{ /* dwt common class */
 /* Pad0 */ _XtInherit,
 /* Pad1 */ _XtInherit,
 /* Pad2 */ _XtInherit,
 /* extension */ NULL,
},

{ /* XmPrimitive class */
 /* XtWidgetProc border_highlight */ _XtInherit,

 /* XtTranslations translations */ XtInheritTranslations,
 /* XtActionProc arm_and_activate */ NULL,
 /* XmSyntheticResource * syn_resources */ NULL,
 /* int num_syn_resources */ NULL,
 /* caddr_t extension */ NULL,
},

 /* XtWidgetProc border_unhighlight */ _XtInherit,

! Replace the five lines of DwtCommon widget class records
with the eight lines of XmPrimitive widget class records.

3.2.4.3 Bit Gravity
If your widget is a subclass of a Motif widget and inherits the
realize procedure from the superclass, the widget also inherits
the bit gravity from the superclass. In Motif, this is typically
NorthWestGravity.

3.2.4.4 Keyboard Focus
Remove any explicit calls to XSetInputFocus or
XtSetKeyboardFocus from your widget. Use XmProcessTraversal
instead.

See the OSF/Motif Programmer’s Guide for a complete description
of keyboard input focus models.

After Converting Your Files 3–21

3.2.5 Callback Records
The callback records have changed, as shown in the following
example:

XUI data structure Motif data structure

typedef struct {

typedef struct {
 XtCallbackProc callback;
 caddr_t closure;

} XtCallbackRec, *XtCallbackList;

 VoidProc proc;
 int tag;
} DwtCallback, *DwtCallbackPtr;

 XtCallbackProc callback;
 XtPointer closure;
} XtCallbackRec, *XtCallbackList;

typedef struct {
1 1

32

322

To reference fields in the callback record, make the following
changes in your application:

! Change the casting VoidProc to XtCallbackProc.

" Change the casting int to XtPointer and the field name tag to
closure.

Change the casting caddr_t to XtPointer.

3–22 After Converting Your Files

The following example shows how to reference fields in the
callback record:

Code output from filters

Code after additional changes

static XtCallbackRec vert_scroll_callback[2] =
{
 { (XtCallbackProc)) local_scroll_callback, k_vertical },
 { NULL }
};
static XtCallbackRec horiz_scroll_callback[2] =
{
 { (XtCallbackProc) local_scroll_callback, k_horizontal },
 { NULL }
};

1

1

static XtCallbackRec vert_scroll_callback[2] =
{
 { (VoidProc) local_scroll_callback, k_vertical },
 { NULL }
};
static XtCallbackRec horiz_scroll_callback[2] =
{
 { (VoidProc) local_scroll_callback, k_horizontal },
 { NULL }
};

1

1

! VoidProc is changed to XtCallbackProc.

3.2.6 Callback Structures
The castings and field names in the callback data structure have
changed for the following widgets:

• Command

• Drawing area

• File selection box

• List

• Row column

• Selection box

• Toggle button

The following sections show the difference between the XUI and
Motif data structures and describe the changes.

After Converting Your Files 3–23

3.2.6.1 Command Widget
The callback data structure for the command widget has changed
from the XUI command window widget structure, as shown in the
following example:

Motif data structureXUI data structure

typedef struct {
 int reason;
 XEvent *event;

 int length;
} XmCommandCallbackStruct;

 XmString value; int length;
 char *value;
} DwtCommandWindowCallbackStruct;

 XEvent *event;

typedef struct {
 int reason;

1
1

If you reference this structure, make the following change in your
application, as needed:

! Change the casting for the field name *value from char to
XmString.

3.2.6.2 Drawing Area Widget
The callback data structure for the drawing area widget has
changed from the XUI window widget structure, as shown in the
following example:

XUI data structure Motif data structure

typedef struct { typedef struct {
 int reason;
 XExposeEvent *event;
 Window w;

} XmDrawingAreaCallbackStruct;} DwtWindowCallbackStruct;
 Window window;

 int reason;
 XEvent *event;1 1

2 2

If you reference this structure, make the following changes in your
application, as needed:

! Change the casting for the *event field from XExposeEvent to
XEvent.

" Change the field name w to window.

3–24 After Converting Your Files

3.2.6.3 File Selection Box Widget
The callback data structure for the file selection box widget has
changed from the XUI file selection widget structure, as shown in
the following example:

XUI data structure Motif data structure

typedef struct {
 int reason;
 XEvent *event;
 DwtCompString value;
 int value_len;
 DwtCompString dirmask;
 int dirmask_len;
} DwtFileSelectionCallbackStruct;

typedef struct {
 int reason;
 XEvent *event;
 XmString value;
 int length;
 XmString mask;
 int mask_length;

} XmFileSelectionBoxCallbackStruct;

 XmString dir;
 int dir_length;
 XmString pattern;
 int pattern_length;

1
2

3

4

1
2

3

If you reference this structure, make the following changes in your
application, as needed:

! Change the field name value_len to length.

" Change the field name dirmask to mask.

Change the field name dirmask_len to mask_length.

$ You can now reference these additional fields in the callback
structure.

Note

The porting filters change the casting of the value and
mask fields from DwtCompString to XmString.

After Converting Your Files 3–25

3.2.6.4 List Widget
The callback data structure for the list widget has changed from
the XUI list box widget structure, as shown in the following
example:

XUI data structure Motif data structure

 XmString *selected_items;
 int selected_item_count;
 int *selected_item_positions;
 char selection_type;

typedef struct {
 int reason;
 XEvent *event;
 DwtCompString item;
 int item_length;
 int item_number;
} DwtListBoxCallbackStruct;

typedef struct {
 int reason;
 XEvent *event;
 XmString item;
 int item_length;
 int item_position;

} XmListCallbackStruct;

11

2

If you reference this structure, make the following changes to your
application, as needed:

! Change the field name item_number to item_position.

" You can now reference these additional fields in the callback
structure.

Note

The porting filters change the casting of the item field
from DwtCompString to XmString.

3.2.6.5 Row Column Widget
The callback data structure for the row column widget has
changed from the XUI radio box widget structure, as shown in the
following example:

XUI data structure Motif data structure

typedef struct { typedef struct {

 XEvent *event;
 Widget widget;

 char *s_tag;
 char *s_callbackstruct;

} XmRowColumnCallbackStruct;

 int reason;

 Widget s_widget;
 char *data;
 char *callbackstruct;

} DwtRadioBoxCallbackStruct;

 XEvent *event; XEvent *event;
 int reason;

1
2 3

1
2 3

3–26 After Converting Your Files

If you reference this structure, make the following changes to your
application, as needed:

! Change the field name s_widget to widget.

" Change the field name *s_tag to *data.

Change the field name *s_callbackstruct to *callbackstruct.

3.2.6.6 Selection Box Widget
The callback data structure for the selection box widget has
changed from the XUI file selection widget structure, as shown in
the following example:

XUI data structure Motif data structure

typedef struct {
 int reason;
 XEvent *event;
 DwtCompString value;
 int value_len;
} DwtSelectionCallbackStruct;

typedef struct {
 int reason;
 XEvent *event;
 XmString value;
 int length;
} XmSelectionBoxCallbackStruct;

1 1

If you reference this structure, make the following change, as
needed:

! Change the field name value_len to length.

Note

The porting filters change the casting of the value field
from DwtCompString to XmString.

3.2.6.7 Toggle Button Widget
The callback data structure for the toggle button widget has
changed from the XUI toggle button widget structure, as shown in
the following example:

XUI data structure Motif data structure

typedef struct { typedef struct {
 int reason;
 XEvent *event;

 int value;
} XmToggleButtonCallbackStruct;
 int set;

} DwtTogglebuttonCallbackStruct;

 int reason;
 XEvent *event;

1 1

If you reference this structure, make the following change, as
needed:

After Converting Your Files 3–27

! Change the field name value to set.

3.2.7 Compound String Usage
If your application uses a compound string as the value of a
resource in an argument list, you must free the compound
string memory, using XmStringFree. To do this, you would call
XmStringFree after the argument list is passed to the widget,
whether at widget creation or using XtSetValues. For example:

1

Arg al[2]; /* Argument list */
int ac = 0; /* Argument count */
XmString label_cs;

label_cs = XmStringCreateSimple ("Cancel");
XtSetArg(al[ac], XmNlabelString, label_cs); ac++;
XtSetArg(al[ac], XmNactivateCallback, callback); ac++;
p = XmCreatePushButton (parent, "", al, ac);
XtManageChild (p);
XmStringFree (label_cs);

! The string label_cs is freed after widget creation.

If your application uses XtGetValues to retrieve a compound
string, you must free the returned copy of the compound strings
after using it by calling XmStringFree. However, some compound
string values (XmString and XmStringTable) are not copied.
Table 3–3 lists the resources whose compound string values are
not copied. Do not free these resources.

Table 3–3 Compound String Resources Not to Be Freed

When using this widget:
Do not free these
resources: Resource type:

XmBulletinBoard XmNdialogTitle XmString

XmFileSelectionBox XmNdirectory
XmNnoMatchString

XmString

XmList XmNitems
XmNselectedItems

XmStringTable

XmRowColumn XmNlabelString XmString

XmScale XmNtitleString XmString

3–28 After Converting Your Files

3.2.8 Resolution Independence
Motif extends the resolution independence mechanism to all
widgets and gadgets. Now, applications can create and display
images that are the same physical size on any display. Use the
XmNunitType resource to specify the following unit types for
widgets and gadgets:

• XmPIXELS (default)

• Xm100TH_MILLIMETERS

• Xm1000TH_INCHES

• Xm100TH_POINTS

• Xm100TH_FONT_UNITS

For example, if the XmNunitType resource is specified as
Xm1000TH_INCHES, all values passed to the widgets are treated
as 1/1000 of an inch.

The Motif font units are not equivalent to the XUI font units.
If you used XUI font positioning, you will have to make some
adjustments to the x and y values of dialog box children.

See the OSF/Motif Programmer’s Guide for more information on
the resolution independence mechanism.

3.2.9 Scroll Bars
In Motif, when you place an XmText or XmList widget inside of an
XmScrolledWindow widget, the XmScrolledWindow widget creates
scroll bars. Scroll bars can be placed vertically, on either the left
or right, and horizontally, on either the top or bottom.

After Converting Your Files 3–29

Motif provides two convenience functions to create scroll bars:

• XmCreateScrolledList — Creates an XmList widget
inside an XmScrolledWindow, and attaches XmList-specific
callbacks to the scroll bars. The argument list provided with
XmCreateScrolledList is passed to the XmList widget, which
interprets the following arguments to control the scroll bars:

XmNlistSizePolicy — Specifies whether to change the size
of the list area if a list item is larger than the list area

XmNscrollBarDisplayPolicy — Together with
XmNlistSizePolicy, specifies when to display horizontal
and vertical scroll bars

• XmCreateScrolledText — Creates an XmText widget inside
an XmScrolledWindow widget, and attaches XmText-specific
callbacks to the scroll bars. The argument list provided with
XmCreateScrolledText is passed to the XmText widget, which
interprets the following arguments to control the scroll bars:

XmNscrollHorizontal and XmNscrollVertical — Specify
whether or not to provide horizontal or vertical scroll bars

XmNscrollLeftSide and XmNscrollTopSide — Specify scroll
bar placement

3.2.10 Widget Layout
Motif widgets are usually larger than XUI widgets because of the
highlighting required to support keyboard traversal. Therefore, be
sure to check the layout of your widgets on the display screen and
make any adjustments.

3.3 Reviewing Intrinsics Features and Making Changes
Motif uses MIT X Window System Release 4 Intrinsics. The
change from Release 3 to Release 4 might result in binary and
compile-time incompatibilities. To minimize the effect of these
incompatibilities, do the following:

• Specify an application context

• Review X11 Release 4 changes

• Make changes to your application before you compile it.

3–30 After Converting Your Files

3.3.1 Specifying Application Context
Every program needs an application context. An application
can explicitly name an application context or use the default
application context. Applications that explicitly name an
application context have the following characteristics:

• Are more portable than applications that use the default
application context.

• Can create windows on more than one display device. The
Intrinsics gather events from all displays specified.

• Use different routines. Release 4 provides routines to use if
you explicitly name an application context and compatibility
routines for applications that continue to use the default
application context. Appendix C lists the routines for each
case.

Note

Do not mix explicit application contexts and default
application contexts in the same program.

3.3.2 Reviewing X11 Release 4 Changes
The X11 Release 4 Intrinsics contain changes to the following:

• Routine interfaces

• Widget semantics

3.3.2.1 Routine Interfaces
Review the following changes to the routine interfaces and modify
your code accordingly:

• Application shell names — Release 3 gets the shell name
from the XtInitialize name parameter; Release 4 does not (it
uses NULL). To name the shell, do one of the following:

Instead of using XtInitialize, call the three Intrinsics
functions that make up XtInitialize (XtToolkitInitialize,
XtOpenDisplay, and XtAppCreateShell) individually.

After Converting Your Files 3–31

Set the string that appears in the application’s title bar
by setting the XtNtitle resource in the argument list
and calling XtSetValues on the shell widget returned by
XtInitialize. For example:

2

1
toplevel = XtInitialize (buffer, "testclass", NULL, 0, &argc, argv);
ac = 0;
XtSetArg (al[ac], XtNtitle, buffer); ac++; /* buffer contains the string */
XtSetArg (al[ac], XtNiconName, buffer); ac++;
XtSetValues (toplevel, al, ac); 3

! Defines the title resource.

" Defines the icon name.

Alters the main window’s resources.

• XtCancelSelectionCallbackProc parameter — Release 4
deleted this parameter from calls to
XtGetSelectionValueIncremental and
XtGetSelectionValuesIncremental. A canceled selection calls
XtSelectionCallbackProc with the type parameter value XT_
CONVERT_FAIL.

• XtDisplayInitialize — Release 3 Intrinsics accept a NULL
application context and use the default application context;
Release 4 does not.

• XtNameToWidget — The name parameter differs in
meaning. Release 3 expects the first name in the qualified
name to be the root widget; Release 4 expects the first name
in the qualified name to be a child of the root widget.

3.3.2.2 Widget Semantics
Review the following changes to the widget semantics and modify
your application accordingly:

Note

Widgets created using DWT low- and high-level routines
will retain the Release 3 behavior.

• Accelerator actions — Release 3 invokes accelerator actions
on insensitive widgets; Release 4 does not.

3–32 After Converting Your Files

• Callbacks — The use of Release 3 widget code to specify
callbacks using XtSetValues might not work with the Release
4 Intrinsics; Release 4 correctly handles callbacks passed to
XtSetValues. If your widget’s set_values routine compares the
old and new values of a callback field and attempts to replace
the callbacks, remove that code from your application; the
Intrinsics now do this for you.

• Class extension record — Release 4 requires you to set a
flag in order to allow gadget children for a widget class (see
the MIT R4 Intrinsics Specification).

• Event handlers, widget instance initialization
procedures, and widget set_values procedures — Release
4 passes additional parameters. These parameters can be
ignored and the Release 3 behavior can be retained (see the
MIT R4 Intrinsics Specification).

• Incremental selection callbacks — Parameters use a
different passing mechanism. In XtConvertSelectionIncrProc,
XtSelectionDoneIncrProc, and XtCancelConvertSelectionProc,
Release 3 passes receiver-id by value; Release 4 passes it by
reference.

In XtConvertSelectionIncrProc, Release 3 passes max_length
by value; Release 4 passes it by reference.

• Instance fields — Release 4 adds new fields to the end
of WMShell and VendorShell instance parts. If you used
DwtResolvePartOffsets in your application, this will not affect
you. Otherwise, you will have to check the offsets used to
access fields in the top-level and application shells.

3.3.3 Before Compiling Your Application
Before compiling your application, make changes to the following
files:

• Header files

The Intrinsic.h file contains information that existed in
four XUI public .h files (Convert.h, Translate.h, Selection.h,
Event.h). Although these files are retained for upward
compatibility, if your application includes these files, include
Intrinsic.h instead.

After Converting Your Files 3–33

The XUI public .h files (CompObj.h, CompObjP.h,
WindowObj.h, and WindowObjP.h) no longer exist. Although
these files are retained for upward compatibility, do not use
them.

• Xdefaults files (ULTRIX systems)

On ULTRIX systems, the leading period character (.) is
no longer required as part of the Xdefaults file name for
applications. For example, note the difference between the
Xdefaults file for the clock application under XUI and Motif:

XUI
/usr/users/fred/.DXclock

Motif
/usr/users/fred/DXclock

3.4 Compiling and Linking the Application
To compile and link your application, read the section that applies
to your operating system.

VMS Systems

VMS
If your application uses a UIL specification file to specify the user
interface, type the following to run the UIL compiler:

$ UIL/MOTIF file_name.UIL

Table 3–4 lists the shareable images required to link your
application. These images are in the SYS$SHARE directory.

Table 3–4 VMS Shareable Images Required for Linking

Shareable Image What It Contains

DECW$DWTLIBSHR.EXE Xt library (intrinsics) and XUI library

DECW$XMLIBSHR.EXE Xm and Mrm library

DECW$XLIBSHR.EXE X library

DECW$DXMLIBSHR.EXE DXm library (Digital extensions to
Motif)

3–34 After Converting Your Files

ULTRIX Systems (RISC)

ULTRIX
To compile applications on RISC systems, include the files in
Table 3–5 on the cc command line

Table 3–5 ULTRIX Include Files (RISC Systems)

Include File Library Name What It Contains

/usr/lib/DXM/lib/Xt/X11 Intrinsics include files

/usr/lib/DXM/lib/Xm Motif widget set

/usr/lib/DXM/lib/Mrm Motif Resource Manager

/usr/lib/DXM/lib/DXm Digital extensions to Motif

For example:

system> cc file_name.c -I/usr/lib/DXM/lib/Xt/X11\
-I/usr/lib/DXM/lib/Xm -I/usr/lib/DXM/lib/Mrm\
-I/usr/lib/DXM/lib/DXm

To run the UIL compiler on RISC systems, type the following:

system> /usr/lib/DXM/clients/UIL/uil file_name.uil

Table 3–6 lists the libraries required to link your application on
RISC systems running the ULTRIX operating system.

Table 3–6 ULTRIX Libraries Required for Linking (RISC Systems)

Object Library Name What It Contains

/usr/lib/libX11.a X library

/usr/lib/DXM/lib/Xt/libXt.a Xt library

/usr/lib/DXM/lib/Xm/libXm.a Xm library

/usr/lib/DXM/lib/Mrm/libMrm.a Mrm library

/usr/lib/DXM/lib/DXm/libDXm.a DXm library

After Converting Your Files 3–35

ULTRIX Systems (VAX)
To compile applications on VAX systems, include the files in
Table 3–7 on the cc command line.

Table 3–7 ULTRIX Include Files (VAX Systems)

Include File Library Name What It Contains

/usr/lib/DXV/lib/Xt/X11 Intrinsics include files

/usr/lib/DXV/lib/Xm Motif widget set

/usr/lib/DXV/lib/Mrm Motif Resource Manager

/usr/lib/DXV/lib/DXm Digital extensions to Motif

For example:

system> cc file_name.c -I/usr/lib/DXM/lib/Xt/X11\
-I/usr/lib/DXM/lib/Xm -I/usr/lib/DXM/lib/Mrm\
-I/usr/lib/DXM/lib/DXm

To run the UIL compiler on VAX systems, type the following:

system> /usr/lib/DXV/clients/UIL/uil file_name.uil

Table 3–8 lists the libraries required to link your application on
VAX systems running the ULTRIX operating system.

Table 3–8 ULTRIX Libraries Required for Linking (VAX Systems)

Object Library Name What It Contains

/usr/lib/libX11.a X library

/usr/lib/DXV/lib/Xt/libXt.a Xt library

/usr/lib/DXV/lib/Xm/libXm.a Xm library

/usr/lib/DXV/lib/Mrm/libMrm.a Mrm library

/usr/lib/DXV/lib/DXm/libDXm.a DXm library

3.5 Testing the Application
To test your application after you have compiled and linked it, do
the following:

• Start the application.

• Look at all screen text. Is any text jumbled or missing?

3–36 After Converting Your Files

• Look at dialog boxes. Do they look right?

Do any fields or buttons overlay each other? Remember that
Motif font units are not equivalent to the XUI font units.

Are the defaults correct? You might have to explicitly set
defaults.

Test dialog box operation to see if everything worked as before
the conversion.

• Check icons. Do they look all right? Do they work correctly?

• Test different menu operations. Does everything work as it
did before the conversion?

• Check scrolling, keyboard traversal, and mouse button and
mnemonics operations.

• Check context-sensitive help, if your application supports it.

• Resize the application windows.

• Test print operations, if your application supports it.

• Test different error conditions.

• Stop the application.

Make any necessary changes before going on to the next sections.

3.6 Making Changes Required by the Motif Window Manager
To make the changes required by the Motif Window Manager
(MWM), do the following:

• Check MWM-client interaction

• Check keyboard focus

• Check key and mouse bindings

3.6.1 Check MWM-Client Interaction
The rules governing the relationship between the MWM and the
client applications are defined in the Inter-Client Communications
Conventions Manual. Your application must follow these rules so
its operation is consistent with all Motif applications. See the X
Window System for more information.

After Converting Your Files 3–37

3.6.2 Checking Keyboard Focus
Keyboard focus is determined by the MWM based on the focus
model chosen. Motif has two focus policies: explicit and pointer;
XUI has only one: explicit. The focus model is set by the
keyboardFocusPolicy resource. The default is explicit, but the
user can override this in the Xdefaults file.

See the OSF/Motif Programmer’s Guide for a complete description
of keyboard input focus models.

3.6.3 Checking Key and Mouse Bindings
The user can perform window management functions using either
a mouse or a keyboard. Both methods must be available to
the application user. MWM has a default button and keyboard
bindings for this purpose. You must change your application’s
translation tables to reflect these defaults.

A user can close a window by selecting the Close selection from
the Window menu or by double-clicking the Select mouse button
on the Window menu button. If the user closes the window,
make sure your application performs those tasks that normally
occur when a user ends the application. See the OSF/Motif
Programmer’s Guide for a description of MWM protocols and
functions.

3.7 Make Changes Required by the OSF/Motif Style Guide
To make the changes required by the OSF/Motif Style Guide, do
the following:

• Add menu mnemonics

• Add keyboard accelerators, if you want them

• Add keyboard traversal

• Check context-sensitive pop-up menu operation

For additional information on Motif style, see the OSF/Motif Style
Guide and the DECwindows Companion to the OSF/Motif Style
Guide.

3–38 After Converting Your Files

3.7.1 Adding Menu Mnemonics
In Motif, pull-down menu selections use mnemonics, a single,
underlined character that enables experienced users to make a
selection from the keyboard. For consistency with other Motif
applications, your pull-down menus must have mnemonics. To
add a mnemonic to your pull-down menus, use the XmNmnemonic
resource. For example:

XtSetArg(args[0], XmNmnemonic, ’

arguments {XmNlabelString = "Help"; XmNmnemonic = keysym(’H’);};

/* C code */

/* UIL code */

character’);

See the OSF/Motif Programmer’s Guide for more information on
mnemonics.

Note

The mnemonic character must match the label character
in the label string exactly in order for the mnemonic to
work.

3.7.2 Adding Keyboard Accelerators
Pull-down menu selections can also have accelerators. These
enable a user to make a menu selection by using a single key or
key sequence, without having the menu displayed.

You can use any key not already reserved for keyboard traversal
as a keyboard accelerator. If you want to add a keyboard
accelerator to your application pull-down menu selection, use
the XmNaccelerator and XmNacceleratorText resources.

After Converting Your Files 3–39

The following example defines the Control and O keys as the
keyboard accelerator for an associated menu selection:

arguments{
 XmNaccelerator = "Ctrl<key>o:";

 XmNacceleratorText = compound_string(’Ctrl+O’);
 };

/* UIL code */

cs = XmStringCreateSimple("Ctrl+O");

XtSetArg(args[1], XmNacceleratorText, cs);
XtSetArg(args[0], XmNaccelerator, "Ctrl<key>o:");

/*C code */

See the OSF/Motif Programmer’s Guide for more information on
keyboard accelerators.

Note

You can place keyboard accelerators only on direct children
of a RowColumn class widget; the RowColumn parent
must also be a pop-up or pull-down type.

3.7.3 Adding Keyboard Traversal
A user can use the keyboard to navigate among primitive widgets
and their children. To enable this action, you must arrange the
primitive widgets into tab groups. After the widgets have been
arranged into tab groups, an application user can change the focus
to different tab groups and to different widgets within a tab group.

The toolkit automatically calculates tab groups and sets the
XmNtraversalOn resource default to TRUE for all widgets and
gadgets except for the following:

• XmLabel

• XmLabelGadget

• XmScrollBar

• XmSeparator

• XmSeparatorGadget

3–40 After Converting Your Files

To enable traversal for these widgets and gadgets, add the
following line to the argument list for the widget:

XtSetArg(al[ac], XmNtraversalOn, True); ac++;

See the OSF/Motif Programmer’s Guide for more information on
keyboard traversal.

3.7.4 Checking Context-Sensitive Pop-up Menus
Context-sensitive pop-up menus are activated by MB3 instead of
MB2. You must change your application to comply with this style.

After Converting Your Files 3–41

4
Giving Information to Application Users

As the last step in the porting process, you need to give
your application users information about the application and
OSF/Motif. This involves updating the application and system
documentation.

4.1 Updating the Documentation
After you are finished testing your application and making any
changes, update the following:

• Application build procedures — Change the include files
and other file names, if you have not already done it.

• Application user manual — Remove any reference to
XUI or XUI operations; change the description of how the
application works, if necessary; change routine names; and
change any screen pictures to reflect the Motif look.

• Installation procedures and manual — You might want to
change the file names, so you do not overwrite the XUI files
for the application; the location of the installed files, to keep
them separate from the XUI files; and any screen pictures, to
reflect the Motif look.

• Release notes — If you use release notes, list any behavior
changes, routine name changes, and new restrictions.

Giving Information to Application Users 4–1

A
Summary of XUI and OSF/Motif

Differences

This appendix summarizes the differences between XUI and
OSF/Motif for the following in the following areas:

• Component names

• Terminology

• Windows and window managers

• Menus and menu items

• Standard message boxes

• Mouse button bindings

A.1 Component Names
This section summarizes name changes for the following
OSF/Motif components:

• Widget classes

• Functions

• Resources

• Enumeration literals

• Callback reasons

• Compound strings

• Fontlists

• Clipboards

• Resource manager functions

Summary of XUI and OSF/Motif Differences A–1

For complete descriptions of the widget classes, see the OSF/Motif
Programmer’s Reference.

A.1.1 Widget Classes
Table A–1 summarizes the differences between the XUI widget
hierarchy and the OSF/Motif widget hierarchy.

Table A–1 Widget Class Name Changes

XUI Motif

DwtAttachedDB XmForm

DwtCommandWindow XmCommand

DwtCommon 1

DwtDialogBox XmBulletinBoard

DwtFileSelection XmFileSelectionBox

DwtHelp DXmhelp

DwtLabel XmLabel

DwtListBox XmList

DwtMainWindow XmMainWindow

DwtMenu XmRowColumn

DwtMessageBox XmMessageBox

DwtPullDownMenuEntry XmCascadeButton

DwtPushButton XmPushButton

DwtScale XmScale

DwtScrollBar XmScrollBar

DwtScrollWindow XmScrolledWindow

DwtSelection XmSelectionBox

DwtSeparator XmSeparator

DwtSText XmText

DwtToggleButton XmToggleButton

DwtWindow XmDrawingArea

1No equivalent in Motif. The resources are in XmPrimitive, XmManager, and
XmGadget.

A–2 Summary of XUI and OSF/Motif Differences

A.1.2 Function Names
Table A–2 summarizes the differences between the XUI function
names and the OSF/Motif function names. If you change a
create function name, you might have to change the widget class
names.

Table A–2 Function Name Changes

XUI Motif

Dwt*Create XmCreate*1

DwtAttachedDBCreate XmCreateForm

DwtAttachedDBPopupCreate XmCreateFormDialog

DwtCautionBoxCreate XmCreateWarningDialog,
XmCreateMessageDialog,
XmCreateErrorDialog,
or XmCreateQuestionDialog

DwtCommandAppend XmCommandAppendValue

DwtCommandErrorMessage XmCommandError

DwtCommandSet XmCommandSetValue

DwtCommandWindowCreate XmCreateCommand

DwtDialogBoxCreate XmCreateBulletinBoard

DwtDialogBoxPopupCreate XmCreateBulletinBoardDialog

DwtFileSelectionCreate XmCreateFileSelectionDialog

DwtLabelCreate XmCreateLabel

DwtLabelGadgetCreate XmCreateLabelGadget

DwtListBoxCreate XmCreateList

DwtMainWindowCreate XmCreateMainWindow

DwtMenuBarCreate XmCreateMenuBar

DwtMenuCreate XmCreateRowColumn

DwtMenuPopupCreate XmCreatePopupMenu

DwtMenuPulldownCreate XmCreatePulldownMenu

1Most of the name changes follow this form. The table lists those function name
changes that do not follow this form.

(continued on next page)

Summary of XUI and OSF/Motif Differences A–3

Table A–2 (Cont.) Function Name Changes

XUI Motif

DwtMessageBoxCreate XmCreateInformationDialog2

DwtOptionMenuCreate XmCreateOptionMenu

DwtPullDownMenuEntryCreate XmCreateCascadeButton

DwtPullDownMenuEntryHilite XmCascadeButtonHighlight

DwtPullEntryGadgetCreate XmCreateCascadeButtonGadget

DwtPushButtonCreate XmCreatePushButton

DwtPushButtonGadgetCreate XmCreatePushButtonGadget

DwtRadioBoxCreate XmCreateRadioBox

DwtScaleCreate XmCreateScale

DwtScaleGetSlider XmScaleGetValue

DwtScaleSetSlider XmScaleSetValue

DwtScrollBarCreate XmCreateScrollBar

DwtScrollBarGetSlider XmScrollBarGetValues

DwtScrollBarSetSlider XmScrollBarSetValues

DwtScrollWindowCreate XmCreateScrolledWindow

DwtSelectionCreate XmCreateSelectionBox

DwtSeparatorCreate XmCreateSeparator

DwtSeparatorGadgetCreate XmCreateSeparatorGadget

DwtSTextCreate XmCreateText

DwtToggleButtonCreate XmCreateToggleButton

DwtToggleButtonGadgetCreate XmCreateToggleButtonGadget

DwtWindowCreate XmCreateDrawingArea

DwtWorkBoxCreate XmCreateWorkingDialog2

2Instantiates an XmMessageBox widget inside an XmDialogShell widget. To
instantiate only the XmMessageBox widget, use XmCreateMessageBox.

A–4 Summary of XUI and OSF/Motif Differences

A.1.3 Resource Names
Table A–3 summarizes the differences between the XUI resource
names and the OSF/Motif resource names. Some XUI resource
names have multiple Motif resource names. To help you determine
which Motif resource name applies to your widget, the widget
class is listed in parentheses after the Motif name.

Table A–3 Resource Name Changes

XUI Motif

DwtN* XmN*1

DwtNactivateCallback XmNokCallback (XmSelectionBox)

DwtNadb* XmN*1

DwtNapplyLabel XmNapplyLabelString

DwtNautoShowInsertPoint XmNautoShowCursorPosition

DwtNbuttonAccelerator XmNaccelerator

DwtNcancelLabel XmNcancelLabelString

DwtNchildOverlap XmNallowOverlap

DwtNcols XmNcolumns

DwtNconformToText XmNrecomputeSize

DwtNdefaultHorizontalOffset XmNhorizontalSpacing

DwtNdefaultPushbutton XmNdefaultButtonType

DwtNdefaultVerticalOffset XmNverticalSpacing

DwtNdirectionRtoL XmNprocessingDirection (XmScale,
XmScrollBar)

DwtNdirectionRtoL XmNstringDirection (XmLabel,
XmBulletinBoard, XmList)

DwtNextendCallback XmNextendedSelectionCallback

DwtNfilterLabel XmNfilterLabelString

DwtNfont XmNfontList (XmLabel, XmList,
XmScale, XmText)

DwtNfont XmN*fontList (XmBulletinBoard)

DwtNhistory XmNhistoryItems

1Most of the name changes follow this form. The table lists those resource name
changes that do not follow this form.

(continued on next page)

Summary of XUI and OSF/Motif Differences A–5

Table A–3 (Cont.) Resource Name Changes

XUI Motif

DwtNhorizontal XmNscrollBarDisplayPolicy

DwtNhotSpotPixmap XmNcascadePixmap

DwtNiconPixmap XmNsymbolPixmap

DwtNinc XmNincrement

DwtNindicator XmNindicatorOn

DwtNinsensitivePixmap XmNlabelInsensitivePixmap

DwtNinsensitivePixmapOff XmNlabelInsensitivePixmap

DwtNinsensitivePixmapOn XmNselectInsensitivePixmap

DwtNinsertionPointVisible XmNcursorPositionVisible

DwtNinsertionPosition XmNcursorPosition

DwtNitems XmNlistItems

DwtNitemsCount XmNitemCount (XmList)

DwtNitemsCount XmNlistItemCount (XmSelectionBox)

DwtNlabel XmNlabelString (XmLabel,
XmRowColumn)

DwtNlabel XmNlistLabelString (XmSelectionBox)

DwtNlabel XmNmessageString (XmMessageBox)

DwtNlabelAlignment XmNmessageAlignment

DwtNlines XmNhistoryItemCount

DwtNlostFocusCallback XmNlosingFocusCallback

DwtNmaxValue XmNmaximum

DwtNmenuAlignment XmNisAligned

DwtNmenuEntryClass XmNentryClass

DwtNmenuExtendLastRow XmNadjustLast

DwtNmenuIsHomogeneous XmNisHomogeneous

DwtNmenuNumColumns XmNnumColumns

DwtNmenuPacking XmNpacking

DwtNmenuRadio XmNradioBehavior

DwtNmenuType XmNrowColumnType

(continued on next page)

A–6 Summary of XUI and OSF/Motif Differences

Table A–3 (Cont.) Resource Name Changes

XUI Motif

DwtNmergeTextTranslations XmNtextTranslations

DwtNminValue XmNminimum

DwtNokLabel XmNokLabelString

DwtNpageDecCallback XmNpageDecrementCallback

DwtNpageInc XmNpageIncrement

DwtNpageIncCallback XmNpageIncrementCallback

DwtNpixmap XmNlabelPixmap

DwtNpixmapOff XmNlabelPixmap

DwtNpixmapOn XmNselectPixmap

DwtNprompt XmNpromptString

DwtNpullingCallback XmNcascadingCallback

DwtNresize XmNlistSizePolicy (XmList)

DwtNresize XmNresizePolicy (XmBulletinBoard)

DwtNselectedItemsCount XmNselectedItemCount

DwtNselectionLabel XmNselectionLabelString

DwtNshadow XmNshadowThickness

DwtNshape XmNindicatorType

DwtNshown XmNsliderSize

DwtNsingleCallback XmNsingleSelectionCallback

DwtNsingleConfirmCallback XmNdefaultActionCallback

DwtNsingleSelection XmNsingleSelectionPolicy

DwtNspacing XmNlistSpacing

DwtNstyle XmNdialogStyle

DwtNtextCols XmNtextColumns

DwtNtitle XmNdialogTitle (XmBulletinBoard)

DwtNtitle XmNtitleString (XmScale)

DwtNunitDecCallback XmNdecrementCallback

DwtNunitIncCallback XmNincrementCallback

DwtNvalue XmNcommand (XmCommand)

(continued on next page)

Summary of XUI and OSF/Motif Differences A–7

Table A–3 (Cont.) Resource Name Changes

XUI Motif

DwtNvalue XmNset (XmToggleButton)

DwtNvalue XmNtextString (XmSelectionBox)

DwtNvalueChangedCallback XmNcommandChangedCallback
(XmCommand)

DwtNvisibleItemsCount XmNvisibleItemCount (XmList)

DwtNvisibleItemsCount XmNlistVisibleItemCount
(XmSelectionBox)

DwtNyesCallback XmNokCallback

DwtNyesLabel XmNokLabelString

A.1.4 Enumeration Literal Names
Table A–4 summarizes the differences between the XUI
enumeration literal names and the OSF/Motif enumeration
literal names. Some XUI enumeration literal names have multiple
Motif enumeration literal names. To help you determine which
Motif enumeration literal name applies to your widget, the widget
class is listed in parentheses after the Motif name.

Table A–4 Enumeration Literal Name Changes

XUI Motif

DwtAaaaAaaa XmAAAA_AAAA1

DwtAttachAdb XmATTACH_FORM

DwtAttachOppAdb XmATTACH_OPPOSITE_FORM

DwtAttachOppWidget XmATTACH_OPPOSITE_WIDGET

DwtCancelButton XmDIALOG_CANCEL_BUTTON

DwtCString XmSTRING

DwtMenuPackingColumn XmPACK_COLUMN

DwtMenuPackingNone XmPACK_NONE

DwtMenuPackingTight XmPACK_TIGHT

1Most of the name changes follow this form. The table lists those enumeration
literal name changes that do not follow this form.

(continued on next page)

A–8 Summary of XUI and OSF/Motif Differences

Table A–4 (Cont.) Enumeration Literal Name Changes

XUI Motif

DwtMenuWorkArea XmWORK_AREA

DwtModal XmDIALOG_APPLICATION_MODAL

DwtModal XmDIALOG_FULL_APPLICATION_
MODAL

DwtModal XmDIALOG_SYSTEM_MODAL

DwtModeless XmDIALOG_MODELESS

DwtOrientationHorizontal XmHORIZONTAL

DwtOrientationVertical XmVERTICAL

DwtOval XmONE_OF_MANY

DwtRectangular XmN_OR_MANY

DwtResizeFixed XmRESIZE_NONE (XmBulletinBoard)

DwtResizeFixed XmCONSTANT (XmList)

DwtResizeGrowOnly XmRESIZE_GROW (XmBulletinBoard)

DwtResizeGrowOnly XmVARIABLE (XmList)

DwtResizeShrinkWrap XmRESIZE_ANY (XmBulletinBoard)

DwtResizeShrinkWrap XmVARIABLE (XmList)

DwtWorkArea XmDIALOG_WORK_AREA

DwtYesButton XmDIALOG_OK_BUTTON

Summary of XUI and OSF/Motif Differences A–9

A.1.5 Callback Reason Names
Table A–5 summarizes the differences between the XUI callback
reason names and the OSF/Motif callback reason names. Some
XUI callback reason names have multiple Motif callback reason
names. To help you determine which Motif callback reason name
applies to your widget, the widget class is listed in parentheses
after the Motif name.

Table A–5 Callback Reason Names

XUI Motif

DwtCRAaaaAaaa XmCR_AAAA_AAAA1

DwtCRActivate XmCR_OK (XmSelectionBox)

DwtCRActivate XmCR_CASCADING (XmCascadeButton)

DwtCRExtend XmCR_EXTENDED_SELECTION

DwtCRHelpRequested XmCR_HELP

DwtCRLostFocus XmCR_LOSING_FOCUS

DwtCRPageDec XmCR_PAGE_DECREMENT

DwtCRPageInc XmCR_PAGE_INCREMENT

DwtCRSingle XmCR_SINGLE_SELECT

DwtCRSingleConfirm XmCR_DEFAULT_ACTION

DwtCRUnitDec XmCR_DECREMENT

DwtCRUnitInc XmCR_INCREMENT

DwtCRValueChanged XmCR_COMMAND_CHANGED
(XmCommand)

DwtCRYes XmCR_OK

1Most of the name changes follow this form. The table lists those callback reason
name changes that do not follow this form.

A–10 Summary of XUI and OSF/Motif Differences

A.1.6 Compound Strings
Table A–6 summarizes the differences between the XUI compound
string names and the OSF/Motif compound string names.

Although the compound string names are changed, some functions
change the order and number of arguments. See the OSF/Motif
Programmer’s Reference to verify the arguments.

Table A–6 Compound String Names

XUI Motif

DwtCompString XmString

DwtCSbytecmp XmStringByteCompare

DwtCSempty XmStringEmpty

DwtCSString XmStringSegmentCreate1

DwtCStrcat XmStringConcat

DwtCStrcpy XmStringCopy

DwtCStrlen XmStringLength

DwtCStrncat XmStringNConcat

DwtCStrncpy XmStringNCopy

DwtDisplayCSMessage 2

DwtDisplayVMSMessage 2

DwtGetNextSegment XmStringGetNextSegment

DwtInitGetSegment XmStringInitContext

DwtLatin1String XmStringCreateSimple1

DwtString XmStringSegmentCreate1

1Suggested replacement only.
2No equivalent in Motif.

Summary of XUI and OSF/Motif Differences A–11

A.1.7 Fontlist Names
Table A–7 summarizes the differences between the XUI fontlist
names and the OSF/Motif fontlist names.

Table A–7 Fontlist Names

XUI Motif

DwtAddFontList XmFontListAdd

DwtCreateFontList XmFontListCreate

A.1.8 Clipboard Names
Table A–8 summarizes the differences between the XUI clipboard
names and the OSF/Motif clipboard names.

Table A–8 Clipboard Names

XUI Motif

DwtBeginCopyToClipboard XmClipboardStartCopy

DwtCancelCopyFormat XmClipboardWithdrawFormat

DwtCancelCopyToClipboard XmClipboardCancelCopy

DwtCopyFromClipboard XmClipboardRetrieve

DwtCopyToClipboard XmClipboardCopy

DwtEndCopyFromClipboard XmClipboardEndRetrieve

DwtEndCopyToClipboard XmClipboardEndCopy

DwtInquireNextPasteCount XmClipboardInquireCount

DwtInquireNextPasteFormat XmClipboardInquireFormat

DwtInquireNextPasteLength XmClipboardInquireLength

DwtListPendingItems XmClipboardInquirePendingItems

DwtReCopyToClipboard XmClipboardCopyByName

DwtStartCopyFromClipboard XmClipboardStartRetrieve

DwtStartCopyToClipboard XmClipboardStartCopy

DwtUndoCopyToClipboard XmClipboardUndoCopy

A–12 Summary of XUI and OSF/Motif Differences

A.1.9 Resource Manager Names
Table A–9 summarizes the differences between the XUI resource
manager names and the OSF/Motif resource manager names.

Table A–9 Resource Manager Names

XUI Resource Manager Name Motif Resource Manager Name

DwtCloseHierarchy MrmCloseHierarchy

DwtDrmFreeResourceContext 1

DwtDrmGetResourceContext 1

DwtDrmHGetIndexedLiteral 1

DwtDrmRCBuffer 1

DwtDrmRCSetType 1

DwtDrmRCSize 1

DwtDrmRCType 1

DwtFetchColorLiteral MrmFetchColorLiteral

DwtFetchIconLiteral MrmFetchIconLiteral

DwtFetchInterfaceModule MrmFetchInterfaceModule

DwtFetchLiteral MrmFetchLiteral

DwtFetchSetValues MrmFetchSetValues

DwtFetchWidget MrmFetchWidget

DwtFetchWidgetOverride MrmFetchWidgetOverride

DwtInitializeDRM MrmInitialize

DwtOpenHierarchy MrmOpenHierarchy

DwtRegisterClass MrmRegisterClass

DwtRegisterDRMNames MrmRegisterNames

1No equivalent in Motif. Use MrmFetchLiteral, MrmFetchIconLiteral, or
MrmFetchColorLiteral.

Summary of XUI and OSF/Motif Differences A–13

A.2 Terminology
Table A–10 lists terminology differences between XUI and
OSF/Motif.

Table A–10 Terminology Differences Between XUI and Motif

XUI Motif

Dialog box, modal Dialog box, primary application
modal, application modal or system
modal

Direct manipulation Interface Graphical User Interface

End box (in a dialog box) Command line (in a dialog box)

Exit (menu item) Exit (menu item). Unlike XUI Exit,
you are prompted for whether you
want to save the file.

Ghost No equivalent

Hierarchical dialog boxes Secondary windows. XUI does not
talk about secondary windows, and
OSF does not talk about hierarchical
dialog boxes

Icons Icons or minimized windows

Maximum sliders, minimum
sliders

Sliders (no distinction)

No equivalent Maximize

No equivalent Stepper buttons

No equivalent Sash (window sash)

Option box Option menu

Pointer speed Gain

Push to back Lower

Quit (menu item) Exit (menu item). You are prompted
for whether you want to save the file.

Radio icons No equivalent

Scales, scroll bars, sliders Valuators (Includes scales, scroll bars,
and sliders)

Shrink to icon Minimize

(continued on next page)

A–14 Summary of XUI and OSF/Motif Differences

Table A–10 (Cont.) Terminology Differences Between XUI and
Motif

XUI Motif

Stepping arrows Stepper arrows

Submenu Cascading menu

Terminal Screen Work space

Text Entry Field Entry box

Text insertion character Insertion cursor

Toggle button Check button

Work area Client area

A.3 Windows and Window Managers
Table A–11 lists differences between XUI and OSF/Motif windows
and window managers.

Table A–11 Differences Between XUI and OSF/Motif Windows
and Window Managers

XUI Motif

Does not have a root menu Has a root menu (a menu that pops
up in the root window when you press
the select button in blank area of the
root window).

Shrink-to-icon button is in upper
left

Shrink-to-icon (minimize) button
is the left-hand button of the two
buttons in the upper right

Does not have a window menu Has a window menu (a menu that
pops up in the window when you
press the menu button).

Has a resize button in the far
right

Has a resize border and resize
handles

The default window manager
has an icon box

Default window manager does not
have an icon box.

The text label in the title bar is
left-justified

The text label in the title bar is
centered.

(continued on next page)

Summary of XUI and OSF/Motif Differences A–15

Table A–11 (Cont.) Differences Between XUI and OSF/Motif
Windows and Window Managers

XUI Motif

Only has explicit focus policy Has both explicit (pointer) focus and
implicit focus

Has a push-to-back button Has a Lower menu item

A.4 Menus and Menu Items
Table A–12 lists the differences between the XUI and OSF/Motif
window menu items.

Table A–12 Motif Window Menu Items and Functions

Menu Item Motif Function XUI Equivalent

Restore Returns a window to original
size after it has been iconified
or enlarged

Resize button

Move Changes the location of a
window

Press and drag on the title
bar

Size Changes the size of a window Resize button

Minimize Shrinks the window to an
icon

Shrink-to-icon button

Maximize Enlarges the area to cover
the whole screen

Resize button

Lower Sends a window to the back
or bottom of the window
stack

Push-to-back button

Close Closes a window and removes
it from the workspace

A–16 Summary of XUI and OSF/Motif Differences

A.4.1 Menu Bar and Standard Menus
Table A–13 lists the standard menus in each menu bar, and
describes the differences between XUI and OSF/Motif. XUI uses
dotted lines as separators; Motif uses solid lines.

Table A–13 Differences Between the Motif and XUI Menus in the
Menu Bar

XUI Menu Motif Menu Explanation

File File Mainly the same menu
items

Edit Edit Mainly the same menu
items

View Some XUI applications have
a View menu

Customize Options OSF/Motif provides no
specific menu items; the
menu items are application-
specific.

Font No equivalent in Motif

Help Help Menu items have different
names, some similar
functions

Summary of XUI and OSF/Motif Differences A–17

A.4.2 File Menu Items
Table A–14 lists the File menu items and describes the differences
between XUI and OSF/Motif.

Table A–14 Differences Between File Menu Items

Menu Item XUI Motif

New Creates an empty copy of
window, does not affect the
previous window.

Clears the existing
window, does not provide a
new window. To continue
to have the XUI "new"
capability, include a
check button in your
File Selection box labeled
"Open in New Window."

Open. . . Generates a dialog box that
allows users to open an
existing file

Same in Motif

Include Generates a dialog box that
allows users to add the
contents of a specified file

Not standard in Motif, but
use it if appropriate

Revert Generates a dialog box that
allows users to erase current
work and revert to last saved
version of file

Not standard in Motif, but
use it if appropriate

Print Prints the current file using
the current settings of a Print
dialog box without displaying
the box

Exists in Motif; in Motif,
Print covers Print... as
well.

Print... Generates a Print dialog
box that allows users to set
printing parameters and
print the current file

Not standard in Motif, but
Motif Print menu item
pops up a dialog box if
printing information is
required.

Quit Shuts down application;
prompts for saving if current
version has not been saved

Does not exist in Motif

(continued on next page)

A–18 Summary of XUI and OSF/Motif Differences

Table A–14 (Cont.) Differences Between File Menu Items

Menu Item XUI Motif

Close Closes the window, leaving
the other windows in the
application

Removes the primary and
associated secondary
windows from the
workspace, in applications
that have more than one
primary window. Closing
the last primary window
of an application causes
the application to exit.
If data will be lost, the
application must prompt
users to save changes.
The Close menu item from
the File menu should have
the same effect as the
Close menu item from the
Window menu.

Exit Saves file and shuts down
application

Shuts down application,
prompts for saving if
current version has not
been saved.

Summary of XUI and OSF/Motif Differences A–19

A.4.3 Edit Menu Items
Table A–15 lists the edit menu items and describes the differences
between XUI and OSF/Motif.

Table A–15 Differences Between Edit Menu Items

Menu Item XUI Motif

Undo Reverses the effects of a
previous operation

Same in Motif.

Redo Redoes an operation after it
has been undone

Not in Motif, but you can
add it if appropriate.

Cut Transfers currently selected
information to the clipboard
and deletes the information
from the application

Same in Motif.

Copy Transfers the current
selection to the clipboard
without altering the
information in the application

Same in Motif.

Paste Copies information from the
clipboard into the application
and retains that information
in the clipboard.

Same in Motif.

Clear Deletes the current selection Same in Motif.

Delete Not in XUI Removes selected portion
of data from application
and compresses the rest of
the data to fill the space
that the deleted data
occupied.

Select All Selects all the data in the file Not in Motif, but you can
add it if appropriate.

A–20 Summary of XUI and OSF/Motif Differences

A.4.4 Help Menu Items
The Help menu items are very different between XUI and
OSF/Motif. Table A–16 lists the menu items and their use in
both XUI and OSF/Motif. For more information on the Motif Help
menu items, see DECwindows Companion for the OSF/Motif Style
Guide.

Table A–16 Differences Between Help Menu Items

Menu Item XUI Motif

Overview Provides general
information about
the window from
which help was
requested

Use "On Window" in Motif.

About Provides the name
and version of the
application

Use "On Version" in Motif.

Glossary Provides definitions
of terms

Use "On Terms" in Motif. This
menu item is not described in the
OSF/Motif Style Guide, but use it if
appropriate.

On Context Does not exist as a
menu item in XUI.
In XUI, users press
the Help key and
any mouse button.

Initiates context-sensitive help

On Help Does not exist in
XUI

Provides information on how to use
your application’s Help facility.

On Keys Does not exist in
XUI

Provides information about your
application’s use of function keys,
mnemonics, and accelerators.

Index Does not exist in
XUI

Provides an index for all Help
information in your application.

Tutorial Does not exist in
XUI

Provides access to your application’s
tutorial.

Summary of XUI and OSF/Motif Differences A–21

A.5 Standard Message Boxes
Motif message boxes often have a Help push button in the lower
right corner.

A.6 Mouse Buttons Behavior
Table A–17 provides a list of differences between the XUI and
Motif mouse button behavior.

Table A–17 Differences in Mouse Buttons

Mouse Button XUI Motif

MB1 Used for selection Used for selection. Called
the Select button.

MB2 Used to display pop-up
menus

Used for direct manipula-
tion of objects and other
application-specific needs.
Called the Menu button.

MB3 Used for application-
specific needs, and
for Copy To and Copy
From operations, if your
application supports
them

Used to dislay pop-up
menus. Called the Custom
button.

A–22 Summary of XUI and OSF/Motif Differences

B
Porting Filter Summary

This appendix describes the porting filters. Table B–1 lists the
name and function of the nine porting filters for VMS systems, in
the order in which they are executed by the command procedure
DECW$DXM_PORT.COM. Table B–2 lists the name and function
of the nine porting filters for ULTRIX systems, in the order in
which they are executed by the script file DXm_port.

Table B–1 Porting Filters: Names and Functions (VMS)

Filter Name What It Does

DECW$DXM_PORT_RESOURCES Transforms Toolkit resource names

DECW$DXM_PORT_CALL Transforms callback references and
reasons

DECW$DXM_PORT_HILEVELS Replaces high-level entry points with
low level

DECW$DXM_PORT_LOLEVELS Transforms low-level entry point
names

DECW$DXM_PORT_CLASS Transforms Toolkit class references

DECW$DXM_PORT_DATA Transforms Toolkit data types

DECW$DXM_PORT_DRM Transforms DRM references

DECW$DXM_PORT_INCLUDES Transforms Toolkit include file names

DECW$DXM_PORT_UIL Transforms UIL source

Porting Filter Summary B–1

Table B–2 Porting Filters: Names and Functions (ULTRIX)

Filter Name What It Does

DXm_port_resources Transforms Toolkit resource names

DXm_port_call Transforms callback references and
reasons

DXm_port_hilevels Replaces high-level entry points with low
level

DXM_port_lolevels Transforms low-level entry point names

DXm_port_class Transforms Toolkit class references

DXm_port_data Transforms Toolkit data types

DXm_port_drm Transforms DRM references

DXm_port_includes Transforms Toolkit include file names

DXm_port_uil Transforms UIL source

B–2 Porting Filter Summary

C
Intrinsics Routine Summary

Table C–1 lists the Intrinsics routines you would use if you used
the default application context and the routines you would use if
you explicitly named an application context.

If your application uses an explicit application context, your
custom widgets must support this context. See the X Window
System Toolkit: A Complete Programmer’s Guide and Specification
for more information on specifying an application context.

Table C–1 Default and Explicit Application Context Routines

If using a default application context,
use these routines:

If using explicit application
context, use these routines:

XtAddActions XtAppAddActions

XtAddInput XtAppAddInput

XtAddTimeout XtAppAddTimeout

XtAddWorkProc XtAppAddWorkProc

XtCreateApplicationShell XtAppCreateShell

XtError XtAppError

XtErrorMsg XtAppErrorMsg

XtGetErrorDatabase XtAppGetErrorDatabase

XtGetErrorDatabaseText XtAppGetErrorDatabaseText

XtGetSelectionTimeout XtAppGetSelectionTimeout

XtInitialize XtAppInitialize

XtMainLoop XtAppMainLoop

XtNextEvent XtAppNextEvent

(continued on next page)

Intrinsics Routine Summary C–1

Table C–1 (Cont.) Default and Explicit Application Context
Routines

If using a default application context,
use these routines:

If using explicit application
context, use these routines:

XtPeekEvent XtAppPeekEvent

XtPending XtAppPending

XtProcessEvent XtAppProcessEvent

XtSetSelectionTimeout XtAppSetSelectionTimeout

XtSetErrorHandler XtAppSetErrorHandler

XtSetErrorMsgHandler XtAppSetErrorMsgHandler

XtSetWarningHandler XtAppSetWarningHandler

XtSetWarningMsgHandler XtAppSetWarningMsgHandler

XtWarning XtAppWarning

XtWarningMsg XtAppWarningMsg

C–2 Intrinsics Routine Summary

Index

A
Accelerators, 3–32, 3–39
Application

adding mnenomics, 3–39
comments in, 3–3
compatibility with window managers, 1–4
compiling (ULTRIX RISC), 3–35
compiling (ULTRIX VAX), 3–36
compiling (VMS), 3–34
formatting, 3–3
linking (ULTRIX RISC), 3–35
linking (ULTRIX VAX), 3–36
linking (VMS), 3–34
testing, 3–36
updating build procedures, 4–1
updating documentation, 4–1

Application context
specifying in application, 3–31, C–1

Application shell
naming, 3–31

Argument names
in comments, 3–3
in UIL files, 3–9

Arguments
effect of filters on, 3–8

B
Bit gravity

inherited from superclass, 3–13, 3–21
Build procedures, 4–1

Bulletin board widget, 3–12
Button bindings, 3–38

C
Callback

expose, 3–13
incremental selection, 3–33
in list widget, 3–14
resize, 3–13
selection, 3–32
specifying, 3–33

Callback list
reference to a, 3–5

Callback reason
differences between XUI and Motif, A–10

Callback record
referencing a, 3–22 to 3–23

Callback structure
command widget, 3–24
drawing area widget, 3–24
file selection box widget, 3–25
list widget, 3–26
row column widget, 3–26
selection box widget, 3–27
toggle button widget, 3–27

Character set
specifying, 3–8

Class record
for primitive widgets, 3–20

Client
relationship with MWM, 3–37

Clipboard
differences between XUI and Motif, A–12

Index–1

Color mixing widget
including in your application, 3–18

Command widget, 3–13
callback structure, 3–24

Command window widget
see Command widget

Comments
effect of filters on, 3–3
in UIL files, 3–9

Composite widget, 3–20
Compound string

creating a, 3–9
differences between XUI and Motif, A–11
freeing resources, 3–9, 3–28
retrieving a, 3–28
usage, 3–9, 3–28

Compound string widget
including in your application, 3–18

Context-sensitive pop-up menus, 3–41

D
Defaults files, 3–34
Developer decision message, 3–2
Dialog box widget

see Bulletin board widget
Differences

betweeen XUI and Motif, A–1
Documentation

updating, 4–1
Drawing area widget, 3–13

callback structure, 3–24

E
Enumeration literal

differences between XUI and Motif, A–8
Event

expose, 3–13
handlers, 3–33
resize, 3–13

Expose event, 3–13

F
Field name changes, 3–24 to 3–28
Files

header, 3–9 to 3–10, 3–33
include, 3–9 to 3–10, 3–33
listing differences between, 3–1
required for compiling (ULTRIX RISC),

3–35
required for compiling (ULTRIX VAX),

3–36
xdefaults, 3–34

File selection box widget, 3–13
callback structure, 3–25

File selection widget
see File selection box widget

Filters
converting high-level XUI subroutine

calls, 3–6
interpreting messages, 2–3, 3–2 to 3–3
names, B–1
names not changed, 3–3
preparation, 2–1
reviewing output from, 3–1 to 3–9
running on ULTRIX systems, 2–3
running on VMS systems, 2–2

Focus
keyboard, 3–21, 3–38
policy, 3–38
tab groups, 3–40

Font list
differences between XUI and Motif, A–12

Font units, 3–29
Formatting

effect of filters on, 3–3
Function names

differences between XUI and Motif, A–3

G
Gadget, 3–20

as a child of a widget class, 3–33

Index–2

Gravity, 3–13, 3–21

H
Header files, 3–33
Help push button, A–22
Help widget

including in your application, 3–18
Hierarchy

widget class, 3–20
High-level conversions, 3–6
HyperHelp

description, 3–18

I
ICCCM, 3–37
Include files

changes between XUI and Motif, 3–33
required in application, 3–9 to 3–10,

3–33, 3–35, 3–36
Instance fields, 3–33
Intrinsics

application context routines, 3–31, C–1
application shell names, 3–31
changes to routine interfaces, 3–31 to

3–32
changes to widget semantics, 3–32 to

3–33
reviewing changes, 3–30

K
Key bindings, 3–38
Keyboard accelerator

actions on insensitive widgets, 3–32
adding to an application, 3–39

Keyboard focus, 3–21, 3–38
Keyboard traversal

adding to an application, 3–40

L
Libraries

required for linking (ULTRIX RISC),
3–35

required for linking (ULTRIX VAX), 3–36
Linking applications

on ULTRIX systems (RISC), 3–35
on ULTRIX systems (VAX), 3–36
on VMS systems, 3–34

List box widget
see List widget

List widget, 3–14
callback structure, 3–26

M
Main window widget, 3–14
Mapping unknown message, 3–2
Mapping unsupported message, 3–2
Memory

freed in an application, 3–28
freeing, 3–9

Menu
accelerator, 3–39
closing the window from the, 3–38
edit, A–20
file, A–18
help, A–21
mnemonics, 3–39
pop-up, 3–41
pull-down, 3–39
standard, A–17
window, A–16

Menu bar, A–17
Menu widget

see row column widget, 3–15
Message box, A–22
Message box widget, 3–14
Messages

from porting filters, 3–2 to 3–3
Mnemonic

adding to an application, 3–39

Index–3

Motif applications
compatibility with XUI window manager,

1–4
Motif Resource Manager (MRM)

initializing, 3–17
Motif terminology, A–14
Motif transition message, 3–2, 3–6
Motif widget

summary, A–2
Motif Window Manager

relationship with clients, 3–37
Mouse button bindings, 3–38, A–22
MWM

see Motif Window Manager

N
Name changes

callback reasons, A–10
clipboard, A–12
compound strings, A–11
enumeration literals, A–8
font list, A–12
functions, A–3
not made by filters, 3–3
resource manager, A–13
resources, A–5
widget classes, A–2

P
Porting filters

see filters
Positioning of widgets, 3–29
Primitive widget

class record initialization, 3–20
superclass, 3–20

Print widget
including in your application, 3–19

Pull-down menu
keyboard accelerator use, 3–39
mnemonic use, 3–39

Push button widget, 3–15

R
Readability

checking, 3–3
Release notes, 4–1
Resize event

notifying the application, 3–13
Resolution independence, 3–29
Resource manager

differences between XUI and Motif, A–13
Resource names

differences between XUI and Motif, A–5
Return values

effect of filters on, 3–7
Row column widget, 3–15

callback structure, 3–26

S
Scale widget

setting values, 3–16
Scroll bars, 3–29
Scroll bar widget, 3–16

see also scroll bars
Scrolled list widget, 3–29
Scrolled text widget, 3–30
Scrolled window widget, 3–16
Selection box widget

callback structure, 3–27
Separator widget, 3–17
Shareable images

required for linking (VMS), 3–34
Simple text widget

see Text widget
Structured Visual Navigation widget

including in your application, 3–19
Style

help push button, A–22
Motif requirements, 1–3, 3–38

Subroutines
see XUI routines

Superclass, 3–20

Index–4

T
Tab group, 3–40
Testing, 3–36 to 3–37
Text widget, 3–17
Toggle Button widget

callback structure, 3–27
Traversal, 3–40

U
UIL

converting application to, 2–1
effect of filters on argument names, 3–9
effect of filters on comments, 3–9
initializing DXm, 3–17
initializing MRM, 3–17
running the compiler (ULTRIX RISC),

3–35
running the compiler (ULTRIX VAX),

3–36
running the compiler (VMS), 3–34

W
Widget

see also XUI widget
color mixing, 3–18
composite, 3–20
compound string, 3–18
custom, 3–20 to 3–21
Digital Extended Motif, 3–17 to 3–19
help, 3–18
instance initialization, 3–33
layout, 3–30
modal, 1–4
passing parameters to a, 3–33
positioning of, 3–29
primitive, 3–20
print, 3–19
scrolled list, 3–29
scrolled text, 3–30
semantics, 3–32
Structured Visual Navigation, 3–19

Widget (cont’d)
XmBulletinBoard, 3–12
XmCommand, 3–13
XmDrawingArea, 3–13
XmFileSelectionBox, 3–13
XmList, 3–14
XmMainWindow, 3–14
XmMessageBox, 3–14
XmPushButton, 3–15
XmRowColumn, 3–15
XmScale, 3–16
XmScrollBar, 3–16
XmScrolledWindow, 3–16
XmSeparator, 3–17
XmText, 3–17

Widget class
differences between XUI and Motif, A–2
hierarchy, 3–20
use of gadget children, 3–33

Window menu
close function, 3–38

Window widget
see Drawing area widget

X
XmStringFree routine, 3–5, 3–9, 3–28
XUI files

converting, 2–1
XUI routines

converting high-level, 3–6
XUI terminology, A–14
XUI widget

see also widget
DwtCommandWindow, 3–13
DwtDialogBox, 3–12
DwtFileSelection, 3–13
DwtListBox, 3–14
DwtMainWindow, 3–14
DwtMenu, 3–15
DwtMessageBox, 3–14
DwtPushButton, 3–15
DwtScale, 3–16
DwtScrollBar, 3–16
DwtScrollWindow, 3–16

Index–5

XUI widget (cont’d)
DwtSeparator, 3–17
DwtSText, 3–17
DwtWindow, 3–13
summary, A–2

XUI window manager
compatibility with Motif applications, 1–4

Index–6

