
VMS DECwindows Guide to Xlib
(Release 4) Programming: VAX
Binding
Order Number: AA–PGZDA–TE

August 1991

This manual is a guide to programming Xlib routines.

Revision/Update Information: This is a new manual.

Operating System: VMS Version 5.4

Software Version: VMS DECwindows Motif Version 1.0

Digital Equipment Corporation
Maynard, Massachusetts

August 1991

The information in this document is subject to change without notice and should not be construed
as a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no
responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied
only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied
by Digital Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to restrictions
as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software
clause at DFARS 252.227-7013.

© Digital Equipment Corporation 1991. All Rights Reserved.

The postpaid Reader’s Comments forms at the end of this document request your critical evaluation
to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation: Bookreader, CDA, DEC, DECnet,
DECwindows, DECwrite, Digital, LinkWorks, LiveLink, LN03, MicroVAX, PrintServer, ReGIS,
ULTRIX, VAX, VAXcluster, VAXserver, VAXstation, VMS, VT, XUI, and the DIGITAL logo.

Adobe is a registered trademark of Adobe Systems Incorporated.

BITSTREAM is a registered trademark of Bitstream, Inc.

Helvetica is a trademark of Linotype AG or its subsidiaries, or both.

ITC Avant Garde Gothic is a registered trademark of International Typeface Corporation.

Motif is a trademark of the Open Software Foundation, Inc.

Open Software Foundation, OSF, OSF/Motif, and Motif are trademarks of the Open Software
Foundation, Inc.

PostScript is a registered trademark of Adobe Systems Incorporated.

Sony is a registered trademark of Sony Corporation.

Times is a trademark of Linotype AG or its subsidiaries, or both.

ZK5643

This document was prepared using DECdocument, Version 3.3-1b.

Contents

Preface . xi

1 Programming Overview of Xlib

1.1 Overview of Xlib . 1–1
1.2 Sample Xlib Program . 1–2
1.2.1 Initializing Xlib Resources . 1–2
1.2.1.1 Creating Windows . 1–3
1.2.1.2 Defining Colors . 1–3
1.2.1.3 Working with the Window Manager . 1–3
1.2.1.4 Making Windows Visible on the Screen . 1–3
1.2.2 Handling Events . 1–3
1.3 Handling Error Conditions . 1–8
1.4 Debugging Xlib Programs . 1–9

2 Managing the Client-Server Connection

2.1 Overview of the Client-Server Connection . 2–1
2.2 Establishing the Client-Server Connection . 2–3
2.3 Closing the Client-Server Connection . 2–4
2.4 Getting Information About the Client-Server Connection 2–4
2.5 Managing Requests to the Server . 2–5

3 Working with Windows

3.1 Window Fundamentals . 3–1
3.1.1 Window Hierarchy . 3–2
3.1.2 Window Position . 3–4
3.1.3 Window Visibility and Occlusion . 3–5
3.2 Creating Windows . 3–6
3.2.1 Using Attributes of the Parent Window . 3–6
3.2.2 Defining Window Attributes . 3–7
3.3 Destroying Windows . 3–12
3.4 Mapping and Unmapping Windows . 3–13
3.5 Associating Properties with Windows . 3–15
3.6 Using Properties to Communicate with the Window Manager 3–21
3.7 Defining Window Manager Properties . 3–22
3.7.1 Setting Window Manager Hints . 3–22
3.7.2 Providing Size Hints . 3–24
3.7.3 Setting a Window and Icon Names . 3–27
3.8 Exchanging Properties Between Clients . 3–28
3.9 Changing Window Characteristics . 3–29
3.9.1 Reconfiguring Windows . 3–29
3.9.2 Effects of Reconfiguring Windows . 3–33

iii

3.9.3 Changing Stacking Order . 3–35
3.9.4 Changing Window Attributes . 3–36
3.10 Getting Information About Windows . 3–37

4 Defining Graphics Characteristics

4.1 The Graphics Context . 4–1
4.2 Defining Multiple Graphics Characteristics in One Call 4–2
4.3 Defining Individual Graphics Characteristics . 4–15
4.4 Copying, Changing, and Freeing Graphics Contexts 4–18
4.5 Using Graphics Characteristics Efficiently . 4–19

5 Using Color

5.1 Pixels and Color Maps . 5–1
5.1.1 Installing Color Maps . 5–4
5.2 Matching Color Requirements to Display Types . 5–4
5.2.1 Visual Types . 5–5
5.2.2 Determining the Default Visual Type . 5–7
5.2.3 Determining Multiple Visual Types . 5–8
5.3 Sharing Color Resources . 5–10
5.3.1 Using Named Colors . 5–10
5.3.2 Specifying Exact Color Values . 5–12
5.4 Allocating Colors for Exclusive Use . 5–14
5.4.1 Specifying a Color Map . 5–14
5.4.2 Allocating Color Cells . 5–15
5.4.3 Storing Color Values . 5–23
5.5 Freeing Color Resources . 5–23
5.6 Querying Color Map Entries . 5–24

6 Drawing Graphics

6.1 Graphics Coordinates . 6–1
6.2 Using Graphics Routines Efficiently . 6–1
6.3 Drawing Points and Lines . 6–2
6.3.1 Drawing Points . 6–2
6.3.2 Drawing Lines and Line Segments . 6–5
6.4 Drawing Rectangles and Arcs . 6–9
6.4.1 Drawing Rectangles . 6–9
6.4.2 Drawing Arcs . 6–13
6.5 Filling Areas . 6–17
6.5.1 Filling Rectangles and Arcs . 6–17
6.5.2 Filling a Polygon . 6–18
6.6 Clearing and Copying Areas . 6–21
6.6.1 Clearing Window Areas . 6–21
6.6.2 Copying Areas of Windows and Pixmaps . 6–22
6.7 Defining Regions . 6–23
6.7.1 Creating Regions . 6–23
6.7.2 Managing Regions . 6–26
6.8 Defining Cursors . 6–31
6.8.1 Creating Cursors . 6–32
6.8.2 Managing Cursors . 6–36
6.8.3 Destroying Cursors . 6–36

iv

7 Using Pixmaps and Images

7.1 Creating and Freeing Pixmaps . 7–1
7.2 Creating and Managing Bitmaps . 7–3
7.3 Working with Images . 7–5

8 Writing Text

8.1 Characters and Fonts . 8–1
8.2 Specifying Fonts . 8–12
8.3 Getting Information About a Font . 8–14
8.4 Freeing Font Resources . 8–16
8.5 Computing the Size of Text . 8–17
8.6 Drawing Text . 8–17
8.7 Font Usage Hints . 8–22
8.7.1 Font Fallback Strategy . 8–22
8.7.2 Speeding Up Font Name Searches . 8–23
8.7.3 Monitor Density Independence . 8–23
8.7.4 Character Set Considerations . 8–23

9 Handling Events

9.1 Event Processing . 9–1
9.2 Selecting Event Types . 9–4
9.2.1 Using the SELECT INPUT Routine . 9–5
9.2.2 Specifying Event Types When Creating a Window 9–6
9.2.3 Specifying Event Types When Changing Window Attributes 9–7
9.3 Pointer Events . 9–8
9.3.1 Handling Button Presses and Releases . 9–8
9.3.2 Handling Pointer Motion . 9–11
9.4 Window Entries and Exits . 9–13
9.4.1 Normal Window Entries and Exits . 9–15
9.4.2 Pseudomotion Window Entries and Exits . 9–17
9.5 Input Focus Events . 9–18
9.6 Exposure Events . 9–18
9.6.1 Handling Window Exposures . 9–19
9.6.2 Handling Graphics Exposures . 9–20
9.7 Key Events . 9–25
9.8 Window State Notification Events . 9–26
9.8.1 Handling Window Circulation . 9–26
9.8.2 Handling Changes in Window Configuration . 9–26
9.8.3 Handling Window Creations . 9–27
9.8.4 Handling Window Destructions . 9–27
9.8.5 Handling Changes in Window Position . 9–27
9.8.6 Handling Window Mappings . 9–27
9.8.7 Handling Key, Keyboard, and Pointer Mappings 9–27
9.8.8 Handling Window Reparenting . 9–27
9.8.9 Handling Window Unmappings . 9–28
9.8.10 Handling Changes in Window Visibility . 9–28
9.9 Key Map State Events . 9–28
9.10 Color Map State Events . 9–28
9.11 Client Communication Events . 9–29
9.11.1 Handling Event Notification from Other Clients 9–29
9.11.2 Handling Changes in Properties . 9–29
9.11.3 Handling Changes in Selection Ownership . 9–29

v

9.11.4 Handling Requests to Convert a Selection . 9–29
9.11.5 Handling Requests to Notify of a Selection . 9–29
9.12 Event Queue Management . 9–30
9.12.1 Checking the Contents of the Event Queue . 9–30
9.12.2 Returning the Next Event on the Queue . 9–30
9.12.3 Selecting Events That Match User-Defined Routines 9–30
9.12.4 Selecting Events Using an Event Mask . 9–31
9.12.5 Putting Events Back on Top of the Queue . 9–32
9.12.6 Sending Events to Other Clients . 9–32
9.13 Error Handling . 9–32
9.13.1 Enabling Synchronous Operation . 9–32
9.13.2 Using the Default Error Handlers . 9–32
9.13.3 Confirming X Resource Creation . 9–33

A Compiling Fonts

B VMS DECwindows Named Colors

C VMS DECwindows Fonts

Index

Examples

1–1 Sample Program . 1–4
3–1 Creating a Simple Window . 3–7
3–2 Defining Attributes When Creating Windows 3–11
3–3 Mapping and Raising Windows . 3–13
3–4 Exchanging Window Properties . 3–17
3–5 Reconfiguring a Window . 3–31
3–6 Changing Window Attributes . 3–37
4–1 Defining Graphics Characteristics Using the CREATE GC Routine . . . 4–13
4–2 Using Individual Routines to Define Graphics Characteristics 4–17
5–1 Using Named VMS DECwindows Colors . 5–10
5–2 Specifying Exact Color Values . 5–13
5–3 Allocating Colors for Exclusive Use . 5–15
6–1 Drawing Multiple Points . 6–3
6–2 Drawing Multiple Lines . 6–6
6–3 Drawing Multiple Rectangles . 6–11
6–4 Drawing Multiple Arcs . 6–15
6–5 Filling a Polygon . 6–19
6–6 Clearing a Window . 6–22
6–7 Defining a Region Using the POLYGON REGION Routine 6–23
6–8 Defining the Intersection of Two Regions . 6–26
6–9 Creating a Pixmap Cursor . 6–35
7–1 Creating a Pixmap . 7–1
7–2 Creating a Bitmap Data File . 7–3
7–3 Creating a Pixmap from Bitmap Data . 7–4

vi

8–1 Drawing Text Using the DRAW TEXT Routine 8–19
8–2 Drawing Text Using the DRAW STRING Routine 8–20
9–1 Selecting Event Types Using the CREATE WINDOW Routine 9–7
9–2 Handling Button Presses . 9–10
9–3 Handling Pointer Motion . 9–12
9–4 Handling Window Entries and Exits . 9–16
9–5 Handling Graphics Exposures . 9–23

Figures

1–1 Client, Xlib, and Server . 1–2
2–1 Graphics Output to Instructor VAXstation . 2–2
2–2 Graphics Output to Student VAXstations . 2–3
3–1 Root Window and One Child . 3–2
3–2 Relationship Between Second-Level Windows 3–3
3–3 Relationship Between Third-Level Windows . 3–4
3–4 Coordinate System . 3–5
3–5 Set Window Attributes Data Structure . 3–8
3–6 Window Before Restacking . 3–14
3–7 Restacked Window . 3–15
3–8 WM Hints Data Structure . 3–23
3–9 Size Hints Data Structure . 3–25
3–10 Text Property Data Structure . 3–27
3–11 Class Hint Data Structure . 3–27
3–12 Window Changes Data Structure . 3–29
3–13 Reconfigured Window . 3–32
3–14 East Bit Gravity . 3–34
3–15 Northwest Window Gravity . 3–35
4–1 GC Values Data Structure . 4–3
4–2 Bounding Box . 4–7
4–3 Line Styles . 4–7
4–4 Butt, Round, and Projecting Cap Styles . 4–8
4–5 Cap Not Last Style . 4–8
4–6 Join Styles . 4–9
4–7 Fill Rules . 4–11
4–8 Pixel Boundary Cases . 4–11
4–9 Styles for Filling Arcs . 4–12
4–10 Dashed Line Offset . 4–12
4–11 Dashed Line . 4–15
4–12 Line Defined Using GC Routines . 4–18
5–1 Pixel Values and Planes . 5–2
5–2 Color Map, Cell, and Index . 5–3
5–3 Visual Types and Color Map Characteristics . 5–7
5–4 Visual Info Data Structure . 5–8
5–5 Color Data Structure . 5–12
5–6 Polygons That Define the Color Wheel . 5–22
6–1 Point Data Structure . 6–2

vii

6–2 Circles of Points Created Using the DRAW POINTS Routine 6–5
6–3 Star Created Using the DRAW LINES Routine 6–8
6–4 Segment Data Structure . 6–8
6–5 Rectangle Coordinates and Dimensions . 6–10
6–6 Rectangle Drawing . 6–10
6–7 Rectangle Data Structure . 6–11
6–8 Rectangles Drawn Using the DRAW RECTANGLES Routine 6–13
6–9 Arc Data Structure . 6–14
6–10 Multiple Arcs Drawn Using the DRAW ARCS Routine 6–17
6–11 Filled Star Created Using the FILL POLYGON Routine 6–21
6–12 Arcs Drawn Within a Region . 6–25
6–13 Intersection of Two Regions . 6–31
6–14 Cursor Shape and Cursor Mask . 6–34
7–1 Image Data Structure . 7–5
7–2 XY Bitmap Format . 7–9
7–3 XY Pixmap Format . 7–10
7–4 Z Format . 7–10
8–1 Composition of a Character . 8–2
8–2 Composition of a Slash . 8–3
8–3 Char Struct Data Structure . 8–3
8–4 Single-Row Font . 8–5
8–5 Multiple-Row Font . 8–5
8–6 Char 2B Data Structure . 8–5
8–7 Font Struct Data Structure . 8–6
8–8 Indexing Single-Row Font Character Metrics . 8–8
8–9 Indexing Multiple-Row Font Character Metrics 8–9
8–10 Atoms and Font Properties . 8–11
8–11 Font Prop Data Structure . 8–12
8–12 Text Item Data Structure . 8–17
8–13 Text Item 16 Data Structure . 8–18
9–1 Any Event Data Structure . 9–3
9–2 Event Data Structure . 9–4
9–3 Button Event Data Structure . 9–8
9–4 Motion Event Data Structure . 9–11
9–5 Crossing Event Data Structure . 9–14
9–6 Window Entries and Exits . 9–17
9–7 Expose Event Data Structure . 9–19
9–8 Graphics Expose Event Data Structure . 9–21
9–9 No Expose Event Data Structure . 9–22
9–10 Window Scrolling . 9–25
9–11 Error Event Data Structure . 9–33

viii

Tables

2–1 Output Buffer Routines . 2–5
3–1 Set Window Attributes Data Structure Members 3–9
3–2 Default Values of the Set Window Attributes Data Structure 3–10
3–3 Set Window Attributes Data Structure Flags . 3–10
3–4 Predefined Atoms . 3–16
3–5 Routines for Managing Properties . 3–20
3–6 Atom Names of Window Manager Properties . 3–21
3–7 Window Manager Hints Size Hints Data Structure Flags 3–22
3–8 WM Hints Data Structure Members . 3–24
3–9 Size Hints Data Structure Flags . 3–24
3–10 Size Hints Data Structure Members . 3–26
3–11 Text Property Data Structure Members . 3–27
3–12 Class Hint Data Structure Members . 3–28
3–13 Window Changes Data Structure Members . 3–30
3–14 Stacking Values . 3–30
3–15 Window Changes Data Structure Flags . 3–31
3–16 Window Configuration Routines . 3–32
3–17 Gravity Definitions . 3–33
3–18 Routines for Changing Window Attributes . 3–36
3–19 Window Information Routines . 3–37
4–1 GC Data Structure Default Values . 4–2
4–2 GC Values Data Structure Members . 4–4
4–3 GC Values Data Structure Flags . 4–12
4–4 Routines That Define Individual or Functional Groups of Graphics

Characteristics . 4–16
5–1 Visual Info Data Structure Members . 5–9
5–2 Color Data Structure Members . 5–12
6–1 Point Data Structure Members . 6–2
6–2 Segment Data Structure Members . 6–9
6–3 Rectangle Data Structure Members . 6–11
6–4 Arc Data Structure Members . 6–14
6–5 Routines for Managing Regions . 6–26
6–6 Predefined VMS DECwindows Cursors . 6–32
7–1 Image Data Structure Members . 7–6
7–2 Routines That Change Images . 7–10
8–1 Char Struct Data Structure Members . 8–4
8–2 Char 2B Data Structure Members . 8–6
8–3 Font Struct Data Structure Members . 8–7
8–4 Font Prop Data Structure Members . 8–12
8–5 Atom Names of Font Properties . 8–14
8–6 Complimentary Font Routines . 8–16
8–7 Text Item Data Structure Members . 8–18
8–8 Text Item 16 Data Structure Members . 8–18
8–9 Fonts Not Recommended for General Use . 8–23
9–1 Event Types . 9–2

ix

9–2 Any Event Data Structure Members . 9–4
9–3 Event Masks . 9–5
9–4 Values Used for Grabbing Buttons . 9–8
9–5 Button Event Data Structure Members . 9–9
9–6 Motion Event Data Structure Members . 9–12
9–7 Crossing Event Data Structure Members . 9–14
9–8 Expose Event Data Structure Members . 9–19
9–9 Graphics Expose Event Data Structure Members 9–21
9–10 No Expose Event Data Structure Members . 9–22
9–11 Selecting Events Using a Predicate Procedure 9–31
9–12 Routines to Select Events Using a Mask . 9–31
C–1 VMS DECwindows 75 dpi Fonts . C–1
C–2 VMS DECwindows 100 dpi Fonts . C–10
C–3 VMS DECwindows Common Fonts . C–23

x

Preface

This manual describes how to program Xlib routines using the VAX binding.
VMS DECwindows provides the VAX binding for Xlib programmers who want
to adhere to the VAX calling standard. For information about the standard,
see the Introduction to VMS System Routines in the VMS operating system
documentation set.

The manual includes an overview of Xlib and tutorials that show how to use Xlib
routines.

Note

This manual uses a generic format when referring to Xlib routine names
in text. Routine names are represented in all uppercase letters with
separating spaces. In addition, the X prefix has been omitted. For
example, in text the routine name is written as OPEN DISPLAY; however,
the VAX Binding format of the same routine is X$OPEN_DISPLAY.

See the DECwindows Motif for OpenVMS Guide to Non-C Bindings for a
complete reference of all VAX Binding Xlib routines. See the X Window
System for a description of the routines.

Intended Audience
This manual is intended for experienced programmers who need to learn graphics
programming using Xlib routines. Readers should be familiar with a high-level
language. The manual requires minimal knowledge of graphics programming.

Document Structure
This manual is organized as follows:

• Chapter 1 provides an overview of Xlib, a sample Xlib program, and a guide
to debugging Xlib programs.

• Chapters 2 through 9 provide tutorials that show how to use Xlib routines
and include descriptions of predefined Xlib data structures and code examples
that illustrate the concepts described.

This manual also includes the following appendixes:

• Appendix A is a guide to using the VMS DECwindows font compiler.

• Appendix B provides information about VMS DECwindows named colors.

• Appendix C lists VMS DECwindows fonts.

xi

Associated Documents
The following documents contain additional information:

• X Window System—Provides detailed descriptions of each Xlib routine, as
well as, the Inter-Client Communication Conventions Manual (ICCCM), the X
Logical Font Description Conventions, and the X Window System Protocol.

• DECwindows Motif for OpenVMS Guide to Non-C Bindings— Describes non-C
bindings for Xlib, Intrinsics, Motif Toolkit, and Digital extension routines.

• DECwindows Extensions to Motif— Provides reference information on the
Digital extensions to Motif.

• DECwindows Companion to the OSF/Motif Style Guide— Covers style issues
for Digital extensions to Motif and topics not addressed in the OSF/Motif
Style Guide.

• DECwindows Motif Guide to Application Programming— Describes how to
program with the Digital extensions to the Motif Toolkit. It supplements the
OSF/Motif Programmer’s Guide.

• X and Motif Quick Reference Guide— Provides quick reference information on
Xlib, Intrinsics, and the Motif Toolkit.

• OSF/Motif Style Guide— Describes style guidelines for applications based on
the Motif Toolkit.

• OSF/Motif Programmer’s Guide— Describes how to program with the Motif
Window Manager, Motif Toolkit, and the Motif User Interface Language
(UIL).

• OSF/Motif Programmer’s Reference— Provides reference information on the
Motif Toolkit.

Conventions
The following conventions are used in this manual:

mouse The term mouse is used to refer to any pointing device, such
as a mouse, a puck, or a stylus.

MB1 (Select)
MB2 (Drag)
MB3 (Menu)

MB1 indicates the left mouse button, MB2 indicates the
middle mouse button, and MB3 indicates the right mouse
button. (The buttons can be redefined by the user.)

Ctrl+x A sequence such as Ctrl+x (or Ctrl/x) indicates that you must
hold down the key labeled Ctrl while you press another key
or a pointing device button.

.

.

.

A vertical ellipsis indicates the omission of items from a code
example or command format; the items are omitted because
they are not important to the topic being discussed.

[] In format descriptions, brackets indicate that whatever is
enclosed within the brackets is optional; you can select none,
one, or all of the choices. (Brackets are not, however, optional
in the syntax of a directory name in a file specification or
in the syntax of a substring specification in an assignment
statement.)

xii

boldface text Boldface text represents the introduction of a new term or
the name of an argument, an attribute, or a reason.

Boldface text is also used to show user input in online
versions of the book.

italic text Italic text represents information that can vary in system
messages (for example, Internal error number).

UPPERCASE TEXT Uppercase letters indicate that you must enter a command
(for example, enter OPEN/READ), or they indicate the name
of a routine, the name of a file, the name of a file protection
code, or the abbreviation for a system privilege.

- Hyphens in coding examples indicate that additional
arguments to the request are provided on the line that
follows.

numbers Unless otherwise noted, all numbers in the text are assumed
to be decimal. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

xiii

1
Programming Overview of Xlib

The VMS DECwindows programming environment includes Xlib, a library of
low-level routines that enable the VMS DECwindows programmer to perform
windowing and graphics operations.

This chapter provides the following:

• An overview of the library

• A description of error-handling conditions

• Xlib debugging techniques

Additionally, the chapter includes an introductory Xlib program. The program
includes annotations that are explained more completely in the programming
descriptions in later chapters of this guide.

1.1 Overview of Xlib
The VMS DECwindows programming environment enables application programs,
called clients, to interact with workstations using the X Window System, Version
11 protocol software. The program that controls workstation devices such as
screens and pointing devices is the server. Xlib is a library of routines that
enables a client to communicate with the server to create and manage the
following:

• Connections between clients and the server

• Windows

• Colors

• Graphics characteristics such as line width and line style

• Graphics

• Cursors

• Fonts and text

• Pixmaps and offscreen images

• Windowing and sending graphics between clients

• Client notification of windowing and graphics operations

Xlib processes some client requests, such as requests to measure the width of a
character string, within the Xlib library. It sends other client requests, such as
those pertaining to putting graphics on a screen or receiving device input, to the
server.

The server returns information to clients through either replies or events.
Replies and events both return information to clients; the server returns replies
synchronously and events asynchronously.

1–1

Programming Overview of Xlib
1.1 Overview of Xlib

See the X Window System for a list of routines that cause Xlib to send requests to
the server.

Figure 1–1 illustrates the relationships among client, Xlib, and server. The client
calls Xlib routines, which always reside on the client system. If possible, Xlib
processes calls internally and returns information to the client when appropriate.
When an Xlib routine requires server intervention, Xlib generates a request and
sends the request to the server.

The server may or may not reside on the same system as the client and Xlib.
In either case, Xlib communicates with the server through a transport protocol,
which can be either local shared memory or DECnet networking software.

Figure 1–1 Client, Xlib, and Server

ZK−0003A−GE

Xlib/Server
Messages

XlibClient Server

Requests

Replies and
Events

Routine
Calls

1.2 Sample Xlib Program
The introductory Xlib program described in Example 1–1 illustrates the structure
of a typical client program that uses Xlib windowing and graphic operations. The
program creates two windows, draws text into one of them, and exits if the user
clicks any mouse button while the cursor is in the window containing text.

This section describes the program and introduces fundamental concepts about
Xlib resources, windowing, and event-handling.

1.2.1 Initializing Xlib Resources
The sample program begins by creating Xlib resources that the client needs in
order to perform tasks. Xlib resources include windows, fonts, pixmaps, cursors,
color maps, and data structures that define the characteristics of graphics objects.
The sample program uses a default font, default cursor, default color map,
client-defined windows, and a client-defined data structure that specifies the
characteristics of the text displayed.

The program first makes a connection between the client and the server. The
client-server connection is the display. After making the connection, or opening
the display, the client can get display information from the server. For example,
immediately after opening the display, the program calls the DEFAULT SCREEN
OF DISPLAY routine to get the identifier of the default screen. The program uses
the identifier as an argument in a variety of routines it calls later.

1–2

Programming Overview of Xlib
1.2 Sample Xlib Program

1.2.1.1 Creating Windows
A window is an area of the screen that either receives input or both receives
input and displays graphics.

Windows in the X Window System are hierarchically related. At the base of
the hierarchy is the root window. All windows that a client creates after
opening a display are inferiors of the root window. The sample program includes
two inferiors of the root window. First-generation inferiors of a window are its
children. The root window has one child, identified in the sample as
WINDOW_1. The window named WINDOW_2 is an inferior of the root window
and a child of WINDOW_1.

To complete the window genealogy, all windows created before a specified
window and hierarchically related to it are its ancestors. In the sample program,
WINDOW_1 has one ancestor (the root window); WINDOW_2 has two ancestors
(the root window and WINDOW_1).

1.2.1.2 Defining Colors
Defining background and foreground colors is part of the process of creating
windows in the sample program. The DEFINE_COLOR subroutine allocates
named VMS DECwindows colors for client use in a way that permits other clients
to share the same color resource. For example, the routine specifies the VMS
DECwindows color named ‘‘light grey’’ as the background color of WINDOW_2. If
other clients were using VMS DECwindows color resources, they too could access
the VMS DECwindows data structure that defines ‘‘light grey.’’ Sharing enables
clients to use color resources efficiently.

The program calls the DEFINE_COLOR subroutine again in the next step of
initialization, creating the graphics context that defines the characteristics of a
graphics object. In this case, the program defines foreground and background
colors used when writing text.

1.2.1.3 Working with the Window Manager
Most clients run on systems that have a window manager, which is an Xlib
application that controls conflicts between clients. The window manager also
provides the user with control of the appearance of the window session screen.
Clients provide the window manager with information about how it should treat
client resources, although the manager can ignore the information. The sample
program provides the window manager with information about the size and
placement of WINDOW_1. Additionally, the program assigns a name that the
window manager displays in the title bar of WINDOW_1.

1.2.1.4 Making Windows Visible on the Screen
Creating windows does not make them visible. To make its windows visible, a
client must map them, painting the windows on a specified screen. The last step
of initializing the sample program is to map WINDOW_1 and WINDOW_2.

1.2.2 Handling Events
The core of an Xlib program is a loop in which the client waits for the server to
notify it of an event, which is a report of either a change in the state of a device
or the execution of a routine call by another client. The server can report 30
types of events associated with the following occurrences:

• Key presses and releases

• Pointer motion

• Window entries and exits

1–3

Programming Overview of Xlib
1.2 Sample Xlib Program

• Changes of keyboards receiving input

• Changes in keyboard configuration

• Window and graphics exposures

• Changes in window hierarchy and configuration

• Requests by other clients to change windows

• Changes in available color resources

• Communication from other clients

When an event occurs, the server sends information about the event to Xlib. Xlib
stores the information in a data structure. If the client has specified an interest
in that kind of event, Xlib puts the data structure on an event queue. The sample
program polls the event queue to determine if it contains an event of interest to
the client. When the program finds an event that is of interest to the client, the
program performs a task.

Because Xlib clients do their essential work in response to events, they are event
driven.

The sample program continually checks its event queue to determine if a window
has been made visible or a button has been clicked. When the server informs it of
either kind of event, the program performs its real work, as follows.

If a window has been made visible, the server reports a window exposure event.
Upon receiving this type of event, the program determines whether the window
exposed is WINDOW_2, and if the event is the first instance of the exposure. If
both conditions are true, the program writes a message into the window.

If the event reported is a button press, the program checks to make certain the
cursor is in WINDOW_2 when the user clicks the mouse button. If the user
clicks the mouse button when the cursor is in WINDOW_1, the program reminds
the user to click on WINDOW_2. Otherwise, the program initiates a series of
shutdown routines.

The shutdown routines unmap WINDOW_1 and WINDOW_2, free resources
allocated for the windows, break the connection between the sample program and
its server, and exit the system.

On the VMS operating system, clients only need to call SYS$EXIT. Exiting the
system causes the other shutdown operations to occur. The call to SYS$EXIT
breaks the connection between client and server, which frees resources allocated
for client windows, and so forth.

See Example 1–1 for the sample Xlib program.

Example 1–1 Sample Program

PROGRAM SAMPLE_PROGRAM

INCLUDE ’SYS$LIBRARY:DECW$XLIBDEF’

(continued on next page)

1–4

Programming Overview of Xlib
1.2 Sample Xlib Program

Example 1–1 (Cont.) Sample Program

INTEGER*4 DPY ! display id
INTEGER*4 SCREEN ! screen id
INTEGER*4 WINDOW_1, WINDOW_2 ! window id
INTEGER*4 ATTR_MASK ! attributes mask
INTEGER*4 GC ! gc id
INTEGER*4 FONT ! font id
INTEGER*4 DEFINE_COLOR ! color function
INTEGER*4 WINDOW_1X, WINDOW_1Y ! window origin
INTEGER*4 DEPTH ! number of planes
INTEGER*4 STATUS, FUNC ! synchronous behavior
INTEGER*4 STATE ! flag for text

RECORD /X$VISUAL/ VISUAL ! visual type
RECORD /X$SET_WIN_ATTRIBUTES/ XSWDA ! window attributes
RECORD /X$GC_VALUES/ XGCVL ! gc values
RECORD /X$EVENT/ EVENT ! input event

CHARACTER*19 WINDOW_NAME
DATA WINDOW_NAME /’Sample Xlib Program’/
CHARACTER*60 FONT_NAME
DATA FONT_NAME
1 /’ -Adobe-New Century Schoolbook-Medium-R-Normal--*-140-*-*-P-*-ISO8859-1’/
CHARACTER*19 MESSAGE(2)
DATA MESSAGE /’Click here to exit ’, ’Click HERE to exit!’/

PARAMETER WINDOW_1W = 400, WINDOW_1H = 300,
1 WINDOW_2W = 300, WINDOW_2H = 150,
1 WINDOW_2X = 50, WINDOW_2Y = 75

STATE = 1
C
C Initialize display id and screen id
C
! DPY = X$OPEN_DISPLAY()

IF (DPY .EQ. 0) THEN
WRITE(6,*) ’Display not opened!’
CALL SYS$EXIT(%VAL(1))

END IF
SCREEN = X$DEFAULT_SCREEN_OF_DISPLAY(DPY)

" STATUS = X$SYNCHRONIZE(DPY,1, FUNC)

C
C Create the WINDOW_1 window
C

WINDOW_1X = (X$WIDTH_OF_SCREEN(DPY) - WINDOW_1W) / 2
WINDOW_1Y = (X$HEIGHT_OF_SCREEN(DPY) - WINDOW_1H) / 2

DEPTH = X$DEFAULT_DEPTH_OF_SCREEN(SCREEN)
CALL X$DEFAULT_VISUAL_OF_SCREEN(SCREEN, VISUAL)
ATTR_MASK = X$M_CW_EVENT_MASK .OR. X$M_CW_BACK_PIXEL

XSWDA.X$L_SWDA_EVENT_MASK = X$M_EXPOSURE .OR. X$M_BUTTON_PRESS
XSWDA.X$L_SWDA_BACKGROUND_PIXEL =
1 DEFINE_COLOR(DPY, SCREEN, VISUAL, 1)

WINDOW_1 = X$CREATE_WINDOW(DPY,
1 X$ROOT_WINDOW_OF_SCREEN(SCREEN),
1 WINDOW_1X, WINDOW_1Y, WINDOW_1W, WINDOW_1H, 0,
1 DEPTH, X$C_INPUT_OUTPUT, VISUAL, ATTR_MASK, XSWDA)

(continued on next page)

1–5

Programming Overview of Xlib
1.2 Sample Xlib Program

Example 1–1 (Cont.) Sample Program

C
C Create the WINDOW_2 window
C

XSWDA.X$L_SWDA_BACKGROUND_PIXEL =
1 DEFINE_COLOR(DPY, SCREEN, VISUAL, 2)

WINDOW_2 = X$CREATE_WINDOW(DPY, WINDOW_1,
1 WINDOW_2X, WINDOW_2Y, WINDOW_2W, WINDOW_2H, 4,
1 DEPTH, X$C_INPUT_OUTPUT, VISUAL, ATTR_MASK, XSWDA)

C Define the name of the window

CALL X$STORE_NAME(DPY, WINDOW_1, WINDOW_NAME)

C
C Create graphics context
C

XGCVL.X$L_GCVL_FOREGROUND =
1 DEFINE_COLOR(DPY, SCREEN, VISUAL, 3)

XGCVL.X$L_GCVL_BACKGROUND =
1 DEFINE_COLOR(DPY, SCREEN, VISUAL, 2)

$ GC = X$CREATE_GC(DPY, WINDOW_2,
1 (X$M_GC_FOREGROUND .OR. X$M_GC_BACKGROUND), XGCVL)

C
C Load the font for text writing
C
% FONT = X$LOAD_FONT(DPY, FONT_NAME)

CALL X$SET_FONT(DPY, GC, FONT)

C
C Map the windows
C
& CALL X$MAP_WINDOW(DPY, WINDOW_1)

CALL X$MAP_WINDOW(DPY, WINDOW_2)

C
C Handle events
C
’ DO WHILE (.TRUE.)

CALL X$NEXT_EVENT(DPY, EVENT)
C
C If this is an expose event on our child window,
C then write the text.
C

IF (EVENT.EVNT_TYPE .EQ. X$C_EXPOSE .AND.
1 EVENT.EVNT_EXPOSE.X$L_EXEV_WINDOW .EQ. WINDOW_2 THEN

CALL X$CLEAR_WINDOW(DPY, WINDOW_2)
CALL X$DRAW_IMAGE_STRING(DPY, WINDOW_2, GC,

1 75, 75, MESSAGE(STATE))
END IF

(continued on next page)

1–6

Programming Overview of Xlib
1.2 Sample Xlib Program

Example 1–1 (Cont.) Sample Program

IF (EVENT.EVNT_TYPE .EQ. X$C_BUTTON_PRESS) THEN
IF (EVENT.EVNT_EXPOSE.X$L_EXEV_WINDOW .EQ. WINDOW_1) THEN

STATE = 2
CALL X$DRAW_IMAGE_STRING(DPY, WINDOW_2, GC,

1 75, 75, MESSAGE(STATE))
ELSE

C
C Unmap and destroy windows
C
(CALL X$DESTROY_WINDOW(DPY, WINDOW_1)

CALL X$CLOSE_DISPLAY(DPY)
CALL SYS$EXIT(%VAL(1))

END IF
END IF

END DO

END
C
C
C Create color
C
) INTEGER*4 FUNCTION DEFINE_COLOR(DISP, SCRN, VISU, N)

INCLUDE ’SYS$LIBRARY:DECW$XLIBDEF’

INTEGER*4 DISP, SCRN, N
RECORD /X$VISUAL/ VISU
RECORD /X$COLOR/ SCREEN_COLOR
INTEGER*4 STR_SIZE, STATUS, COLOR_MAP
CHARACTER*15 COLOR_NAME(3)
DATA COLOR_NAME /’DARK SLATE BLUE’, ’LIGHT GREY ’, ’FIREBRICK ’/

IF (VISU.X$L_VISU_CLASS .EQ. X$C_TRUE_COLOR .OR.
1 VISU.X$L_VISU_CLASS .EQ. X$C_PSEUDO_COLOR .OR
1 VISU.X$L_VISU_CLASS .EQ. X$C_DIRECT_COLOR .OR.
1 VISU.X$L_VISU_CLASS .EQ. X$C_STATIC_COLOR) THEN

COLOR_MAP = X$DEFAULT_COLORMAP_OF_SCREEN(SCRN)
STATUS = STR$TRIM(COLOR_NAME(N),

1 COLOR_NAME(N), STR_SIZE)
STATUS = X$ALLOC_NAMED_COLOR(DISP, COLOR_MAP,

1 COLOR_NAME(N)(1:STR_SIZE), SCREEN_COLOR)
IF (STATUS .NE. 0) THEN

DEFINE_COLOR = SCREEN_COLOR.X$L_COLR_PIXEL
ELSE

WRITE(6,*) ’Color not allocated!’
CALL LIB$SIGNAL(%VAL(STATUS))
DEFINE_COLOR = 0

END IF
ELSE

IF (N .EQ. 1 .OR. N .EQ. 3)
1 DEFINE_COLOR = X$BLACK_PIXEL_OF_SCREEN(DISP)

IF (N .EQ. 2)
1 DEFINE_COLOR = X$WHITE_PIXEL_OF_SCREEN(DISP)
END IF

RETURN
END

1–7

Programming Overview of Xlib
1.2 Sample Xlib Program

! For information about connecting client and server, see Chapter 2.

" Xlib buffers client requests and sends them to the server asynchronously.
This sequence causes clients to receive errors after they have occurred. When
debugging a program, call the SYNCHRONIZE routine to enable synchronous
error reporting. Using the SYNCHRONIZE routine has a serious negative
effect on performance. Clients should call the routine only when debugging.
For more information about debugging, see Section 1.4.

For information about creating windows, see Chapter 3.

$ Before drawing a graphics object on the screen, clients must define the
characteristics of the object. The program defines the foreground and
background values for writing text. For information about defining graphics
characteristics, see Chapter 4.

% The sample program loads a VMS DECwindows font, New Century
Schoolbook Roman 14, which the program uses to write the text in
WINDOW_2. For information about loading fonts, see Chapter 8.

& Mapping windows makes them visible on the screen. For information about
window mapping, see Chapter 3

’ For more information about event handling, see Chapter 9.

(When a client exits a VMS DECwindows program on the VMS operating
system, the series of calls to unmap and destroy windows and close the
display occurs automatically.

) VMS DECwindows includes named colors for the convenience of clients.
The sample program uses the named colors ‘‘dark slate blue,’’ ‘‘light grey,’’
and ‘‘firebrick.’’ It shares the named colors it uses with other clients. For
information about sharing colors, whether named or client-defined, see
Chapter 5. For information about defining colors for exclusive use, see
Section 5.4. For a list of named colors, see the X and Motif Quick Reference
Guide.

1.3 Handling Error Conditions
Xlib differs from most VMS programming libraries in the way it handles error
conditions. In particular, Xlib does not perform any validation of input arguments
when an Xlib routine is called.

If the input arguments are incorrect, the server usually generates an error
event when it receives the Xlib request. Unless the client has specified an error
handler, the server invokes the default Xlib error handler, which prints out a
diagnostic message and exits. For more information about the Xlib error handler,
refer to Section 9.13.2.

In some cases, Xlib signals a fatal access violation (SYS-F-ACCVIO) when
passed incorrect arguments. This occurs when arguments are missing or are
passed using the wrong addressing mode (passed by value instead of passed by
reference).

1–8

Programming Overview of Xlib
1.4 Debugging Xlib Programs

1.4 Debugging Xlib Programs
As noted in Section 1.1, Xlib handles client requests asynchronously. Instead
of dispatching requests as it receives them, Xlib buffers requests to increase
communication efficiency.

Buffering contributes to delays in error reporting. Asynchronous reporting
enables Xlib and the server to continue processing client requests despite the
occurrence of errors. However, buffering contributes to the delay between the
occurrence and client notification of an error.

As a result, programmers who want to step through routines to locate errors must
override the buffering that causes asynchronous communication between client
and server. To override buffering, use the SYNCHRONIZE routine. Example 1–1
includes a SYNCHRONIZE call as a debugging tool. Use the SYNC routine if you
are interested in a specific call. The SYNC routine flushes the output buffer and
then waits until all requests have been processed.

1–9

2
Managing the Client-Server Connection

A client requires one or more servers to process requests and return keyboard
and mouse input. The server can be located either on the same system as the
client or at a remote location where it is accessed across a network.

This chapter describes the following topics related to managing the client-server
connection:

• Overview of the client-server connection

• Opening and closing a display

• Getting information about a display

• Managing sending requests to the server

2.1 Overview of the Client-Server Connection
A client using Xlib makes its first call to open a display. After opening a display,
the client can get display information from and send requests to the server. To
increase the efficiency of the client-server connection, Xlib buffers client requests.

To understand the relationship between a display and hardware, consider the
classroom illustrated in Figure 2–1. The server and an instructor client program
are running on the instructor VAXstation, which includes a screen, a keyboard,
and a mouse. When the instructor opens a display, Xlib establishes a connection
between the instructor client program and the server. The instructor can output
graphics on the instructor VAXstation screen.

2–1

Managing the Client-Server Connection
2.1 Overview of the Client-Server Connection

Figure 2–1 Graphics Output to Instructor VAXstation

ZK−0001A−GE

Instructor VAXstation Student VAXstations

Drivers

Server

Xlib

Client

Transport
Connection

If the instructor wants to output graphics to student screens, each student
VAXstation must be running a server, and the client program must be connected
to each server, as Figure 2–2 illustrates. Unlike the prior example, where
the client program opened one display by making an internal connection with
the server running on the VAXstation, here the client program establishes
connections with multiple servers.

Xlib also enables multiple clients to establish connections with one server. For
example, to output student work on the instructor screen, each student must
open a display with the server running on the instructor VAXstation.

2–2

Managing the Client-Server Connection
2.1 Overview of the Client-Server Connection

Figure 2–2 Graphics Output to Student VAXstations

ZK−0002A−GE

Instructor VAXstation Student VAXstations

Transport
Connection

Drivers

Server

Xlib

Client

Drivers

Server

Drivers

Server

2.2 Establishing the Client-Server Connection
The OPEN DISPLAY routine establishes a connection between the client and the
server. The OPEN DISPLAY routine call has the following format:

display = X$OPEN_DISPLAY(display_name)

In this call, display_name is a string that specifies the node on which the server
is running. The display_name argument has the following format:

hostname::number.screen

The elements of the argument are as follows:

Elements Description

hostname The host on which the server is running. If the client and server are
physically running in the same CPU, clients can specify a display
number of zero.

number The number of the display on the host machine.

screen The screen on which client input and output is handled.

Passing a null argument to the OPEN DISPLAY routine causes Xlib to search
for the definition of the logical DECW$DISPLAY. If successful, OPEN DISPLAY
returns a unique identifier of the display. See Example 1–1 for an example of
defining a display with this method.

A display can also be defined by using the DCL command SET DISPLAY, which
sets the logical name DECW$DISPLAY. Refer to the Using DECwindows Motif
for OpenVMS for more information about specifying a display.

2–3

Managing the Client-Server Connection
2.3 Closing the Client-Server Connection

2.3 Closing the Client-Server Connection
Although Xlib automatically destroys windows and resources related to a process
when the process exits the server, clients should close their connection with a
server explicitly. Clients can close the connection using the CLOSE DISPLAY
routine. CLOSE DISPLAY destroys all windows associated with the display and
all resources the client has allocated. The CLOSE DISPLAY routine call has the
following format:

X$CLOSE_DISPLAY(display)

For an example of closing a display, see Example 1–1.

After closing a display, clients should not refer to windows, identifiers, and other
resources associated with that display.

For more information about closing the X server connection, refer to the X
Window System.

2.4 Getting Information About the Client-Server Connection
After opening a display, clients can get information about the client-server
connection, client screens, and images created on client screens by using the
routines listed in this section. These routines are useful for supplying arguments
to other routines. See the X Window System for more information about these
routines.

Note

This manual uses a generic format when referring to Xlib routine names
in text. Routine names are represented in all uppercase letters with
separating spaces. In addition, the X prefix has been omitted. For
example, in text the routine name is written as OPEN DISPLAY; however,
the VAX Binding format of the same routine is X$OPEN_DISPLAY.

See the DECwindows Motif for OpenVMS Guide to Non-C Bindings for a
complete reference of all VAX Binding Xlib routines. See the X Window
System for a description of the routines.

Clients can get client-server information by using the following routines:

ALL PLANES DISPLAY PLANES

BLACK PIXEL DISPLAY STRING

CONNECTION NUMBER IMAGE BYTE ORDER

DEFAULT COLORMAP MAX REQUEST SIZE

DEFAULT DEPTH PROTOCOL REVISION

DEFAULT GC PROTOCOL VERSION

DEFAULT ROOT WINDOW Q LENGTH

DEFAULT SCREEN ROOT WINDOW

DEFAULT VISUAL SCREEN COUNT

DISPLAY CELLS SERVER VENDOR

DISPLAY KEYCODES VENDOR RELEASE

DISPLAY MOTION BUFFER SIZE WHITE PIXEL

2–4

Managing the Client-Server Connection
2.4 Getting Information About the Client-Server Connection

Clients can get information about client screens using the following routines:

BLACK PIXEL OF SCREEN HEIGHT OF SCREEN

CELLS OF SCREEN HEIGHT MM OF SCREEN

DEFAULT COLORMAP OF SCREEN MAX CMAPS OF SCREEN

DEFAULT DEPTH OF SCREEN MIN CMAPS OF SCREEN

DEFAULT GC OF SCREEN PLANES OF SCREEN

DEFAULT SCREEN OF DISPLAY ROOT WINDOW OF SCREEN

DEFAULT VISUAL OF DISPLAY SCREEN OF DISPLAY

DOES BACKING STORE VISUAL ID FROM VISUAL

DOES SAVE UNDERS WHITE PIXEL OF SCREEN

DISPLAY OF SCREEN WIDTH OF SCREEN

EVENT MASK OF SCREEN WIDTH MM OF SCREEN

Clients can get information about images created on screens using the following
routines:

BITMAP BIT ORDER DISPLAY HEIGHT MM

BITMAP PAD DISPLAY WIDTH

BITMAP UNIT DISPLAY WIDTH MM

DISPLAY HEIGHT

2.5 Managing Requests to the Server
Instead of sending each request to the server as the client specifies the request,
Xlib buffers requests and sends them as a block to increase the efficiency of
client-to-server communication. The routines listed in Table 2–1 control how
requests output from the buffer.

Table 2–1 Output Buffer Routines

Routine Description

FLUSH Flushes the buffer.

SET AFTER FUNCTION Specifies the function the client calls after processing
each protocol request.

SYNC Flushes the buffer and waits until the server has
received and processed all events, including errors.
Use SYNC to isolate one call when debugging.

SYNCHRONIZE Causes the server to process requests in the buffer
synchronously. SYNCHRONIZE causes Xlib to
generate a return after each Xlib routine completes.
Use it to debug an entire client or block.

Most clients do not need to call the FLUSH routine because the output buffer is
automatically flushed by calls to event management routines. Refer to Chapter 9
for more information about event handling.

2–5

3
Working with Windows

Windows receive information from users; they display graphics, text, and
messages. Xlib routines enable a client to create multiple windows and define
window size, location, and visual appearance on one or more screens.

Conflicts between clients about displaying windows are handled by a window
manager, which controls the size and placement of windows and, in some cases,
window characteristics such as title bars and borders. The window manager also
keeps clients informed about what it is doing with their windows. For example,
the window manager might tell a client that one of its windows has been resized
so that the client can reformat information displayed in the window.

This chapter describes the following topics related to windows and the window
manager:

• Window fundamentals—A description of window type, hierarchy, position, and
visibility

• Creating and destroying windows—How to create and destroy windows

• Working with the window manager—How to work with the window manager
to define user information concerning window management

• Mapping and unmapping windows—How to make windows visible on the
screen

• Changing window characteristics—How to change the size, position, stacking
order, and attributes of windows

• Getting information about windows—How to get information about window
hierarchies, attributes, and geometry

3.1 Window Fundamentals
A window is an area of the screen that either receives input or receives input and
displays graphics.

One type of window only receives input. Because an input-only window does not
display text or graphics, it is not visible on the screen. Clients can use input-only
windows to control cursors, manage input, and define regions in which the pointer
is used exclusively by one client. A second type of window both receives input
and displays text and graphics.

Clients can make input-output windows visible on the screen. To make a window
visible, a client first creates the window and then maps it. Mapping a window
allows it to become visible on the screen. When more than one window is
mapped, the windows may overlap. Window hierarchy and position on the screen
determine whether or not one window hides the contents of another window.

3–1

Working with Windows
3.1 Window Fundamentals

3.1.1 Window Hierarchy
Windows that clients create are part of a window hierarchy. The hierarchy
determines how windows are seen. At the base of the hierarchy is the root
window, which covers the entire screen when the client opens a display. All
windows created after opening a display are subwindows of the root window.

When a client creates one or more subwindows of the root window, the root
window becomes a parent. Children of the root window become parents when
clients create subwindows of the children.

The hierarchy is structured like a stack of papers. At the bottom of the stack is
the root window. Windows that clients create after opening a display are stacked
on top of the root window, overlapping parts of it. For example, the window
named child-of-root overlaps parts of the root window in Figure 3–1. The child-
of-root window always touches the root window. Xlib always stacks children on
top of the parents.

Figure 3–1 Root Window and One Child

Root

ZK−0004A−GE

Child−of−root

3–2

Working with Windows
3.1 Window Fundamentals

If a window has more than one child and if their borders intersect, Xlib stacks
siblings in the order the client creates them, with the last sibling on top. For
example, the second-level window named 2nd-child-of-root, which was created
last, overlaps the second-level window named 1st-child-of-root in Figure 3–2.

Figure 3–2 Relationship Between Second-Level Windows

Root

ZK−0005A−GE

1st−child−of−root

2nd−child−of−root

Third-level windows maintain the hierarchical relationships of their parents.
The child-of-1st-child-of-root window overlaps child-of-2nd-child-of-root in
Figure 3–3.

3–3

Working with Windows
3.1 Window Fundamentals

Figure 3–3 Relationship Between Third-Level Windows

ZK−0006A−GE

Root

Child−of−1st−child

Child−of−2nd−child

Windows created before a specified window and hierarchically related to it are
ancestors of that window. For example, the root window and the window named
1st-child-of-root are ancestors of child-of-1st-child-of-root.

3.1.2 Window Position
Xlib coordinates define window position on a screen and place graphics within
windows. Coordinates that specify the position of a window are relative to the
origin, the upper left corner of the parent window. Coordinates that specify
the position of a graphic object within a window are relative to the origin of the
window in which the graphic object is displayed.

Xlib measures length along the x-axis from the origin to the right; it measures
length along the y-axis from the origin down. Xlib specifies coordinates in units
of pixels, the smallest unit the server can display on a screen. Figure 3–4
illustrates the Xlib coordinate system.

3–4

Working with Windows
3.1 Window Fundamentals

Figure 3–4 Coordinate System

ZK−0007A−GE

X−Axis

Y−Axis

Child

Parent

X−Axis

Y−Axis

Parent Origin

Child Origin

For more information about positioning windows, see Section 3.2. For more
information about positioning graphics, see Chapter 6.

3.1.3 Window Visibility and Occlusion
A window is visible if one can see it on the screen. To be visible, a window must
be an input-output window, it must be mapped, its ancestors must be mapped,
and it must not be totally hidden by another window. When a window and its
ancestors are mapped, the window is considered viewable. A viewable window
that is totally hidden by another window is not visible.

Even though input-only windows are never visible, they can overlap other
windows. An input-only window that overlaps another window is considered
to occlude that window. Specifically, window A occludes window B if both are
mapped, if A is higher in the stacking order than B, and if the rectangle defined
by the outside edges of A intersects the rectangle defined by the outside edges of
B.

A viewable input-output window that overlaps another window is considered
to obscure that window. Specifically, window A obscures window B if A is a
viewable input-output window, if A is higher in the stacking order than B, and if
the rectangle defined by the outside edges of A intersects the rectangle defined by
the outside edges of B.

3–5

Working with Windows
3.2 Creating Windows

3.2 Creating Windows
After opening a display, clients can create windows. As noted in the description
of window fundamentals (Section 3.1), creating a window does not make it visible
on a screen. To be visible, the window must meet the conditions described in
Section 3.1.3.

Clients can either create windows that inherit most characteristics not relating
to size or shape from their parents or define all characteristics when creating
windows.

3.2.1 Using Attributes of the Parent Window
An attribute is a characteristic of a window not relating to size or shape, such as
the window background color. The CREATE SIMPLE WINDOW routine creates
an input-output subwindow that inherits the following attributes from its parent:

• Method of moving the contents of a window when the parent is moved or
resized

• Instructions for saving window contents when the window obscures or is
obscured by another window

• Instructions to the server regarding information that ancestors should know
when a window change occurs

• Instructions to the window manager concerning map requests

• Color

• Cursor

For more information about these attributes, see Section 3.2.2.

If the parent is a root window, the new window created with the CREATE
SIMPLE WINDOW routine has the following attributes:

• The server discards window contents if the window is reconfigured.

• The server discards the contents of obscured portions of the window.

• The server discards the contents of any window that the new window
obscures.

• No events are specified as being of interest to the window ancestors.

• No restrictions are placed on the window manager.

• The color is identical to the parent color.

• No cursor is specified.

In addition to creating a window with attributes inherited from the parent
window, the CREATE SIMPLE WINDOW routine enables clients to define the
border and background attributes of the window and to determine window
position and size.

Example 3–1 illustrates creating a simple window. To make the window visible,
the example includes mapping and event handling functions, which are described
in Section 3.4 and Chapter 9.

3–6

Working with Windows
3.2 Creating Windows

Example 3–1 Creating a Simple Window

INTEGER*4 WINDOW_1
INTEGER*4 WINDOW_1X, WINDOW_1Y

! PARAMETER WINDOW_1W = 600, WINDOW_1H = 600
.
.
.

" WINDOW_1X = (X$DISPLAY_WIDTH_OF_SCREEN(SCREEN) - WINDOW_1W) / 2
WINDOW_1Y = (X$DISPLAY_HEIGHT_OF_SCREEN(SCREEN) - WINDOW_1H) / 2

WINDOW_1 = X$CREATE_SIMPLE_WINDOW(DPY,
1 X$ROOT_WINDOW_OF_SCREEN(SCREEN),
1 WINDOW_1X, WINDOW_1Y, WINDOW_1W, WINDOW_1H, 10,
1 X$BLACK_PIXEL_OF_SCREEN(SCREEN), X$WHITE_PIXEL_OF_SCREEN(SCREEN))

.

.

.

! The client assigns window width and height the value of 600 (pixels) each.

" The client specifies the position of the window using two display information
routines, DISPLAY WIDTH and DISPLAY HEIGHT. The WINDOW_1X and
WINDOW_1Y coordinates define the top left outside corner of the window
borders relative to the inside of the parent border. In this case, the parent is
the root window, which does not have a border.

The CREATE SIMPLE WINDOW routine call has the following format:

window_id = X$CREATE_SIMPLE_WINDOW(display, parent_id,
x_coord, y_coord, width, height, border_width, border_id,
background_id)

The client specifies a black border ten pixels wide, a white background, and a
size of 600 by 600 pixels.

The window manager overrides border width and color.

CREATE SIMPLE WINDOW returns a unique identifier, WINDOW_1, used
in subsequent calls related to the window.

3.2.2 Defining Window Attributes
To create a window whose attributes are different from the parent window, use
the CREATE WINDOW routine. The CREATE WINDOW routine enables clients
to specify the following window attributes when creating an input-output window:

• Default contents of an input-output window

• Border of an input-output window

• Treatment of the window when it or its relative is obscured

• Treatment of the window when it or its relative is moved

• Information the window receives about operations associated with other
windows

• Color

• Cursor

Clients creating input-only windows can define the following attributes:

• Treatment of the window when it or its relative is moved

3–7

Working with Windows
3.2 Creating Windows

• Information the window receives about operations associated with other
windows

• Cursor

Specifying other attributes for an input-only window causes the server to generate
an error. Input-only windows cannot have input-output windows as children.

Use the following method to define window attributes:

• Assign values to the relevant members of a set window attributes data
structure.

• Indicate the defined attribute by specifying the appropriate flag and in the
value_mask argument of the CREATE WINDOW routine. If more than one
attribute is to be defined, indicate the attributes by doing a bitwise OR on the
appropriate flags and passing the result in the value_mask argument of the
CREATE WINDOW routine.

Figure 3–5 illustrates the set window attributes data structure.

Figure 3–5 Set Window Attributes Data Structure

x$l_swda_background_pixmap 0

x$l_swda_background_pixel 4

x$l_swda_border_pixmap 8

x$l_swda_border_pixel 12

x$l_swda_bit_gravity 16

x$l_swda_win_gravity 20

x$l_swda_backing_store 24

x$l_swda_backing_planes 28

x$l_swda_backing_pixel 32

x$l_swda_save_under 36

x$l_swda_event_mask 40

x$l_swda_do_not_propagate_mask 44

x$l_swda_override_redirect 48

x$l_swda_colormap 52

x$l_swda_cursor 56

3–8

Working with Windows
3.2 Creating Windows

Table 3–1 describes the members of the data structure.

Table 3–1 Set Window Attributes Data Structure Members

Member Name Contents

X$L_SWDA_BACKGROUND_PIXMAP Defines the window background of an input-output
window. This member can assume one of three possible
values: pixmap identifier, the constant x$c_none
(default), or the constant x$c_parent_relative.

X$L_SWDA_BACKGROUND_PIXEL Causes the server to override the specified value for the
X$L_SWDA_BACKGROUND_PIXMAP member. This
is equivalent to specifying a pixmap of any size filled
with the background pixel and used to paint the window
background.

X$L_SWDA_BORDER_PIXMAP Defines the window border of an input-output window.

X$L_SWDA_BORDER_PIXEL Specifies a value for X$L_SWDA_BORDER_PIXEL that
causes the server to override the X$L_SWDA_BORDER_
PIXMAP member.

X$L_SWDA_BIT_GRAVITY Defines how window contents should be moved when an
input-only or input-output window is resized.

X$L_SWDA_WIN_GRAVITY Defines how the server should reposition the newly
created input-only or input-output window when its
parent window is resized.

X$L_SWDA_BACKING_STORE Provides a hint to the server about how the client wants
it to manage obscured portions of the window.

X$L_SWDA_BACKING_PLANES Indicates (with bits set to one) which bit planes of the
window hold dynamic data that must be preserved if the
window obscures or is obscured by another window.

X$L_SWDA_BACKING_PIXEL Defines what values to use in planes not specified by the
X$L_SWDA_BACKING_PLANES member.

X$L_SWDA_SAVE_UNDER Informs the server when set to true that the client
would like the contents of the screen saved when an
input-output window obscures them.

X$L_SWDA_EVENT_MASK Defines which types of events associated with an input-
only or input-output window the server should report to
the client. For more information about defining event
types, see Chapter 9.

X$L_SWDA_DO_NOT_PROPAGATE_MASK Defines which kinds of events should not be propagated
to ancestors. For more information about managing
events, see Chapter 9.

X$L_SWDA_OVERRIDE_REDIRECT Specifies whether calls to map and configure an input-
only or input-output window should override a request
by another client to redirect those calls. For more
information about redirecting calls, see Chapter 9.

X$L_SWDA_COLORMAP Specifies the color map, if any, that best reflects the
colors of an input-output window. For more information
about the color map and visual types, see Chapter 5.

X$L_SWDA_CURSOR Causes the server to use a particular cursor when the
pointer is in an input-only or input-output window.

Table 3–2 lists default values for the set window attributes data structure.

3–9

Working with Windows
3.2 Creating Windows

Table 3–2 Default Values of the Set Window Attributes Data Structure

Member Name Default Value

X$L_SWDA_BACKGROUND_PIXMAP None

X$L_SWDA_BACKGROUND_PIXEL Undefined

X$L_SWDA_BORDER_PIXMAP Copied from the parent window

X$L_SWDA_BORDER_PIXEL Undefined

X$L_SWDA_BIT_GRAVITY Window contents not retained

X$L_SWDA_WIN_GRAVITY Window not moved

X$L_SWDA_BACKING_STORE Window contents not retained

X$L_SWDA_BACKING_PLANES All 1s

X$L_SWDA_BACKING_PIXEL 0

X$L_SWDA_SAVE_UNDER False

X$L_SWDA_EVENT_MASK Empty set

X$L_SWDA_DO_NOT_PROPAGATE_MASK Empty set

X$L_SWDA_OVERRIDE_REDIRECT False

X$L_SWDA_COLORMAP Copied from parent

X$L_SWDA_CURSOR None

Xlib assigns a flag for each member of the set window attributes data structure to
facilitate referring to the members, as listed in Table 3–3.

Table 3–3 Set Window Attributes Data Structure Flags

Flag Name Set Window Attributes Member

x$m_cw_back_pixmap X$L_SWDA_BACKGROUND_PIXMAP

x$m_cw_background_pixel X$L_SWDA_BACKGROUND_PIXEL

x$m_cw_border_pixmap X$L_SWDA_BORDER_PIXMAP

x$m_cw_border_pixel X$L_SWDA_BORDER_PIXEL

x$m_cw_bit_gravity X$L_SWDA_BIT_GRAVITY

x$m_cw_win_gravity X$L_SWDA_WIN_GRAVITY

x$m_cw_backing_store X$L_SWDA_BACKING_STORE

x$m_cw_backing_planes X$L_SWDA_BACKING_PLANES

x$m_cw_backing_pixel X$L_SWDA_BACKING_PIXEL

x$m_cw_save_under X$L_SWDA_SAVE_UNDER

x$m_cw_event_mask X$L_SWDA_EVENT_MASK

x$m_cw_dont_propagate X$L_SWDA_DO_NOT_PROPAGATE_MASK

x$m_cw_override_redirect X$L_SWDA_OVERRIDE_REDIRECT

x$m_cw_colormap X$L_SWDA_COLORMAP

x$m_cw_cursor X$L_SWDA_CURSOR

Note that in addition to the mask symbols (x$m_) listed in Table 3–3, the Xlib
definition files also define the corresponding bit field symbols (x$v_).

3–10

Working with Windows
3.2 Creating Windows

Example 3–2 illustrates how clients can define window attributes while creating
input-output windows with the CREATE WINDOW routine. The program creates
a parent window and two children windows. The hierarchy of the subwindows
is determined by the order in which the program creates them. In this case,
SUBWINDOW_1 is superior to SUBWINDOW_2, which is created last.

Example 3–2 Defining Attributes When Creating Windows

INTEGER*4 WINDOW ! window id
INTEGER*4 SUBWINDOW_1 ! window id
INTEGER*4 SUBWINDOW_2 ! window id

! RECORD /X$SET_WIN_ATTRIBUTES/ XSWDA ! window attributes
.
.
.

PARAMETER WINDOW_W = 600, WINDOW_H = 600,
1 SUBWINDOW_1X = 150, SUBWINDOW_1Y = 100,
1 SUBWINDOW_1W = 300, SUBWINDOW_1H = 400,
1 SUBWINDOW_2X = 275, SUBWINDOW_2Y = 125,
1 SUBWINDOW_2W = 50, SUBWINDOW_2H = 150

.

.

.
WINDOW_X = (X$WIDTH_OF_SCREEN(SCREEN) - WINDOW_W) / 2
WINDOW_Y = (X$HEIGHT_OF_SCREEN(SCREEN) - WINDOW_H) / 2

DEPTH = X$DEFAULT_DEPTH_OF_SCREEN(SCREEN)
CALL X$DEFAULT_VISUAL_OF_SCREEN(SCREEN,VISUAL)
ATTR_MASK = X$M_CW_EVENT_MASK .OR. X$M_CW_BACK_PIXEL

" XSWDA.X$L_SWDA_EVENT_MASK = X$M_EXPOSURE .OR. X$M_BUTTON_PRESS
XSWDA.X$L_SWDA_BACKGROUND_PIXEL =
1 DEFINE_COLOR(DPY, SCREEN, VISUAL, 1)

WINDOW = X$CREATE_WINDOW(DPY,
1 X$ROOT_WINDOW_OF_SCREEN(SCREEN),
1 WINDOW_X, WINDOW_Y, WINDOW_W, WINDOW_H, 0,
1 DEPTH, X$C_INPUT_OUTPUT, VISUAL, ATTR_MASK, XSWDA)

C
C Create the SUBWINDOW_1 window
C

XSWDA.X$L_SWDA_BACKGROUND_PIXEL =
1 DEFINE_COLOR(DPY, SCREEN, VISUAL, 2)

SUBWINDOW_1 = X$CREATE_WINDOW(DPY, WINDOW,
1 SUBWINDOW_1X, SUBWINDOW_1Y, SUBWINDOW_1W, SUBWINDOW_1H, 4,
1 DEPTH, X$C_INPUT_OUTPUT, VISUAL, ATTR_MASK, XSWDA)

C
C Create the SUBWINDOW_2 window
C

XSWDA.X$L_SWDA_BACKGROUND_PIXEL =
1 DEFINE_COLOR(DPY, SCREEN, VISUAL, 3)

(continued on next page)

3–11

Working with Windows
3.2 Creating Windows

Example 3–2 (Cont.) Defining Attributes When Creating Windows

SUBWINDOW_2 = X$CREATE_WINDOW(DPY, WINDOW,
1 SUBWINDOW_2X, SUBWINDOW_2Y, SUBWINDOW_2W, SUBWINDOW_2H, 4,
1 DEPTH, X$C_INPUT_OUTPUT, VISUAL, ATTR_MASK, XSWDA)

.

.

.
INTEGER*4 FUNCTION DEFINE_COLOR(DISP, SCRN, VISU, N)

.

.

.

! Allocate storage for a set window attributes data structure used to define
window attributes.

" Set the attributes of the parent window. The client indicates an interest
in window exposure and button press events. For more information about
events, see Chapter 9.

The client defines window background by calling the DEFINE_COLOR
routine. For more information about defining colors, see Chapter 5.

The CREATE WINDOW routine call has the following format:

window_id_return=X$CREATE_WINDOW(display, parent_id,
x_coord, y_coord, width, height, border_width, depth, class,
visual_struc, attributes_mask, attributes)

The depth of a window is its number of bits per pixel. The call passes a
display information routine to indicate that the client wants the parent
window depth to be identical to the display depth.

The window class can be either input only or input-output, specified by the
following constants:

• x$c_input_only

• x$c_input_output

If the window is the same class as the parent, pass the constant
x$c_copy_from_parent.

Note that the only attributes clients can define for input-only windows are
window gravity, event mask, do-not-propagate mask, override redirect, and
cursor.

The border width of input-only windows must be zero.

The visual type indicates how the window displays color values. For more
information about visual types, see Chapter 5.

3.3 Destroying Windows
When a client no longer needs a window, the client should destroy it using either
the DESTROY WINDOW or the DESTROY SUBWINDOWS routine. DESTROY
WINDOW destroys a specified window and all its subwindows. DESTROY
SUBWINDOWS destroys all subwindows of a specified window in bottom-to-top
stacking order.

Destroying a window frees all storage allocated for that window. If the window
is mapped to the screen, the server notifies all applications that the window has
been destroyed.

3–12

Working with Windows
3.4 Mapping and Unmapping Windows

3.4 Mapping and Unmapping Windows
After creating a window, the client can map it to a screen using the MAP
WINDOW or MAP SUBWINDOWS routine. Mapping generally makes a window
visible at the location the client specified when creating it. Part or all of the
window is not visible when the following conditions occur:

• One or more windows higher in the stacking order obscure it

• One or more window ancestors are not mapped

• The new window extends beyond the boundary of its parent

MAP WINDOW maps a window. If the window is an inferior, and one or more
of its ancestors have not been mapped, the server considers the window to be
mapped after the call, even though the window is not visible on the screen. The
window becomes visible when its ancestors are mapped.

To map all subwindows of a specified window in top-to-bottom order, use MAP
SUBWINDOWS. Using the MAP SUBWINDOWS routine to map several
windows may be more efficient than calling the MAP WINDOW routine to map
each window. The MAP SUBWINDOWS routine enables the server to map all
of the windows at one time instead of mapping a single window with the MAP
WINDOW routine.

To ensure that the window is completely visible, use the MAP RAISED routine.
MAP RAISED reorders the stack with the window on top and then maps the
window. Example 3–3 illustrates how a window is mapped and raised to the top
of the stack.

Example 3–3 Mapping and Raising Windows

INTEGER*4 WINDOW ! window id
INTEGER*4 SUBWINDOW_1 ! window id
INTEGER*4 SUBWINDOW_2 ! window id

C Create windows in the following order:
C WINDOW, SUBWINDOW_2, SUBWINDOW_1
C

.

.

.
CALL X$MAP_WINDOW(DPY, WINDOW)

! CALL X$MAP_WINDOW(DPY, SUBWINDOW_1)

" CALL X$MAP_RAISED(DPY, SUBWINDOW_2)

! In this example, the client creates SUBWINDOW_1 after SUBWINDOW_2,
putting SUBWINDOW_1 at the top of the stack.

Consequently, whether SUBWINDOW_2 were mapped before or after
SUBWINDOW_1, SUBWINDOW_1 would obscure SUBWINDOW_2.

The effect is illustrated in Figure 3–6.

" Mapping and raising SUBWINDOW_2 moves it to the top of the stack. It is
now visible, as Figure 3–7 illustrates.

When the client no longer needs a window mapped to the screen, call UNMAP
WINDOW. If the window is a parent, its children are no longer visible after the
call, although they are still mapped. The children become visible when the parent
is mapped again.

3–13

Working with Windows
3.4 Mapping and Unmapping Windows

To unmap all subwindows of a specified window, use UNMAP SUBWINDOWS.
UNMAP SUBWINDOWS results in an UNMAP WINDOW call on all subwindows
of the parent, from bottom-to-top stacking order.

Figure 3–6 Window Before Restacking

ZK−2503A−GE

Window Before Restacking

SUBWINDOW_2SUBWINDOW_1

3–14

Working with Windows
3.5 Associating Properties with Windows

Figure 3–7 Restacked Window

ZK−2502A−GE

Restacked Window

SUBWINDOW_2SUBWINDOW_1

3.5 Associating Properties with Windows
Xlib enables clients to associate data with a window. This data is considered
a property of the window. For example, a client could store text as a window
property. Although a property must be data of only one type, it can be stored in
8-bit, 16-bit, and 32-bit formats.

Xlib uses atoms to name properties. An atom is a string paired with an identifier.
For example, a client could use the atom X$C_XA_WM_ICON_NAME to name a
window icon stored for later use. The atom X$C_XA_WM_ICON_NAME pairs the
string X$C_XA_WM_ICON_NAME with a value, 25, that uniquely identifies the
stored name.

3–15

Working with Windows
3.5 Associating Properties with Windows

In SYS$LIBRARY:DECW$XLIBDEF.H, VMS DECwindows includes predefined
atoms such as X$C_XA_WM_ICON_NAME for commonly used properties. See
Table 3–4 for a list of all predefined atoms. See Table 3–6 for a list of atoms
related to window management. See Chapter 8 for a list of atoms related to
fonts.

Table 3–4 Predefined Atoms

For Global Selection

X$C_XA_PRIMARY X$C_XA_SECONDARY

For Cut Buffers

X$C_XA_CUT_BUFFER0 X$C_XA_CUT_BUFFER1

X$C_XA_CUT_BUFFER2 X$C_XA_CUT_BUFFER3

X$C_XA_CUT_BUFFER4 X$C_XA_CUT_BUFFER5

X$C_XA_CUT_BUFFER6 X$C_XA_CUT_BUFFER7

For Color Maps

X$C_XA_RGB_COLOR_MAP X$C_XA_RGB_BEST_MAP

X$C_XA_RGB_BLUE_MAP X$C_XA_RGB_RED_MAP

X$C_XA_RGB_GREEN_MAP X$C_XA_RGB_GRAY_MAP

X$C_XA_RGB_DEFAULT_MAP

For Resources

X$C_XA_RESOURCE_MANAGER X$C_XA_ARC

X$C_XA_ATOM X$C_XA_BITMAP

X$C_XA_CARDINAL X$C_XA_COLORMAP

X$C_XA_CURSOR X$C_XA_DRAWABLE

X$C_XA_FONT X$C_XA_INTEGER

X$C_XA_PIXMAP X$C_XA_POINT

X$C_XA_RECTANGLE X$C_XA_STRING

X$C_XA_VISUALID X$C_XA_WINDOW

Note

The Inter-Client Communications Convention (ICCC) discourages the
use of cut buffer atoms. Use the primary and secondary atoms as the
selection mechanism.

3–16

Working with Windows
3.5 Associating Properties with Windows

In addition to providing predefined atoms, Xlib enables clients to create their own
atom names. To create an atom name, use the INTERN ATOM routine, as in the
following example:

.

.

.
INTEGER*4 ATOM_ID
INTEGER*4 IF_EXISTS
CHARACTER*7 ATOM_NAME
DATA ATOM_NAME /’MY_ATOM’/

ATOM_ID = X$INTERN_ATOM(DPY, ATOM_NAME, IF_EXISTS)
.
.
.

The routine returns an identifier associated with the string MY_ATOM. If the
atom does not exist in the atom table, Xlib returns a value of none. Note that any
atom identifier, and its associated name, remain defined until the server is reset.

To get the name of an atom, use the GET ATOM NAME routine, as in the
following example:

.

.

.
CHARACTER*100 ATOM_NAME
INTEGER*4 ATOM_ID, STATUS

ATOM_ID = 19
STATUS = X$GET_ATOM_NAME(DPY, ATOM_ID, ATOM_NAME)

.

.

.

The routine returns a string associated with the atom identifier, 39.

Xlib enables clients to change, obtain, update, and interchange properties.
Example 3–4 illustrates exchanging properties between two subwindows. The
example uses the CHANGE PROPERTY routine to set a property on the parent
window and the GET PROPERTY routine to get the data from the parent window.

Example 3–4 Exchanging Window Properties

(continued on next page)

3–17

Working with Windows
3.5 Associating Properties with Windows

Example 3–4 (Cont.) Exchanging Window Properties

INTEGER*4 DPY ! display id
INTEGER*4 SCREEN ! screen id
INTEGER*4 WINDOW ! window id
INTEGER*4 SUBWINDOW1
INTEGER*4 SUBWINDOW2
INTEGER*4 ATTR_MASK ! attributes mask
INTEGER*4 GC ! gc id
INTEGER*4 FONT ! font id
INTEGER*4 TYPE_RETURNED ! This is an atom
INTEGER*4 NUM_ITEMS_RETURNED
INTEGER*4 BYTES_REMAINING
INTEGER*4 ATOM_ID
INTEGER*4 IF_EXISTS
CHARACTER*7 ATOM_NAME
DATA ATOM_NAME /’MY_ATOM’/

.

.

.
CHARACTER*60 FONT_NAME
DATA FONT_NAME
1 /’-Adobe-New Century Schoolbook-Medium-R-Normal--*-140-*-*-P-*-ISO8859-1’/
CHARACTER*50 PROP !Data stored as a property
BYTE PROPERTY_RETURNED(50) ! Property returned
CHARACTER*50 DSC_PROP_RETURNED ! Property in a string descriptor
INTEGER*2 TMP_LEN ! short length of property string

.

.

.
PARAMETER WIN_WIDTH = 600, WIN_HEIGHT = 600,
1 SUB_WIDTH = 300, SUB_HEIGHT = 150,
1 WIN_X = 100, WIN_Y = 100,
1 SUB1_X = 150, SUB1_Y = 100,
1 SUB2_X = 150, SUB2_Y = 350,
1 OFFSET = 0, LENGTH = 1000

DATA PROPERTY_DATA /’You pressed MB1’/
C
C Initialize display id and screen id
C

DPY = X$OPEN_DISPLAY()
IF (DPY .EQ. 0) THEN

WRITE(6,*) ’Display not opened!’
CALL SYS$EXIT(%VAL(1))

END IF
SCREEN = X$DEFAULT_SCREEN_OF_DISPLAY(DPY)

C
C Create the WINDOW window
C

DEPTH = X$DEFAULT_DEPTH_OF_SCREEN(SCREEN)
CALL X$DEFAULT_VISUAL_OF_SCREEN(SCREEN,VISUAL)
ATTR_MASK = X$M_CW_EVENT_MASK .OR. X$M_CW_BACK_PIXEL

XSWDA.X$L_SWDA_EVENT_MASK = X$M_EXPOSURE .OR. X$M_BUTTON_PRESS
1 .OR. X$M_PROPERTY_CHANGE
XSWDA.X$L_SWDA_BACKGROUND_PIXEL =
1 DEFINE_COLOR(DPY, SCREEN, VISUAL, 1)

(continued on next page)

3–18

Working with Windows
3.5 Associating Properties with Windows

Example 3–4 (Cont.) Exchanging Window Properties

WINDOW = X$CREATE_WINDOW(DPY,
1 X$ROOT_WINDOW_OF_SCREEN(SCREEN),
1 WIN_X, WIN_Y, WIN_WIDTH, WIN_HEIGHT, 0,
1 DEPTH, X$C_INPUT_OUTPUT, VISUAL, ATTR_MASK, XSWDA)

C
C Create the subwindows
C

XSWDA.X$L_SWDA_BACKGROUND_PIXEL =
1 DEFINE_COLOR(DPY, SCREEN, VISUAL, 2)

SUBWINDOW1 = X$CREATE_WINDOW(DPY, WINDOW,
1 SUB1_X, SUB1_Y, SUB_WIDTH, SUB_HEIGHT, 4,
1 DEPTH, X$C_INPUT_OUTPUT, VISUAL, ATTR_MASK, XSWDA)

SUBWINDOW2 = X$CREATE_WINDOW(DPY, WINDOW,
1 SUB2_X, SUB2_Y, SUB_WIDTH, SUB_HEIGHT, 4,
1 DEPTH, X$C_INPUT_OUTPUT, VISUAL, ATTR_MASK, XSWDA)

.

.

.
C
C Handle events
C

DO WHILE (.TRUE.)

CALL X$NEXT_EVENT(DPY, EVENT)
C
C If this is an expose event on our WINDOW_2 window, and it is the
C "primary" expose event, then write the text.
C

IF (EVENT.EVNT_TYPE .EQ. X$C_EXPOSE .AND.
1 EVENT.EVNT_EXPOSE.X$L_EXEV_WINDOW .EQ. WINDOW) THEN

CALL X$DRAW_IMAGE_STRING(DPY, WINDOW, GC,
1 150, 25, ’Press MB1 in the upper window.’)

CALL X$DRAW_IMAGE_STRING(DPY, WINDOW, GC,
1 150, 50, ’To exit, press MB2.’)

END IF

IF (EVENT.EVNT_TYPE .EQ. X$C_BUTTON_PRESS .AND.
1 EVENT.EVNT_BUTTON.X$L_BTEV_BUTTON .EQ. X$C_BUTTON2) THEN

CALL SYS$EXIT(%VAL(1))
END IF

IF (EVENT.EVNT_BUTTON.X$L_BTEV_WINDOW .EQ. SUBWINDOW1 .AND.
1 EVENT.EVNT_BUTTON.X$L_BTEV_BUTTON .EQ. X$C_BUTTON1) THEN

ATOM_ID = X$INTERN_ATOM (DPY, ATOM_NAME, IF_EXISTS)
! CALL X$CHANGE_PROPERTY(DPY, WINDOW, ATOM_ID,

1 X$C_XA_STRING, 8, X$C_PROP_MODE_REPLACE,
1 %REF(PROPERTY_DATA), 15)

END IF

IF (EVENT.EVNT_TYPE .EQ. X$C_PROPERTY_NOTIFY .AND.
1 EVENT.EVNT_PROPERTY.X$L_PPEV_ATOM .EQ. ATOM_ID) THEN

(continued on next page)

3–19

Working with Windows
3.5 Associating Properties with Windows

Example 3–4 (Cont.) Exchanging Window Properties

" CALL X$GET_WINDOW_PROPERTY(DPY, WINDOW, ATOM_ID,
1 OFFSET, LENGTH, TRUE, X$C_XA_STRING, TYPE_RETURNED,
1 FORMAT_RETURNED, NUM_ITEMS_RETURNED, BYTES_REMAINING,
1 ,%REF(50),%REF(PROPERTY_RETURNED))

TMP_LEN = NUM_ITEMS_RETURNED
CALL STR$COPY_R(DSC_PROP_RETURNED,TMP_LEN,

1 PROPERTY_RETURNED)
CALL X$DRAW_STRING(DPY, SUBWINDOW2, GC, 75, 75,

1 DSC_PROP_RETURNED)
END IF

END DO
END

! When the user clicks MB1 in subwindow SUBWINDOW1, the client calls the
CHANGE PROPERTY routine. CHANGE PROPERTY causes the server to
change the property identified by the atom ATOM_ID to the value specified
by PROPERTY_DATA. The property is associated with the parent window,
WINDOW.

When changing properties, the client can specify how the server should treat
them. If the client specifies the constant x$c_prop_mode_replace, the
server discards the previous property. If the client specifies the constant
x$c_prop_mode_prepend, the server inserts the new data at the beginning
of the existing property data. If the client specifies the constant x$c_prop_
mode_append, the server inserts the new data at the end of the existing
property data.

Changing the property causes the server to send a property notify event to
the parent window, WINDOW. For information about event handling, see
Chapter 9.

" After checking to ensure that the changed property is the one to obtain, the
client calls the GET WINDOW PROPERTY routine. Note that the client
receives the property, which is a string type, in a buffer of 50 bytes, specified
by the variable PROPERTY_RETURNED.

After getting the string data from the parent window, the client uses it
to write text in SUBWINDOW2. For information about writing text, see
Chapter 8.

In addition to the GET WINDOW PROPERTY routine, Xlib includes the
property-management routines described in Table 3–5.

Table 3–5 Routines for Managing Properties

Routine Description

LIST PROPERTIES Returns a list of properties defined for a specified window.

ROTATE WINDOW
PROPERTIES

Rotates the properties of a specified window and generates
a property notify event. For more information about
property notify events, see Chapter 9.

DELETE PROPERTY Deletes a specified property.

3–20

Working with Windows
3.6 Using Properties to Communicate with the Window Manager

3.6 Using Properties to Communicate with the Window Manager
In most cases, a client communicates information about its windows to the
window and session managers. For example, the client may want to provide the
window manager with names for a specific window and icon. In addition, the
client may want to provide hints to the window manager concerning window size
and location. The X Consortium approves of certain methods and routines that
govern this inter-client communication.

The Inter-Client Communications Conventions Manual (ICCCM) details
these methods and, through their use, ensures compatibility in a multi-client
environment. The X Window System contains the Inter-Client Communications
Conventions Manual.

This chapter provides information for communicating with the window manager
using Xlib ICCCM-compliant routines and properties. For a reference of all Xlib
ICCCM-compliant routines, see the DECwindows Motif for OpenVMS Guide
to Non-C Bindings and the X Window System. For more information about
properties, see Chapter 8.

Xlib provides predefined properties to enable clients to communicate with the
window manager and session manager about the following:

• Window names

• Icon names

• Pixmaps used to define window icons

• Commands used to start the application

• Position and size of windows in their startup state

• Initial state of windows

• Input that windows accept

• Names used to retrieve application resources

Table 3–6 describes the atom names, data types, and formats of these properties.

Table 3–6 Atom Names of Window Manager Properties

Atom Data Type Format Description of the Property

X$C_XA_WM_CLASS text 32 Application resources from the
resource database

X$C_XA_WM_CLIENT_MACHINE text N/A String name of the machine on
which the client application is
running

X$C_XA_WM_COLORMAP_WINDOWS window 32 List of window IDs that may
need a different colormap than
that of their top-level window

X$C_XA_WM_COMMAND text 8 Command used to start the
client

(continued on next page)

3–21

Working with Windows
3.6 Using Properties to Communicate with the Window Manager

Table 3–6 (Cont.) Atom Names of Window Manager Properties

Atom Data Type Format Description of the Property

X$C_XA_WM_HINTS wm_hints 32 Hints about keyboard input,
initial state, icon pixmap, icon
window, icon position, and icon
mask

X$C_XA_WM_ICON_NAME text 8 Icon name

X$C_XA_WM_ICON_SIZE wm_icon_size 32 Icon size supported by the
window manager

X$C_XA_WM_NAME string 8 Application name

X$C_XA_WM_NORMAL_HINTS wm_size_hints 32 Size hints for a window in its
normal state

X$C_XA_WM_PROTOCOLS atom 32 List of atoms that identify
the communications protocols
between the client and the
window manager

X$C_XA_WM_STATE wm_state 32 Property intended for
communicating between window
manager and session manager

X$C_XA_WM_TRANSIENT_FOR window 32 Property intended for a window
that is transient, such as a
dialog box

3.7 Defining Window Manager Properties
This section describes how to communicate with the window manager by defining
individual properties.

3.7.1 Setting Window Manager Hints
Xlib provides routines to set and read the WM_HINTS property. Use the WM
hints data structure and the SET WM HINTS routine to provide the window
manager with hints about keyboard input, initial window state, icon pixmap, icon
window, icon position, icon mask, and window group. Use the GET WM HINTS
routine to read the X$C_XA_WM_HINTS property.

Note that each time the WM hints data structure is passed to SET WM HINTS,
the flags field specifies only which fields are valid, not which fields are updated.
Setting one flag, and passing one value, states that all other values are no longer
valid. Table 3–7 lists the flags.

Table 3–7 Window Manager Hints Size Hints Data Structure Flags

Flag Name Size Hints Member

x$m_input_hint Input focus model used by the client

x$m_state_hint Initial state of the window

x$m_icon_pixmap_hint Pixmap used as icon

x$m_icon_window_hint Window used as an icon

x$m_icon_position_hint Initial position of icon

(continued on next page)

3–22

Working with Windows
3.7 Defining Window Manager Properties

Table 3–7 (Cont.) Window Manager Hints Size Hints Data Structure Flags

Flag Name Size Hints Member

x$m_icon_mask_hint Pixmap to be used as mask for the icon_pixmap

x$m_window_group_hint ID of related window group

x$m_all_hints The bitwise OR of xm_input_hint, xm_state_hint,
x$m_icon_pixmap_hint, x$m_icon_window_hint,
x$m_icon_position_hint, x$m_icon_mask_hint, and
x$m_window_group_hint

Note

The use of the x$m_all_hints mask is not recommended because the
WM hints data structure may be extended in the future. If additional
members are added to the WM hints data structure, the x$m_all_hints
mask may not contain these new fields.

Figure 3–8 illustrates the WM hints data structure. Table 3–8 describes the
members of the data structure.

Figure 3–8 WM Hints Data Structure

x$l_hint_flags 0

x$l_hint_input 4

x$l_hint_initial_state 8

x$l_hint_icon_pixmap 12

x$l_hint_icon_window 16

x$l_hint_icon_x 20

x$l_hint_icon_y 24

x$l_hint_icon_mask 28

x$l_hint_window_group 32

3–23

Working with Windows
3.7 Defining Window Manager Properties

Table 3–8 WM Hints Data Structure Members

Member Name Contents

X$L_HINT_FLAGS Specifies the members of the data structure that are defined.

X$L_HINT_INPUT Indicates whether or not the client relies on the window manager
to get keyboard input.

X$L_HINT_INITIAL_STATE Defines how the window should appear in its initial configuration.
Possible initial states are as follows:

Constant Name Description

x$c_withdrawn_state Neither client’s top-level window nor
icon window is visible.

x$c_normal_state Client’s top-level window is visible.

x$c_iconic_state Client’s top-level window starts as an
icon.

X$L_HINT_ICON_PIXMAP Identifies the pixmap used to create the window icon.

X$L_HINT_ICON_WINDOW Specifies the window to be used as an icon.

X$L_HINT_ICON_X Specifies the initial x-coordinate of the icon position.

X$L_HINT_ICON_Y Specifies the initial y-coordinate of the icon position.

X$L_HINT_ICON_MASK Specifies the pixels of the icon pixmap used to create the icon.

X$L_HINT_WINDOW_GROUP Specifies that a window belongs to a group of other windows.

3.7.2 Providing Size Hints
Xlib provides routines that the client can use to set or read the WM_NORMAL_
HINTS property for a given window. These routines use the size hints data
structure to communicate to the window manager about the size and position of
windows in their normal and iconic startup states.

Use the SET WM NORMAL HINTS routine to set a window’s X$C_XA_WM_
NORMAL_HINTS property. Use the GET WM NORMAL HINTS routine to read
a window’s X$C_XA_WM_NORMAL_HINTS property.

Table 3–9 lists the flags used in the size hints data structure.

Table 3–9 Size Hints Data Structure Flags

Flag Name Size Hints Member

x$m_us_position User-specified position of the window

x$m_us_size User-specified size of the window

x$m_p_position Client-specified position

x$m_p_size Client-specified size

x$m_p_min_size Client-specified minimum size of the window

x$m_p_max_size Client-specified maximum size of the window

x$m_p_resize_inc Client-specified increments for resizing the window

x$m_p_aspect Client-specified minimum and maximum aspect ratios

(continued on next page)

3–24

Working with Windows
3.7 Defining Window Manager Properties

Table 3–9 (Cont.) Size Hints Data Structure Flags

Flag Name Size Hints Member

x$m_p_base_size Client-specified desired size of the window

x$m_p_win_gravity Client-specified window gravity

x$m_p_all_hints The bitwise OR of x$m_p_position, x$m_p_size, x$m_p_min_
size, x$m_p_max_size, x$m_p_resize_inc, and x$m_p_aspect

Note

The use of the x$m_p_all_hints mask is not recommended because this
flag does not include the x$m_p_base_size or x$m_p_win_gravity masks.
In addition, the size hints data structure may be extended in the future.
If members are added to the data structure, the x$m_p_all_hints mask
may not contain these new fields.

Figure 3–9 illustrates the size hints data structure. Table 3–10 describes the
members of the data structure.

Figure 3–9 Size Hints Data Structure

x$l_szhn_flags 0

x$l_szhn_x 4

x$l_szhn_y 8

x$l_szhn_width 12

x$l_szhn_height 16

x$l_szhn_min_width 20

x$l_szhn_min_height 24

x$l_szhn_max_width 28

x$l_szhn_max_height 32

x$l_szhn_width_inc 36

x$l_szhn_height_inc 40

x$l_szhn_mnas_x 44

x$l_szhn_mnas_y 48

x$l_szhn_mxas_x 52

x$l_szhn_mxas_y 56

(continued on next page)

3–25

Working with Windows
3.7 Defining Window Manager Properties

x$l_szhn_base_width 60

x$l_szhn_base_height 64

x$l_szhn_win_gravity 68

Note

The xl_szhn_x, xl_szhn_y, xl_szhn_width, xl_szhn_height members
are obsolete and are left for compatibility reasons only.

Table 3–10 Size Hints Data Structure Members

Member Name Contents

X$L_SZHN_FLAGS Defines the members to which the client is assigning values

X$L_SZHN_X Specifies the x-coordinate that defines window position

X$L_SZHN_Y Specifies the y-coordinate that defines window position

X$L_SZHN_WIDTH Defines the width of the window

X$L_SZHN_HEIGHT Defines the height of the window

X$L_SZHN_MIN_WIDTH Specifies the minimum useful width of the window

X$L_SZHN_MIN_HEIGHT Specifies the minimum useful height of the window

X$L_SZHN_MAX_WIDTH Specifies the maximum useful width of the window

X$L_SZHN_MAX_HEIGHT Specifies the maximum useful height of the window

X$L_SZHN_WIDTH_INC Defines the increments by which the width of the window can be
resized.

X$L_SZHN_HEIGHT_INC Defines the increments by which the height of the window can be
resized.

X$L_SZHN_MIN_ASPECT_X1 Specifies the minimum aspect ratio of the window with the
X$L_SZHN_MIN_ASPECT_Y member

X$L_SZHN_MIN_ASPECT_Y1 Specifies the minimum aspect ratio of the window with the
X$L_SZHN_MIN_ASPECT_X member

X$L_SZHN_MAX_ASPECT_X1 Specifies the maximum aspect ratio of the window with the
X$L_SZHN_MAX_ASPECT_Y member

X$L_SZHN_MAX_ASPECT_Y1 Specifies the maximum aspect ratio of the window with the
X$L_SZHN_MAX_ASPECT_X member

X$L_SZHN_BASE_WIDTH Defines the desired width of the window

X$L_SZHN_BASE_HEIGHT Defines the desired height of the window

X$L_SZHN_WIN_GRAVITY Defines the region of the window that is to be retained when it is
resized

1Setting the minimum and maximum aspects indicates the preferred range of the size of a window. An aspect is
expressed in terms of a ratio between x and y.

3–26

Working with Windows
3.7 Defining Window Manager Properties

3.7.3 Setting a Window and Icon Names
Xlib includes routines to enable clients to define properties for communicating
with the window manager about window names, icon names, and window classes.
Use the SET WM NAME routine to set the X$C_XA_WM_NAME property to
display the name for a given window. Use the SET WM ICON NAME routine to
set the X$C_XA_WM_ICON_NAME property to set the name of a given window
icon name.

Both the SET WM NAME and SET WM ICON NAME routines are convenience
functions that use the text property data structure and call the SET TEXT
PROPERTY routine.

Figure 3–10 illustrates the text property data structure. Table 3–11 describes the
members of the data structure.

Figure 3–10 Text Property Data Structure

xb_txtp_valuexl_txtp_encoding
��

0

...x$l_txtp_encodingx$l_txtp_format
��

4

...x$l_txtp_formatx$l_txtp_nitems
��

8

...x$l_txtp_nitems

Table 3–11 Text Property Data Structure Members

Member Name Contents

X$B_TXTP_VALUE Character string

X$L_TXTP_ENCODING Type of encoding

X$L_TXTP_FORMAT Number of bits: 8, 16, or 32

X$L_TXTP_NITEMS Number of items in value

Xlib provides an additional routine to set a window name. The STORE NAME
routine assigns a name to a window and displays it in a prominent place such as
the title bar. Example 1–1 in Chapter 1 uses the STORE NAME routine to define
the name of its parent window, as follows:

CALL X$STORE_NAME(DPY, WINDOW_1, WINDOW_NAME);

To define and get the class of a specified window, use the SET CLASS HINT and
GET CLASS HINT routines. The routines refer to the class hint data structure.
Figure 3–11 illustrates the class hint data structure. Table 3–12 describes the
members of the data structure.

Figure 3–11 Class Hint Data Structure

3–27

Working with Windows
3.7 Defining Window Manager Properties

x$a_chnt_res_name 0

x$a_chnt_res_class 4

Table 3–12 Class Hint Data Structure Members

Member Name Contents

X$A_RES_NAME Defines the name of the window

X$A_RES_CLASS Defines the class of the window

Note that the name defined in this data structure may differ from the name
defined by the XA_WM_NAME property. The X&C_XA_WM_NAME property
specifies what should be displayed in the title bar. Consequently, it may contain
a temporary name, as in the name of a file that a client currently has in a buffer.
In contrast to X$C_XA_WM_NAME, the X$C_XA_RES_NAME member defines
the formal window name that clients should use when retrieving resources from
the resource database.

3.8 Exchanging Properties Between Clients
Xlib provides routines that enable clients to exchange properties. The properties,
which are global to the server, are called selections. Text cut from one window
and pasted into another window exemplifies the global exchange of properties.
The text cut in window A is a property owned by client A. Ownership of the
property transfers to client B, who then pastes the text into window B.

Properties are exchanged between clients by a series of calls to routines that
manage the selected text. When a user drags the pointer cursor, client A
responds by calling the SET SELECTION OWNER routine. SET SELECTION
OWNER identifies client A as the owner of the selected text. The routine also
identifies the window of the selection, associates an atom with the text, and puts
a time-stamp on the selection. The atom, XA_PRIMARY, names the selection.
The time-stamp enables any clients competing for the selection to determine
selection ownership.

Clients can determine the owner of a selection by calling the GET SELECTION
OWNER routine. This routine returns the identifier of the window that currently
owns the specified selection.

By calling the CONVERT SELECTION routine, clients ask the owner of a
selection to convert it to a particular data type. If conversion is possible, the
client converting the selection notifies the client requesting the conversion that
the selection is available. The property is then exchanged.

For example, when a user decides to paste the selected text in window B, client
B, who owns window B, sends client A a selection request. The request identifies
the window requesting the cut text and the format in which the client would like
the property transferred.

In response to the request, client A first checks to ensure that the time of the
request corresponds to the time in which client A owns the selection. If the time
coincides and if client A can convert the selection to the data type requested by
client B, client A notifies client B that the text is stored and available. Client B
then retrieves the data by calling the GET WINDOW PROPERTY routine.

3–28

Working with Windows
3.8 Exchanging Properties Between Clients

Clients request and notify other clients of selections by using events. For
information about using events to request, convert, and notify clients of selections,
see Chapter 9. For style guidelines about using selections, see the OSF/Motif
Style Guide.

3.9 Changing Window Characteristics
Xlib provides routines that enable clients to change window position, size, border
width, stacking order, and attributes.

This section describes how to use Xlib routines to do the following:

• Change multiple window characteristics in one call

• Change position, size, or border width

• Change stacking order

• Change window attributes

3.9.1 Reconfiguring Windows
Xlib enables clients either to change window characteristics using one call or to
use individual routines to reposition, resize, or change border width.

The CONFIGURE WINDOW routine enables clients to change window position,
size, border width, and place in the hierarchy. To change these window
characteristics in one call, use the CONFIGURE WINDOW routine, as follows:

1. Set values of relevant members of a window changes data structure.

2. Indicate what is to be reconfigured by specifying the appropriate flag in the
CONFIGURE WINDOW value_mask argument.

The window changes data structure enables clients to specify one or more values
for reconfiguring a window. Figure 3–12 illustrates the window changes data
structure. Table 3–13 describes the members of the data structure.

Figure 3–12 Window Changes Data Structure

x$l_wchg_x 0

x$l_wchg_y 4

x$l_wchg_width 8

x$l_wchg_height 12

x$l_wchg_border_width 16

x$l_wchg_sibling 20

x$l_wchg_stack_mode 24

3–29

Working with Windows
3.9 Changing Window Characteristics

Table 3–13 Window Changes Data Structure Members

Member Name Contents

X$L_WCHG_X Defines the x-coordinate of the new location of the window
relative to the origin of its parent. The x- and y-coordinates
specify the upper left outside corner of the window.

X$L_WCHG_Y Defines the y-coordinate of the new location of the window
relative to the origin of its parent. The x- and y-coordinates
specify the upper left outside corner of the window.

X$L_WCHG_WIDTH Defines the new width of the window, excluding the border.

X$L_WCHG_HEIGHT Defines the new height of the window, excluding the border.

X$L_WCHG_BORDER_WIDTH Specifies the new window border in pixels.

X$L_WCHG_SIBLING Specifies the sibling window for stacking order.

X$L_WCHG_STACK_MODE Defines how the window is restacked. Table 3–14 lists
constants and definitions for restacking windows.

The client can change the hierarchical position of a window in relation to all
windows in the stack or to a specified sibling. If the client changes the size,
position, and stacking order of the window by calling CONFIGURE WINDOW,
the server restacks the window based on its final, not initial, size and position.
Table 3–14 lists constants and definitions for restacking windows.

Table 3–14 Stacking Values

Constants Relative to All Relative to Sibling

x$c_above Top of stack. Just above sibling.

x$c_below Bottom of stack. Just below sibling.

x$c_top_if If any sibling obscures a window,
the server places the obscured
window on top of the stack.

If the specified sibling obscures
a window, the server places the
obscured window at the top of the
stack.

x$c_bottom_if If a window obscures any sibling,
the server places the obscuring
window at the bottom of the
stack.

If the window obscures the
specified sibling, the server
places the obscuring window at
the bottom of the stack.

x$c_opposite If any sibling obscures a window,
the server places the obscured
window on top of the stack. If
a window obscures any window,
the server places the obscuring
window at the bottom of the
stack.

If the specified sibling obscures
a window, the server places the
obscuring window on top of the
stack. If a window obscures the
specified sibling, the server places
the obscuring window on the
bottom of the stack.

Xlib assigns a symbol to the flag associated with each member of the data
structure (Table 3–15).

3–30

Working with Windows
3.9 Changing Window Characteristics

Table 3–15 Window Changes Data Structure Flags

Flag Name Window Changes Member

x$m_cw_x X$L_WCHG_X

x$m_cw_y X$L_WCHG_Y

x$m_cw_width X$L_WCHG_WIDTH

x$m_cw_height X$L_WCHG_HEIGHT

x$m_cw_border_width X$L_WCHG_BORDER_WIDTH

x$m_cw_sibling X$L_WCHG_SIBLING

x$m_cw_stack_mode X$L_WCHG_STACK_MODE

Example 3–5 illustrates using CONFIGURE WINDOW to change the position,
size, and stacking order of a window when the user presses a button.

Example 3–5 Reconfiguring a Window

C
C This program changes the position, size, and stacking
C order of SUBWINDOW_1

RECORD /X$WINDOW_CHANGES/ XWC
.
.
.

! WCHG_MASK = X$M_CW_X .OR. X$M_CW_Y .OR. X$M_CW_WIDTH .OR.
1 X$M_CW_HEIGHT .OR. X$M_CW_SIBLING .OR. X$M_CW_STACK_MODE

" XWC.X$L_WCHG_X = 200
XWC.X$L_WCHG_Y = 350
XWC.X$L_WCHG_WIDTH = 200
XWC.X$L_WCHG_HEIGHT = 50
XWC.X$L_WCHG_SIBLING = SUBWINDOW_2
XWC.X$L_WCHG_STACK_MODE = X$C_ABOVE

CALL X$CONFIGURE_WINDOW(DPY, SUBWINDOW_1, WCHG_MASK, XWC)

! Specify the members of the window changes data structure that have assigned
values. Create a mask by performing a bitwise OR operation on relevant flags
that indicate which members of WINDOW CHANGES the client will define.

" Assign values to relevant members of the window changes data structure.
Because the client identifies a sibling (SUBWINDOW_1), it must also choose
a mode for stacking operations.

The call to reconfigure SUBWINDOW_1. The CONFIGURE WINDOW
routine call has the following format:

X$CONFIGURE_WINDOW(display, window_id, change_mask,
values)

Figure 3–13 illustrates how the windows look after being reconfigured.

3–31

Working with Windows
3.9 Changing Window Characteristics

Figure 3–13 Reconfigured Window

Reconfigured Window

ZK−2501A−GE

SUBWINDOW_2SUBWINDOW_1

Table 3–16 lists routines to change individual window characteristics.

Table 3–16 Window Configuration Routines

Routine Description

MOVE WINDOW Moves a window without changing its size.

RESIZE WINDOW Changes the size of a window without moving it. The
upper left window coordinate does not change after
resizing.

MOVE RESIZE WINDOW Moves and changes the size of a window.

SET WINDOW BORDER
WIDTH

Changes the border width of a window.

3–32

Working with Windows
3.9 Changing Window Characteristics

3.9.2 Effects of Reconfiguring Windows
It is important to know how reconfiguring windows affects graphics and text
drawn in them by the client. (See Chapter 6 for a description of working with
graphics and Chapter 8 for a description of writing text.) When a client resizes a
window, window contents are either moved or lost, depending on the bit gravity
of the window. Bit gravity indicates that a designated region of the window
should be relocated when the window is resized. Resizing also causes the server
to resize children of the changed window.

To control how the server moves children when a parent is resized, set the
window gravity attribute. Table 3–17 lists choices for retaining window
contents and controlling how the server relocates children.

Table 3–17 Gravity Definitions

Constant Name Movement of Window Contents and Subwindows

x$c_forget_gravity The server always discards window contents and tiles the
window with its selected background. If the client has not
specified a background, existing screen contents remain the
same.

x$c_north_west_gravity Not moved.

x$c_north_gravity Moved to the right half of the window width.

x$c_north_east_gravity Moved to the right, the distance of the window width.

x$c_west_gravity Moved down half the window height.

x$c_center_gravity Moved to the right half of the window width and down half of
the window height.

x$c_east_gravity Moved to the right, the distance of the window width and down
half the window height.

x$c_south_west_gravity Moved down the distance of the window height.

x$c_south_gravity Moved to the right half of the window width and down the
distance of the window height.

x$c_south_east_gravity Moved to the right, the distance of the window width and down
the distance of the window height.

x$c_static_gravity Contents or origin is not moved relative to the origin of the
root window. Static gravity only takes effect with a change in
window width or height.

x$c_unmap_gravity Window should not be moved; the child should be unmapped
when the parent is resized.

3–33

Working with Windows
3.9 Changing Window Characteristics

Figure 3–14 illustrates how the server moves the contents of a reconfigured
window when the bit gravity is set to the constant x$c_east_gravity.

Figure 3–15 illustrates how the server moves a child window if its parent is
resized and its window gravity is set to the constant x$c_north_west_gravity.

Figure 3–14 East Bit Gravity

Original Window

w

h

ZK−0072A−GE

h/2

w

2h

Resized Window

2w

3–34

Working with Windows
3.9 Changing Window Characteristics

Figure 3–15 Northwest Window Gravity

Original Parent and Child Windows
w

Child Parent

ZK−0073A−GE

h

Child Parent

2h

2w
Resized Parent Window

3.9.3 Changing Stacking Order
Xlib provides routines that alter the window stacking order in the following ways:

• A specified window moves to either the top or the bottom of the stack.

• The lowest mapped child obscured by a sibling moves to the top of the stack.

• The highest mapped child that obscures a sibling moves to the bottom of the
stack.

Use the RAISE WINDOW and LOWER WINDOW routines to move a specified
window to either the top or the bottom of the stack, respectively.

3–35

Working with Windows
3.9 Changing Window Characteristics

To raise the lowest mapped child of an obscured window to the top of the
stack, call CIRCULATE SUBWINDOWS UP. To lower the highest mapped
child that obscures another child, call CIRCULATE SUBWINDOWS DOWN.
The CIRCULATE SUBWINDOWS routine enables the client to perform these
operations by specifying either the constant x$c_raise_lowest or the constant
x$c_lower_highest.

To change the order of the window stack, use RESTACK WINDOW, which
changes the window stack to a specified order. Reordered windows must have
a common parent. If the first window the client specifies has other unspecified
siblings, its order relative to those siblings remains unchanged.

3.9.4 Changing Window Attributes
Xlib provides routines that enable clients to change the following:

• Default contents of an input-output window

• Border of an input-output window

• Treatment of the window when it or its relative is obscured

• Treatment of the window when it or its relative is moved

• Information the window receives about operations associated with other
windows

• Color

• Cursor

Section 3.2.2 includes descriptions of window attributes and their relationship to
the set window attributes data structure.

This section describes how to change any attribute using the CHANGE WINDOW
ATTRIBUTES routine. In addition to CHANGE WINDOW ATTRIBUTES, Xlib
includes routines that enable clients to change background and border attributes.
Table 3–18 lists these routines and their functions.

Table 3–18 Routines for Changing Window Attributes

Routine Description

SET WINDOW BACKGROUND Sets the background pixel

SET WINDOW BACKGROUND PIXMAP Sets the background pixmap

SET WINDOW BORDER Sets the window border to a specified pixel

SET WINDOW BORDER PIXMAP Sets the window border to a specified
pixmap

To change any window attribute, use CHANGE WINDOW ATTRIBUTES as
follows:

• Assign a value to the relevant member of a set window attributes data
structure.

• Indicate the attribute to change by specifying the appropriate flag and
passing it to the CHANGE WINDOW ATTRIBUTES value_mask argument.
To define more than one attribute, indicate the attributes by doing a bitwise
OR on the appropriate flags.

3–36

Working with Windows
3.9 Changing Window Characteristics

See Table 3–3 for symbols Xlib assigns to each member to facilitate referring to
the attributes.

Example 3–6 illustrates using CHANGE WINDOW ATTRIBUTES to redefine the
characteristics of a window.

Example 3–6 Changing Window Attributes

RECORD /X$SET_WIN_ATTRIBUTES/ XSWDA
.
.
.

ATTR_MASK = X$M_CW_BORDER_PIXEL .OR. X$M_CW_BACK_PIXEL

! XSWDA.X$L_SWDA_BACKGROUND_PIXEL = X$BLACK_PIXEL_OF_SCREEN(SCREEN)
XSWDA.X$L_SWDA_BORDER_PIXEL = X$WHITE_PIXEL_OF_SCREEN(SCREEN)

" CALL X$CHANGE_WINDOW_ATTRIBUTES(DPY, WINDOW, ATTR_MASK, XSWA)
.
.
.

! Assign new values to a set window attributes data structure.

" Call CHANGE WINDOW ATTRIBUTES to change the window attributes.
The CHANGE WINDOWS attributes routine has the following format:

X$CHANGE_WINDOW_ATTRIBUTES(display, window_id,
attributes_mask, attributes)

Specify the attributes to change with a bitwise inclusive OR of the relevant
symbols listed in Table 3–3. The values argument passes the address of a set
window attributes data structure.

3.10 Getting Information About Windows
Using Xlib information routines, clients can get information about the parent,
children, and number of children in a window tree; window geometry; the root
window in which the pointer is currently visible; and window attributes.

Table 3–19 lists and describes Xlib routines that return information about
windows.

Table 3–19 Window Information Routines

Routine Description

QUERY TREE Returns information about the window tree

GET GEOMETRY Returns information about the root window
identifier, coordinates, width and height,
border width, and depth

QUERY POINTER Returns the root window that the pointer
is currently on and the pointer coordinates
relative to the root window origin

GET WINDOW ATTRIBUTES Returns information from the window
attributes data structure

3–37

Working with Windows
3.10 Getting Information About Windows

To get information about window attributes, use the GET WINDOW
ATTRIBUTES routine. The client receives requested information in the window
attributes data structure. See the X Window System for more information about
the window attributes data structure.

3–38

4
Defining Graphics Characteristics

After opening a display and creating a window, clients can draw lines and shapes,
create cursors, and draw text. Creating a graphics object is a two-step process.
Clients first define the characteristics of the graphics object and then create it.
For example, before creating a line, a client first defines line width and style.
After defining the characteristics, the client creates the line with the specified
width and style.

This chapter describes how to define the graphics characteristics prior to creating
them, including the following topics:

• The graphics context (GC)—A description of the graphics characteristics a
client can define and the GC values data structure used to define them

• Defining graphics characteristics—How to define graphics characteristics
using the CREATE GC routine

• Copying, changing, and freeing attributes—How to copy, change, and undefine
graphics characteristics

• Defining graphics characteristics efficiently—How to work efficiently with
several sets of graphics characteristics

Chapter 6 describes how to create graphics objects. Chapter 8 describes how to
work with text.

4.1 The Graphics Context
The characteristics of a graphics object make up its graphics context. As with
window characteristics, Xlib provides a data structure and routine to enable
clients to define multiple graphics characteristics easily. By setting values in the
GC values data structure and calling the CREATE GC routine, clients can define
all characteristics relevant to a graphics object.

Xlib also provides routines that enable clients to define individual or functional
groups of graphics characteristics.

Xlib always records the defined values in a GC data structure, which is reserved
for the use of Xlib and the server only. This occurs when clients define graphic
characteristics using either the CREATE GC routine or one of the individual
routines. Table 4–1 lists the default values of the GC data structure.

4–1

Defining Graphics Characteristics
4.1 The Graphics Context

Table 4–1 GC Data Structure Default Values

Member Name Default Value

Function x$c_gx_copy

Plane mask All ones

Foreground 0

Background 1

Line width 0

Line style Solid

Cap style Butt

Join style Miter

Fill style Solid

Fill rule Even odd

Arc mode Pie slice

Tile Pixmap of unspecified size filled with foreground pixel

Stipple Pixmap of unspecified size filled with ones

Tile or stipple x origin 0

Tile or stipple y origin 0

Font Varies with implementation

Subwindow mode Clip by children

Graphics exposures True

Clip x origin 0

Clip y origin 0

Clip mask None

Dash offset 0

Dashes 4 (the list [4,4])

4.2 Defining Multiple Graphics Characteristics in One Call
Xlib enables clients to define multiple characteristics of a graphics object in one
call. To define multiple characteristics, use the CREATE GC routine as follows:

• Assign values to the relevant members of the GC values data structure.

• Indicate the attributes to define by specifying the appropriate flag and
passing the flag to the value_mask argument of the routine. To define more
than one attribute, perform a bitwise OR on the appropriate attribute flags.

Figure 4–1 illustrates the GC values data structure.

4–2

Defining Graphics Characteristics
4.2 Defining Multiple Graphics Characteristics in One Call

Figure 4–1 GC Values Data Structure

x$l_gcvl_function 0

x$l_gcvl_plane_mask 4

x$l_gcvl_foreground 8

x$l_gcvl_background 12

x$l_gcvl_line_width 16

x$l_gcvl_line_style 20

x$l_gcvl_cap_style 24

x$l_gcvl_join_style 28

x$l_gcvl_fill_style 32

x$l_gcvl_fill_rule 36

x$l_gcvl_arc_mode 40

x$l_gcvl_tile 44

x$l_gcvl_stipple 48

x$l_gcvl_ts_x_origin 52

x$l_gcvl_ts_y_origin 56

x$l_gcvl_font 60

x$l_gcvl_subwindow_mode 64

x$l_gcvl_graphics_exposures 68

x$l_gcvl_clip_x_origin 72

x$l_gcvl_clip_y_origin 76

x$l_gcvl_clip_mask 80

x$l_gcvl_dash_offset 84

x$b_gcvl_dashes

Table 4–2 describes the members of the data structure.

4–3

Defining Graphics Characteristics
4.2 Defining Multiple Graphics Characteristics in One Call

Table 4–2 GC Values Data Structure Members

Member Name Contents

X$L_GCVL_FUNCTION Defines how the server computes pixel values when the client
updates a section of the screen.

X$L_GCVL_PLANE_MASK Specifies the planes on which the server performs the bitwise
computation of pixels, defined by X$L_GCVL_FUNCTION.

X$L_GCVL_FOREGROUND Specifies an index to a color map entry for foreground color.

X$L_GCVL_BACKGROUND Specifies an index to a color map entry for background color.

X$L_GCVL_LINE_WIDTH Defines the width of a line in pixels. Pixels with centers along
a horizontal edge are a special case and are inside if, and only
if, the polygon interior is immediately below the bounding box
(y increasing direction). See Figure 4–2.

X$L_GCVL_LINE_STYLE Defines which sections of the line the server draws.

Constant Name Description

x$c_line_solid The full path of the line is
drawn.

x$c_line_double_dash The full path of the line is
drawn, but the even dashes
are filled differently than the
odd dashes, with cap butt
style used where even and
odd dashes meet.

x$c_line_on_off_dash Only the even dashes are
drawn. The X$L_CAP_
STYLE member applies to
all internal ends of dashes.
Specifying the constant, x$c_
cap_not_last, is equivalent to
specifying x$c_cap_butt.

Figure 4–3 illustrates the line styles.

(continued on next page)

4–4

Defining Graphics Characteristics
4.2 Defining Multiple Graphics Characteristics in One Call

Table 4–2 (Cont.) GC Values Data Structure Members

Member Name Contents

X$L_GCVL_CAP_STYLE Defines how the server draws the endpoints of a path. The
following lists available cap styles and the constants that
specify them:

Constant Name Description

x$c_cap_butt Square at the endpoint
(perpendicular to the slope of
the line) with no projection
beyond the endpoint

x$c_cap_not_last Equivalent to specifying
x$c_cap_butt, except that the
final endpoint is not drawn if
the line width is zero or one

x$c_cap_round A circular arc with the
diameter equal to the line
width, centered on the
endpoint (equivalent to
specifying x$c_cap_butt for a
line width of zero or one)

x$c_cap_projecting Square at the end, but the
path continues beyond the
endpoint for a distance equal
to half the width of the line
(equivalent to specifying x$c_
cap_butt for a line width of
zero or one)

Figure 4–4 illustrates the butt, round, and projecting cap
styles. Figure 4–5 illustrates the style specified by the
constant x$c_cap_not_last.

X$L_GCVL_JOIN_STYLE Defines how the server draws corners for wide lines.
Available join styles and the constants that specify them
are as follows:

Constant Name Description

x$c_join_miter The outer edges of the two lines
extend to meet at an angle.

x$c_join_round A circular arc with diameter equal
to the line width, centered at the
join point.

x$c_join_bevel Cap butt endpoint style, with the
triangular notch filled.

Figure 4–6 illustrates the join styles.

X$L_GCVL_FIll_STYLE Specifies the contents of the source for line, text, and fill
operations.

(continued on next page)

4–5

Defining Graphics Characteristics
4.2 Defining Multiple Graphics Characteristics in One Call

Table 4–2 (Cont.) GC Values Data Structure Members

Member Name Contents

X$L_GCVL_FILL_RULE Defines what pixels the server draws along a path when a
polygon is filled (see Section 6.5.2). The two available choices
are x$c_even_odd_rule and x$c_winding_rule. The x$c_even_
odd_rule constant defines a point to be inside a polygon if
an infinite ray with the point as origin crosses the path an
odd number of times. If the point meets these conditions, the
server draws a corresponding pixel.

The x$c_winding_rule constant defines a point to be inside the
polygon if an infinite ray with the pixel as origin crosses an
unequal number of clockwise-directed and counterclockwise-
directed path segments.

For both even/odd rule and winding rule, a point is infinitely
small and the path is an infinitely thin line. A pixel is inside
the polygon if the center point of the pixel is inside and the
center point is not on the boundary. If the center point is on
the boundary, the pixel is inside, if and only if, the polygon
interior is immediately to its right (x increasing direction).
Pixels with centers along a horizontal edge are a special
case and are inside, if and only if, the polygon interior is
immediately below (y increasing direction).

Figure 4–7 illustrates fill rules. Figure 4–8 illustrates rules
for filling a pixel when it falls on a boundary.

X$L_GCVL_ARC_MODE Controls how the server fills an arc. The available choices
are specified by the constants x$c_arc_pie_slice and x$c_arc_
chord. Figure 4–9 illustrates the two modes.

X$L_GCVL_TILE Specifies the pixmap that the server uses for tiling operations.

X$L_GCVL_STIPPLE Specifies the pixmap that the server uses for stipple
operations.

X$L_GCVL_TS_X_ORIGIN Defines the origin for tiling and stipple operations. Origins
are relative to the origin of whatever window or pixmap is
specified in the graphics request.

X$L_GCVL_TS_Y_ORIGIN Defines the origin for tiling and stipple operations. Origins
are relative to the origin of whatever window or pixmap is
specified in the graphics request.

X$L_GCVL_FONT Specifies the font that the server uses for text operations.

X$L_GCVL_SUBWINDOW_MODE Specifies whether or not inferior windows clip superior
windows.

X$L_GCVL_GRAPHICS_EXPOSURES Specifies whether or not the server informs the client when
the contents of a window region are lost.

X$L_GCVL_CLIP_X_ORIGIN Defines the x-coordinate of the clip origin. The clip origin
specifies the point within the clip region that is aligned with
the drawable origin.

X$L_GCVL_CLIP_Y_ORIGIN Defines the y-coordinate of the clip origin. The clip origin
specifies the point within the clip region that is aligned with
the drawable origin.

X$L_GCVL_CLIP_MASK Identifies the pixmap that the server uses to restrict write
operations to the destination drawable. When a client
specifies the value of clip mask as x$c_none, the server
draws all pixels.

(continued on next page)

4–6

Defining Graphics Characteristics
4.2 Defining Multiple Graphics Characteristics in One Call

Table 4–2 (Cont.) GC Values Data Structure Members

Member Name Contents

X$L_GCVL_DASH_OFFSET Specifies the pixel within the dash length sequence, defined
by X$B_GCVL_DASHES, to start drawing a dashed line.
For example, a dash offset of zero starts a dashed line as
the beginning of the dash line sequence. A dash offset of
five starts the line at the fifth pixel of the line sequence.
Figure 4–10 illustrates dash offsets.

X$B_GCVL_DASHES Specifies the length, in number of pixels, of each dash. The
value of this member must be nonzero or an error occurs.

Figure 4–2 illustrates how a bounding box affects line width.

Figure 4–2 Bounding Box

Pixel
Bounding
Box

ZK−0011A−GE

Endpoint [X 1, Y]11

Endpoint 2[X , Y]22

Figure 4–3 illustrates line styles.

Figure 4–3 Line Styles

Solid

Double Dash

On Off Dash

ZK−0010A−GE

Solid

Double Dash

On Off Dash

ZK−0010A−GE

4–7

Defining Graphics Characteristics
4.2 Defining Multiple Graphics Characteristics in One Call

Figure 4–4 illustrates line cap styles.

Figure 4–4 Butt, Round, and Projecting Cap Styles

Original Line [Without Cap]

Cap Butt Style

Cap Round Style

Cap Projecting Style

Arc Diameter = Line Width

Cap

Cap

Cap

ZK−0012A−GE

Figure 4–5 illustrates the line specified by the x$c_cap_not_last constant.

Figure 4–5 Cap Not Last Style

Original Line [Without Cap]

Cap Not Last Style

ZK−0165A−GE

4–8

Defining Graphics Characteristics
4.2 Defining Multiple Graphics Characteristics in One Call

Figure 4–6 illustrates the join styles.

Figure 4–6 Join Styles

Bevel

Round

Miter

ZK−0013A−GE

4–9

Defining Graphics Characteristics
4.2 Defining Multiple Graphics Characteristics in One Call

Figure 4–7 illustrates the fill rules.

4–10

Defining Graphics Characteristics
4.2 Defining Multiple Graphics Characteristics in One Call

Figure 4–7 Fill Rules

Winding

ZK−0071A−GE

Even Odd

Pixel 1

Pixel 2

Pixel 2

Direction
of Path
Segment

Pixel 1

Direction of Ray

Direction of Ray

Figure 4–8 illustrates the rules for filling a pixel when it falls on a boundary.

Figure 4–8 Pixel Boundary Cases

ZK−0075A−GE

outside
polygon

Pixels are

Pixels are
inside
polygon

4–11

Defining Graphics Characteristics
4.2 Defining Multiple Graphics Characteristics in One Call

Figure 4–9 illustrates how an arc is filled.

Figure 4–9 Styles for Filling Arcs

Chord

Pie Slice

ZK−0008A−GE

Figure 4–10 illustrates dash offsets.

Figure 4–10 Dashed Line Offset

5 10 3 5 10 3

Dash Offset = 0

1 10 3 5 10 3

Dash Offset = 4

ZK−0009A−GE

Dash List: 5,10,3,5,10,3

Xlib assigns a flag for each member of the GC values data structure to facilitate
referring to members (Table 4–3).

Table 4–3 GC Values Data Structure Flags

Flag Name GC Values Member

x$m_gc_function X$L_GCVL_FUNCTION

x$m_gc_plane_mask X$L_GCVL_PLANE_MASK

x$m_gc_foreground X$L_GCVL_FOREGROUND

x$m_gc_background X$L_GCVL_BACKGROUND

(continued on next page)

4–12

Defining Graphics Characteristics
4.2 Defining Multiple Graphics Characteristics in One Call

Table 4–3 (Cont.) GC Values Data Structure Flags

Flag Name GC Values Member

x$m_gc_line_width X$L_GCVL_LINE_WIDTH

x$m_gc_line_style X$L_GCVL_LINE_STYLE

x$m_gc_cap_style X$L_GCVL_CAP_STYLE

x$m_gc_join_style X$L_GCVL_JOIN_STYLE

x$m_gc_fill_style X$L_GCVL_FILL_STYLE

x$m_gc_fill_rule X$L_GCVL_FILL_RULE

x$m_gc_tile X$L_GCVL_TILE

x$m_gc_stipple X$L_GCVL_STIPPLE

x$m_gc_tile_stip_x_origin X$L_GCVL_TS_X_ORIGIN

x$m_gc_tile_stip_y_origin X$L_GCVL_TS_Y_ORIGIN

x$m_gc_font X$L_GCVL_FONT

x$m_gc_subwindow_mode X$L_GCVL_SUBWINDOW_MODE

x$m_gc_graphics_exposures X$L_GCVL_GRAPHICS_EXPOSURES

x$m_gc_clip_x_origin X$L_GCVL_CLIP_X_ORIGIN

x$m_gc_clip_y_origin X$L_GCVL_CLIP_Y_ORIGIN

x$m_gc_clip_mask X$L_GCVL_CLIP_MASK

x$m_gc_dash_offset X$L_GCVL_DASH_OFFSET

x$m_gc_dash_list X$B_GCVL_DASHES

x$m_gc_arc_mode X$L_GCVL_ARC_MODE

Example 4–1 illustrates how a client can define graphics context values using the
CREATE GC routine. Figure 4–11 shows the resulting output.

Example 4–1 Defining Graphics Characteristics Using the CREATE GC Routine

INTEGER*4 GC
INTEGER*4 GC_MASK
RECORD /X$GC_VALUES/ XGCVL

PARAMETER X1 = 100, Y1 = 100,
1 X2 = 550, Y2 = 550

C
C Create the graphics context
C
! GC_MASK = X$M_GC_FOREGROUND .OR. X$M_GC_BACKGROUND .OR.

1 X$M_GC_LINE_WIDTH .OR. X$M_GC_LINE_STYLE .OR. X$M_GC_DASH_OFFSET
1 .OR. X$M_GC_DASH_LIST

" XGCVL.X$L_GCVL_FOREGROUND =
1 DEFINE_COLOR(DPY, SCREEN, VISUAL, 3)

XGCVL.X$L_GCVL_BACKGROUND =
1 DEFINE_COLOR(DPY, SCREEN, VISUAL, 4)

XGCVL.X$L_GCVL_LINE_WIDTH = 4

XGCVL.X$L_GCVL_LINE_STYLE = X$C_LINE_DOUBLE_DASH

XGCVL.X$L_GCVL_DASH_OFFSET = 0

(continued on next page)

4–13

Defining Graphics Characteristics
4.2 Defining Multiple Graphics Characteristics in One Call

Example 4–1 (Cont.) Defining Graphics Characteristics Using the CREATE GC
Routine

XGCVL.X$B_GCVL_DASHES = 25

GC = X$CREATE_GC(DPY, WINDOW, GC_MASK, XGCVL)
.
.
.

$ CALL X$DRAW_LINE(DPY, WINDOW, GC, X1, Y1, X2, Y2)

! Specify the members of the GC values data structure that will have assigned
values.

" Specify the foreground, background, line width, line style, dash offset, and
dashes for line drawing.

The dashed line is four pixels wide. A dash offset value of zero starts dashes
at the beginning of the line. The dashes value specifies that dashes be 25
pixels long.

The CREATE GC routine loads values into a GC data structure. The
CREATE GC routine has the following format:

gc_id = X$CREATE_GC (display, drawable_id, gc_mask,
values_struc)

$ See Chapter 6 for information about drawing lines.

4–14

Defining Graphics Characteristics
4.2 Defining Multiple Graphics Characteristics in One Call

Figure 4–11 Dashed Line

Dashed Line

ZK−2511A−GE

Click MB3 to exit.

Click MB1 to draw a dashed line.

4.3 Defining Individual Graphics Characteristics
Xlib offers routines that enable clients to define individual or functional groups of
graphics characteristics. Table 4–4 lists and briefly describes these routines. For
more information about the components, see Section 4.1.

4–15

Defining Graphics Characteristics
4.3 Defining Individual Graphics Characteristics

Table 4–4 Routines That Define Individual or Functional Groups of Graphics
Characteristics

Routine Description

Foreground, Background, Plane Mask, and Function Routines

SET STATE Sets the foreground, background, plane mask, and
function

SET FOREGROUND Sets the foreground

SET BACKGROUND Sets the background

SET PLANE MASK Sets the plane mask

SET FUNCTION Sets the function

Line Attribute Routines

SET LINE ATTRIBUTES Sets line width, line style, cap style, and join style

SET DASHES Sets the dash offset and dash list of a line

Fill Style and Rule Routines

SET FILL STYLE Sets fill style to solid, tiled, stippled, or opaque
stippled

SET FILL RULE Sets fill rule to either even and odd or winding rule

Fill Tile and Stipple Routines

QUERY BEST SIZE Queries the server for the size closest to the one
specified

QUERY BEST STIPPLE Queries the server for the closest stipple shape to the
one specified

QUERY BEST TILE Queries the server for the closest tile shape to the
one specified

SET STIPPLE Sets the stipple pixmap

SET TILE Sets the tile pixmap

SET TS ORIGIN Sets the tile or stipple origin

Font Routine

SET FONT Sets the current font

Clip Region Routines

SET CLIP MASK Sets the mask for bitmap clipping

SET CLIP ORIGIN Sets the origin for clipping

SET CLIP RECTANGLES Changes the clip mask from its current value to the
specified rectangles

(continued on next page)

4–16

Defining Graphics Characteristics
4.3 Defining Individual Graphics Characteristics

Table 4–4 (Cont.) Routines That Define Individual or Functional Groups of
Graphics Characteristics

Routine Description

Arc, Subwindow, and Exposure Routines

SET ARC MODE Sets the arc mode to either chord or pie slice

SET SUBWINDOW MODE Sets the subwindow mode to either clip by children
or include inferiors

SET GRAPHICS EXPOSURES Specifies whether exposure events are created when
calling COPY AREA or COPY PLANE

Example 4–2 illustrates using individual routines to set background, foreground,
and line attributes. Figure 4–12 illustrates the resulting output.

Example 4–2 Using Individual Routines to Define Graphics Characteristics

! BYTE DASH_LIST(3)
DATA DASH_LIST /20,5,10/

PARAMETER X1 = 100, Y1 = 100,
1 X2 = 550, Y2 = 550

.

.

.
CALL X$SET_BACKGROUND(DPY, GC, DEFINE_COLOR(DPY, SCREEN,
1 VISUAL, 4))

" CALL X$SET_LINE_ATTRIBUTES(DPY, GC, 10,
1 X$C_LINE_DOUBLE_DASH, 0, 0)

CALL X$SET_DASHES(DPY, GC, 0, DASH_LIST, 3)

CALL X$DRAW_LINE(DPY, WINDOW, GC, X1, Y1, X2, Y2)

! DASH_LIST defines the length of odd and even dashes. The first and third
elements of the initialization list specify even dashes; the second element
specifies odd dashes.

" The SET LINE ATTRIBUTES routine enables the client to define line width,
style, cap style, and join style in one call.

The SET LINE ATTRIBUTES routine has the following format:

X$SET_LINE_ATTRIBUTES(display, gc_id, line_width, line_style,
cap_style, join_style)

The zero cap_style argument specifies the default cap style.

When using the CREATE GC routine to set line dashes, odd and even dashes
must have equal length. The SET DASHES routine enables the client to
define dashes of varying length. The SET DASHES routine has the following
format:

X$SET_DASHES(display, gc_id, dash_offset, dash_list,
dash_list_len)

4–17

Defining Graphics Characteristics
4.3 Defining Individual Graphics Characteristics

The dash_list_len argument specifies the length of the dash list.

Figure 4–12 Line Defined Using GC Routines

Line Defined with GC Convenience Routines

Click MB3 to exit.

Click MB1 to draw a dashed line.

ZK−2570A−GE

4.4 Copying, Changing, and Freeing Graphics Contexts
In addition to defining a graphics context, clients can copy defined characteristics
from one GC data structure into another. To copy a GC data structure, use COPY
GC. The COPY GC routine has the following format:

X$COPY_GC(display, src_gc_id, gc_mask, dst_gc_id)

The gc_mask argument selects values to be copied from the source graphics
context (src_gc_id). Use the method described in Section 4.2 for assigning values
to a GRAPHICS CONTEXT.

The dst_gc_id argument specifies the new graphics context into which the server
copies values.

4–18

Defining Graphics Characteristics
4.4 Copying, Changing, and Freeing Graphics Contexts

After creating a graphics context structure, change values as needed using
CHANGE GC. The following code fragment, which alters the values of the line
drawn by Example 4–1, illustrates changing a graphics context structure:

.

.

.
GC_MASK = X$M_GC_LINE_WIDTH .OR. X$M_GC_LINE_STYLE

XGCVL.X$L_GCVL_LINE_WIDTH = 10

XGCVL.X$L_GCVL_LINE_STYLE = X$C_LINE_SOLID

CALL X$CHANGE_GC(DPY, GC, GC_MASK, XGCV)
.
.
.

The previous example illustrates defining a new line style and width, and
changing the graphics context to include the new values.

4.5 Using Graphics Characteristics Efficiently
The server must revalidate a graphics context whenever a client redefines it.
Causing the server to revalidate a graphics context unnecessarily can seriously
degrade performance.

The server revalidates a graphics context when one of the following conditions
occurs:

• A client associates the graphics context with a different window.

• The graphics context clip list changes. Changes in the clip list can happen
either when a client changes the graphics context clip origin or when the
server modifies the clip list in response to overlapping windows.

• Any member of the graphics context changes.

To minimize revalidating the graphics context, submit as a group the requests
to the server that identify the same window and graphics context. Grouping
requests enables the server to revalidate the graphics context once instead of
many times.

When it is necessary to change the value of graphics context members frequently,
creating a new graphics context is more efficient than redefining an existing one,
provided the client creates no more than 50 graphics contexts.

4–19

5
Using Color

Color is one of many attributes that clients can define when creating a window
or a graphics object. Depending on display hardware, clients can define color as
black or white, as shades of gray, or as a spectrum of hues. Section 5.2 describes
color definition in detail.

Xlib offers clients the choice of either sharing colors with other clients or, when
hardware supports it, allocating colors for exclusive use.

A client that does not have to change colors can share them with other clients.
By sharing colors, the client saves color resources.

When a client needs to change colors, the client must allocate them for its
exclusive use. For example, the client might indicate the flow through a pipeline
by changing colors, rather than redrawing the entire pipeline schematic. In this
case, the client would allocate for exclusive use colors that represent pipeline
flow.

This chapter introduces color management using Xlib and describes how to share
and allocate color resources. The chapter includes the following topics:

• Color fundamentals—A description of pixels and planes, color indices, cells,
and maps

• Matching color requirements to display types—How display types affect color
presentation

• Sharing color resources—How to share color resources with other clients

• Allocating colors for exclusive use—How to reserve colors for a single client

• Querying color resources—How to return values of color map entries

• Freeing color resources—How to release color resources

The concepts presented in this chapter apply to managing the color of both
windows and graphic objects.

5.1 Pixels and Color Maps
The color of a window or graphics object depends on the values of pixels that
constitute it. The number of bits associated with each pixel determines the
number of possible pixel values. On a monochrome screen, one bit corresponds to
each pixel. The number of possible pixel values is 2. Pixels are either zero or one,
black or white.

On a monochrome screen, all bits that define an image reside on one plane. A
plane is an allocation of memory with a one-to-one correspondence between bits
and pixels. The number of planes is the depth of the screen.

5–1

Using Color
5.1 Pixels and Color Maps

The depth of intensity of color screens is greater than one. More than one bit
defines the value of a pixel. Each bit associated with the pixel resides on a
different plane.

The number of possible pixel values increases as depth increases. For example,
if the screen has a depth of four planes, the value of each pixel comprises four
bits. Clients using a four-plane intensity display can produce up to sixteen levels
of brightness. Clients using a four-plane color display can produce as many as
sixteen colors. The number of colors possible on any system is equal to ��, where
n is the number of planes. Figure 5–1 illustrates the relationship between pixel
values and planes.

Figure 5–1 Pixel Values and Planes

1

0

1

1

Planes

Screen Depth=4

ZK−0074A−GE
2Pixel Value 1011

Bit Setting

Xlib uses color maps to define the color of each pixel value. A color map
contains a collection of color cells, each of which defines the color represented by
a pixel value in terms of its red, green, and blue (RGB) components. Red, green,
and blue components range from zero (off) to 65535 (brightest) inclusively. By
combining the RGB components, many colors can be produced.

Each pixel value refers to a location in a color map or is an index into a color
map. For example, the pixel value illustrated in Figure 5–1 indexes color cell 11
in Figure 5–2.

5–2

Using Color
5.1 Pixels and Color Maps

Figure 5–2 Color Map, Cell, and Index

Digital−to−Analog
Converter

Color Value
Color Value

"
"
"
"
"
"
"
"
"
"
"
"
"

Color Value

2
3
4
5
6
7
8
9
10
11
12
13
14
15

Color Map

0
1

Corresponding pixel is
illuminated using the
value in the eleventh
color map entry.

ZK−0076A−GE

Pixel Value 10112 10or 11 Indexes the Color Map

1

1

0

1

0
1

Most color workstations have a hardware color map that translates pixel values
into colors for the entire workstation screen. When the color definitions from a
client’s color map are stored in the hardware color map, that color map is said
to be installed. If a client’s color map is not installed, the client’s windows will
display in the wrong color.

For example, an image processing program that requires 128 colors might allocate
and store a color map of these values. To alter some colors, another client may
invoke a color palette program that chooses and mixes colors. The color palette
program itself requires a color map, which the program allocates and installs.

Because both programs have allocated different color maps, undesirable results
can be produced. The color palette image may be incorrectly displayed when
the image processing program runs. The incorrect display results because only
the image processing color map is installed. Conversely, when the color palette
program runs, the image processing program may be incorrectly displayed
because only the color palette color map is installed.

Xlib reduces the problem of contending for color resources in two ways:

• Xlib provides a default color map to which all clients have access.

5–3

Using Color
5.1 Pixels and Color Maps

• Clients can allocate either color cells for exclusive use or colors for shared use
from the default color map.

By sharing colors, a client can use the same color cells as other clients. This
method conserves space in the default color map.

In cases where the client cannot use the default color map and must use a new
color map, Xlib creates virtual color maps. The use of virtual color maps is
analogous to the use of virtual memory in a multiprogramming environment
where many processes must access physical memory. When concurrent processes
collectively require more color map entries than exist in the hardware color map,
the color values are swapped in and out of the hardware color map. However,
swapping virtual color maps in and out of the hardware color map causes
contention for color resources. Therefore, the client should avoid creating color
maps whenever possible.

5.1.1 Installing Color Maps
The process of loading or unloading color values of the virtual color map into the
hardware lookup table occurs when a client calls the INSTALL COLORMAP or
UNINSTALL COLORMAP routine. Typically, the privilege to install or to remove
color maps is restricted to the window manager. The window manager installs
a color map when a window is given focus. The user gives a window focus by
clicking on it with the mouse. The window manager then installs the color map
for that window.

On a system with a single hardware color map, only one window can have color
map focus at a time. Giving the focus to a new window will cause the previous
window that had the focus to display in the wrong color.

Some systems provide multiple color maps in hardware. Multiple windows can
have color map focus simultaneously. Each window, however, must be clicked on
to install the correct color map and to get the correct colors.

Applications that have a window manager running should not make direct calls
to install color maps. The window manager may reinstall different color maps
if the client attempts to install a private color map. However, on a system with
multiple color maps, the window manager will not remove the private color map.
Thus, the client will display in correct colors without getting color map focus.

Applications that require subwindows to have color maps separate from the
top-level window can use the SET WM COLORMAP WINDOWS routine. This
routine provides a hint to the window manager to install the specified color map.
Normally, window managers install color maps only for the top-level window.
Some applications are designed to run without a window manager. In this case,
the application must issue requests to install its own color map.

5.2 Matching Color Requirements to Display Types
The basic philosophy, when using color, is to determine the color needs of the
client and then to determine how the system can best support those needs.

This section defines the different visual display types available and describes
methods to choose the appropriate type for the client.

5–4

Using Color
5.2 Matching Color Requirements to Display Types

5.2.1 Visual Types
Each screen has a list of visual types associated with it. The visual type
identifies the characteristics of the screen, such as color or monochrome capability.
Visual types partially determine the appearance of color on the screen and
determine how a client can manipulate color maps for a specified screen.

Color maps can be manipulated in a variety of ways on some hardware, in
a limited way on other hardware, and not at all on yet other hardware. For
example, a screen may be able to display a full range of colors or a range of grays
only, depending on its visual type.

VMS DECwindows defines the following visual types:

• Pseudocolor

• Gray scale

• Direct color

• True color

• Static gray

• Static color

Pseudocolor is a full-color device. A pixel value indexes a color map composed of
red, green, and blue definitions. Each definition in the color map stores the red,
green, and blue component values for one color. The color index refers directly
to a single entry in the color map. RGB values can be changed dynamically if a
pixel has been allocated for exclusive use. Pseudocolor is the default visual type
on Digital 4-plane and 8-plane systems.

In Figure 5–3, the pseudocolor illustration shows a pixel value of 2 (00000010 in
binary) that indexes entry 2 in the color map.

Gray scale is a black and white device. Gray scale is the same as pseudocolor
except that a pixel value indexes a color map that produces shades of gray only.
The gray shades are defined in a color map with each definition having just one
component that defines the level of the white intensity.

Refer to Figure 5–3 for an illustration of the gray scale visual type.

Direct color is a full-color device. Both the pixel value and the color map are
separated into three independent parts, one each for red, green, and blue. The
red part of the pixel indexes the red color map, the green indexes the green
color map, and the blue indexes the blue color map. A complete color definition
comprises the three components in each color map. RGB values can be changed
dynamically if a pixel has been allocated for exclusive use.

In Figure 5–3, the direct color illustration shows that a pixel value of 90
(01011010 in binary) is separated into three values by using color masks,
which are defined in the visual info data structure. (Refer to Section 5.2.3 for
information about the visual info data structure.) Each color mask indicates
which bits of the pixel value reference which color map. Each value is then used
to index one of the three structures. In this case, entry 2 is indexed in the red
color map, entry 6 in the green color map, and entry 2 in the blue color map.

5–5

Using Color
5.2 Matching Color Requirements to Display Types

True color is a full-color device. True color is the same as direct color except
that the color map has predefined read-only RGB values in ascending order. True
color is the default visual type on a Digital 24-plane system.

Refer to Figure 5–3 for an illustration of the true color visual type.

Static gray is a black and white device. Static gray is the same as gray
scale except that the values in the color map are read-only. Static gray with a
two-entry color map can be thought of as monochrome.

Refer to Figure 5–3 for an illustration of the static gray visual type.

Static color is a full-color device and is the same as pseudocolor except that the
color map has predefined, read-only, server-dependent values in an undefined,
server-dependent order.

5–6

Using Color
5.2 Matching Color Requirements to Display Types

Figure 5–3 Visual Types and Color Map Characteristics

Pseudocolor

Direct Color

Gray Scale

Pixel Value = 000 000 10 2

Converter

..

.

 n

2
1
0

Pixel Value = 000 000 10 2

Converter

R G B

2
1
0 0 0

 n n n

ZK−1217A−GE

0 Converter

Static Gray

Pixel Value = 1 2

R G B
0 0 0

 n

True Color

2Pixel Value = 010 110 10

000 000 11
000 111 00

111 000 00

010 110 10

2Pixel Value = 010 110 10

000 000 11
000 111 00

111 000 00

010 110 10
R G B

Converter

 n n

Converter

 n

x$l_visl_blue_mask

x$l_visl_green_mask
x$l_visl_red_mask

x$l_visl_blue_mask

x$l_visl_green_mask
x$l_visl_red_mask

5.2.2 Determining the Default Visual Type
Before defining colors, use the following method to determine the default visual
type of a screen:

1. Use the DEFAULT VISUAL OF SCREEN routine to determine the identifier
of the visual. Xlib returns the identifier to a visual data structure.

5–7

Using Color
5.2 Matching Color Requirements to Display Types

2. Refer to the X$L_VISU_CLASS member of the data structure to determine
the visual type.

The following example illustrates one method to determine the default visual type
of a screen:

.

.

.
CALL X$DEFAULT_VISUAL_OF_SCREEN(SCREEN,VISUAL)

.

.

.
RECORD /X$VISUAL/ VISU
IF (VISU.X$L_VISU_CLASS .EQ. X$C_TRUE_COLOR .OR.
1 VISU.X$L_VISU_CLASS .EQ. X$C_PSEUDO_COLOR .OR.
1 VISU.X$L_VISU_CLASS .EQ. X$C_DIRECT_COLOR .OR.
1 VISU.X$L_VISU_CLASS .EQ. X$C_STATIC_COLOR) THEN

.

.

.

5.2.3 Determining Multiple Visual Types
On some systems, a single display can support multiple screens. Each screen can
have several different visual types supported at different depths. Xlib provides
routines that allow a client to search and choose the appropriate visual type on
the system by using the visual info data structure.

Figure 5–4 illustrates the visual info data structure.

Figure 5–4 Visual Info Data Structure

x$a_visl_visual 0

x$l_visl_visual_id 4

x$l_visl_screen 8

x$l_visl_depth 12

x$l_visl_class 16

x$l_visl_red_mask 20

x$l_visl_green_mask 24

x$l_visl_blue_mask 28

x$l_visl_colormap_size 32

x$l_visl_bits_per_rgb 36

5–8

Using Color
5.2 Matching Color Requirements to Display Types

Table 5–1 describes the members of the visual info data structure.

Table 5–1 Visual Info Data Structure Members

Member Name Contents

X$A_VISL_VISUAL A pointer to a visual data structure that is returned
to the client.

X$L_VISL_VISUAL_ID The ID of the visual that is returned by the server.

X$L_VISL_SCREEN The specified screen of the display.

X$L_VISL_DEPTH The depth in planes of the screen.

X$L_VISL_CLASS The class of the visual (X$C_PSEUDO_COLOR,
XC_GRAY_SCALE, XC_DIRECT_COLOR, X$C_
TRUE_COLOR, X$C_STATIC_GRAY, or X$C_
STATIC_COLOR).

X$L_VISL_RED_MASK Definition of the red mask.1

X$L_VISL_GREEN_MASK Definition of the green mask.1

X$L_VISL_BLUE_MASK Definition of the blue mask.1

X$L_VISL_COLORMAP_SIZE Number of available color map entries.

X$L_VISL_BITS_PER_RGB Number of bits that specifies the number of distinct
red, green, and blue values. Actual RGB values are
unsigned 16-bit numbers.

1The red mask, green mask, and blue mask are defined only for the direct color and true color visual
types.

Use the GET VISUAL INFO routine to return a list of visual structures that
match a specified template.

The GET VISUAL INFO routine has the following format:

X$GET_VISUAL_INFO(display, vinfo_mask, vinfo_template,
num_items_return [,items_return] [,items_size]
[,items_buff_return])

Use the MATCH VISUAL INFO routine to return the visual information for a
visual type that matches the specified depth and class for a screen. Because
multiple visual types that match the specified depth and class can exist, the exact
visual chosen is undefined.

Note that the MATCH VISUAL INFO routine is a convenience routine that
matches one visual of a particular class and depth. The GET VISUAL INFO
routine, however, can find any number of visuals that match any combination of
characteristics.

5–9

Using Color
5.2 Matching Color Requirements to Display Types

The MATCH VISUAL INFO routine has the following format:

X$MATCH_VISUAL_INFO(display, screen_number, depth, class,
vinfo_return)

5.3 Sharing Color Resources
Xlib provides the following ways to share color resources:

• Using named VMS DECwindows colors

• Specifying exact color values

The choice of using a named color or specifying an exact color depends on the
needs of the client. For instance, if the client is producing a bar graph, specifying
the named VMS DECwindows color ‘‘Red’’ as a color value may be sufficient,
regardless of the hue that VMS DECwindows names ‘‘Red’’. However, if the
client is reproducing a portrait, specifying an exact red color value might be
necessary to produce accurate skin tones. For a list of named colors, see the
SYS$MANAGER:DECW$RGB.COM file.

Note that because of differences in hardware, no two monitors display colors
exactly the same, even though the same named colors are specified.

5.3.1 Using Named Colors
VMS DECwindows includes named colors that clients can share. To use a named
color, call the ALLOC NAMED COLOR routine. ALLOC NAMED COLOR
determines whether the color map defines a value for the specified color. If the
color exists, the server returns the index to the color map. If the color does not
exist, the server returns an error.

Example 5–1 illustrates specifying a color using ALLOC NAMED COLOR.

Example 5–1 Using Named VMS DECwindows Colors

INTEGER*4 FUNCTION DEFINE_COLOR(DISP, SCRN, VISU, N)

INCLUDE ’SYS$LIBRARY:DECW$XLIBDEF’

INTEGER*4 DISP, SCRN, N
RECORD /X$VISUAL/ VISU ! visual type

! RECORD /X$COLOR/ SCREEN_COLOR
INTEGER*4 STR_SIZE, STATUS, COLOR_MAP

" CHARACTER*15 COLOR_NAME(3)
DATA COLOR_NAME /’DARK SLATE BLUE’, ’LIGHT GREY ’, ’FIREBRICK ’/

IF (VISU.X$L_VISU_CLASS .EQ. X$C_TRUE_COLOR .OR.
1 VISU.X$L_VISU_CLASS .EQ. X$C_PSEUDO_COLOR .OR.
1 VISU.X$L_VISU_CLASS .EQ. X$C_DIRECT_COLOR .OR.
1 VISU.X$L_VISU_CLASS .EQ. X$C_STATIC_COLOR) .THEN.

(continued on next page)

5–10

Using Color
5.3 Sharing Color Resources

Example 5–1 (Cont.) Using Named VMS DECwindows Colors

COLOR_MAP = X$DEFAULT_COLORMAP_OF_SCREEN(SCRN)
STATUS = STR$TRIM(COLOR_NAME(N),

1 COLOR_NAME(N), STR_SIZE)
$ STATUS = X$ALLOC_NAMED_COLOR(DISP, COLOR_MAP,

1 COLOR_NAME(N)(1:STR_SIZE), SCREEN_COLOR)
IF (STATUS) THEN

DEFINE_COLOR = SCREEN_COLOR.X$L_COLR_PIXEL
ELSE

WRITE(6,*) ’Color not allocated!’
CALL LIB$SIGNAL(%VAL(STATUS))
DEFINE_COLOR = 0

END IF
ELSE

IF (N .EQ. 1 .OR. N .EQ. 3)
1 DEFINE_COLOR = X$BLACK_PIXEL_OF_SCREEN(DISP)

IF (N .EQ. 2)
1 DEFINE_COLOR = X$WHITE_PIXEL_OF_SCREEN(DISP)
END IF

RETURN
END

! Allocate storage for a color data structure that defines the closest RGB values
supported by the hardware.

For an illustration of the color data structure, see Section 5.3.2.

" Create an array to store the names of predefined VMS DECwindows colors
used by the client. In the sample program, the client uses three named
colors: dark slate blue, light grey, and firebrick. When allocating a color, the
client refers to the array element that stores the appropriately named VMS
DECwindows color.

Xlib requires clients to pass names of predefined colors without padding. In
the DEFINE_COLOR function, the names of predefined colors are stored
in an array of three 15-byte members. Because the names light grey and
firebrick require less than 15 bytes of storage, they are padded.

To pass the names without padding, use the system-defined procedure
STR$TRIM, which returns to the STR_SIZE variable the length of the string
minus any trailing blanks.

$ The ALLOC NAMED COLOR routine has the following format:

X$ALLOC_NAMED_COLOR(display, colormap_id, color_name,
[screen_def_return], [exact_def_return])

The client refers to array COLOR_NAME to pass the name of the color. The
client passes only the substring that contains the predefined name; blanks
used to pad the array are ignored.

5–11

Using Color
5.3 Sharing Color Resources

5.3.2 Specifying Exact Color Values
To specify exact color values, use the following method:

1. Assign values to a color data structure.

2. Call the ALLOC COLOR routine, specifying the color map from which
the client allocates the definition. ALLOC COLOR returns a pixel value
and changes the RGB values to indicate the closest color supported by the
hardware.

Xlib provides a color data structure enabling clients to specify exact color values
when sharing colors. (Routines that allocate colors for exclusive use and that
query available colors also use the color data structure. For information about
using the color data structure for these purposes, see Section 5.4.)

Figure 5–5 illustrates the color data structure.

Figure 5–5 Color Data Structure

x$l_colr_pixel 0

xw_colr_redxw_colr_green 4

xw_colr_bluexb_colr_flagsx$b_colr_pad 8

Table 5–2 describes the members of the data structure.

Table 5–2 Color Data Structure Members

Member Name Contents

X$L_COLR_PIXEL Pixel value.

X$W_COLR_RED Defines the red value of the pixel.1

X$W_COLR_GREEN Defines the green value of the pixel.1

X$W_COLR_BLUE Defines the blue value of the pixel.1

X$B_COLR_FLAGS Defines which color components are to be changed in the
color map. Possible flags are as follows:

x$m_do_red Sets red values

x$m_do_green Sets green values

x$m_do_blue Sets blue values

X$B_COLR_PAD Makes the data structure an even length.

1Color values are scaled between 0 and 65535. ‘‘On full’’ in a color is a value of 65535, independent
of the number of planes of the display. Half brightness in a color is a value of 32767; off is a value
of 0. This representation gives uniform results for color values across displays with different color
resolution.

Example 5–2 illustrates how to specify exact color definitions.

5–12

Using Color
5.3 Sharing Color Resources

Example 5–2 Specifying Exact Color Values

C Create color
C

INTEGER*4 FUNCTION DEFINE_COLOR(DISP, SCRN, VISU, N)

INCLUDE ’SYS$LIBRARY:DECW$XLIBDEF’

INTEGER*4 DISP, SCRN, N
RECORD /X$VISUAL/ VISU ! visual type
RECORD /X$COLOR/ COLORS(3)
INTEGER*4 STATUS, COLOR_MAP
INTEGER*4 FLAGS

IF (VISU.X$L_VISU_CLASS .EQ. X$C_TRUE_COLOR .OR.
1 VISU.X$L_VISU_CLASS .EQ. X$C_PSEUDO_COLOR .OR.
1 VISU.X$L_VISU_CLASS .EQ. X$C_DIRECT_COLOR .OR.
1 VISU.X$L_VISU_CLASS .EQ. X$C_STATIC_COLOR) THEN

COLOR_MAP = X$DEFAULT_COLORMAP_OF_SCREEN(SCRN)
IF (N .EQ. 1) THEN

! COLORS(N).X$W_COLR_RED = 59904
COLORS(N).X$W_COLR_GREEN = 44288
COLORS(N).X$W_COLR_BLUE = 59904

" STATUS = X$ALLOC_COLOR(DISP, COLOR_MAP, COLORS(N))
IF (STATUS) THEN

DEFINE_COLOR = COLORS(N).X$L_COLR_PIXEL
ELSE

WRITE(6,*) ’Color not allocated!’
CALL LIB$SIGNAL(%VAL(STATUS))
DEFINE_COLOR = 0

END IF
ELSE IF (N. EQ. 2) THEN

COLORS(N).X$B_COLR_FLAGS = FLAGS
COLORS(N).X$W_COLR_RED = 65280
COLORS(N).X$W_COLR_GREEN = 0
COLORS(N).X$W_COLR_BLUE = 32512
STATUS = X$ALLOC_COLOR(DISP, COLOR_MAP, COLORS(N))
IF (STATUS) THEN

DEFINE_COLOR = COLORS(N).X$L_COLR_PIXEL
ELSE

WRITE(6,*) ’Color not allocated!’
CALL LIB$SIGNAL(%VAL(STATUS))
DEFINE_COLOR = 0

END IF
ELSE IF (N. EQ. 3) THEN

COLORS(N).X$B_COLR_FLAGS = FLAGS
COLORS(N).X$W_COLR_RED = 37632
COLORS(N).X$W_COLR_GREEN = 56064
COLORS(N).X$W_COLR_BLUE = 28672
STATUS = X$ALLOC_COLOR(DISP, COLOR_MAP, COLORS(N))
IF (STATUS) THEN

DEFINE_COLOR = COLORS(N).X$L_COLR_PIXEL
ELSE

WRITE(6,*) ’Color not allocated!’
CALL LIB$SIGNAL(%VAL(STATUS))
DEFINE_COLOR = 0

END IF
END IF

(continued on next page)

5–13

Using Color
5.3 Sharing Color Resources

Example 5–2 (Cont.) Specifying Exact Color Values

ELSE
IF (N .EQ. 1 .OR. N .EQ. 3)

1 DEFINE_COLOR = X$BLACK_PIXEL_OF_SCREEN(DISP)

IF (N .EQ. 2)
1 DEFINE_COLOR = X$WHITE_PIXEL_OF_SCREEN(DISP)
END IF

RETURN
END

! Define color values in the first of three color data structures.

" After defining RGB values, call the ALLOC COLOR routine. ALLOC COLOR
allocates shared color cells on the default color map and returns a pixel value
for the color that matches the specified color most closely.

5.4 Allocating Colors for Exclusive Use
If a client does not need to change color values, it should share colors by using
the methods described in Section 5.3. Sharing colors saves resources. However, a
client that changes color values must allocate them for its exclusive use.

Xlib provides two methods for allocating colors for a client’s exclusive use. First,
the client can allocate cells and store color values in the default color map.
Second, if the default color map does not contain enough storage, or if the default
color map is read-only (such as true color), the client can create its own color
map using a writable visual type and store color values in it. In addition, when
creating a color map, the client can allocate all entries in the color map for its
exclusive use. Refer to the CREATE COLORMAP routine in Section 5.4.1 for
more information about allocating all entries in a color map.

This section describes how to specify a color map, how to allocate cells for
exclusive use, and how to store values in the color cells.

5.4.1 Specifying a Color Map
Clients can either use the default color map and allocate its color cells for
exclusive use or create their own color maps.

If possible, use the default color map. Although a client can create color maps for
its own use, the hardware color map storage is limited. When a client creates its
own color map, the map must be installed into the hardware color map before the
client map can be used. If the client color map is not installed, the client may
use a different color map and possibly display the wrong color. Using the default
color map eliminates this problem. See Section 5.1 for information about how
Xlib handles color maps.

To specify the default color map, use the DEFAULT COLORMAP routine.
DEFAULT COLORMAP returns the identifier of the default color map.

If the default color map does not contain enough resources, the client can create
its own color map.

To create a color map, use the following method:

1. Using one of the methods described in Section 5.2, determine the visual type
of a specified screen.

5–14

Using Color
5.4 Allocating Colors for Exclusive Use

2. Call the CREATE COLORMAP routine.

The CREATE COLORMAP routine creates a color map for the specified window
and visual type. Note that CREATE COLORMAP can only be used with
pseudocolor, gray scale, and direct color visual types.

The CREATE COLORMAP routine has the following format:

X$CREATE_COLORMAP(display, window_id, visual_struc, alloc)

The alloc argument specifies whether the client creating the color map allocates
all of the color map entries for its exclusive use or creates a color map with no
allocated color map entries. To allocate all entries for exclusive use, specify the
constant x$c_alloc_all. To allocate no defined map entries, specify the constant
x$c_alloc_none. The latter is useful when two or more clients are to share the
newly created color map.

See Section 5.4.2 for information about allocating colors.

5.4.2 Allocating Color Cells
After specifying a color map, allocate color cells in it.

Use the ALLOC COLOR CELLS routine or ALLOC COLOR PLANES to allocate
color resources. Either routine can be used; however, ALLOC COLOR CELLS
allocates colors according to the pseudocolor model. The ALLOC COLOR
PLANES routine allocates color resources according to a direct color model.
See Section 5.2 for information about these color models.

Example 5–3 illustrates how to allocate colors for exclusive use. The program
creates a color wheel that rotates when the user presses MB1.

Note

The following example will only run on systems that have pseudocolor or
direct color default visual types.

Example 5–3 Allocating Colors for Exclusive Use

PROGRAM COLOR_WHEEL

INCLUDE ’SYS$LIBRARY:DECW$XLIBDEF’

INTEGER*4 DPY
INTEGER*4 SCREEN
INTEGER*4 WINDOW
INTEGER*4 GC_MASK
INTEGER*4 ATTR_MASK
INTEGER*4 GC
INTEGER*4 OFFSET_X
INTEGER*4 OFFSET_Y
INTEGER*4 CMAP
INTEGER*4 PIXMAP
INTEGER*4 WIDTH, HEIGHT
INTEGER*4 BUTTON_IS_DOWN
INTEGER*4 FULL_COUNT
INTEGER*4 STATUS, FUNC
INTEGER*4 WINDOW_X, WINDOW_Y, DEPTH

(continued on next page)

5–15

Using Color
5.4 Allocating Colors for Exclusive Use

Example 5–3 (Cont.) Allocating Colors for Exclusive Use

RECORD /X$VISUAL/ VISUAL
RECORD /X$COLOR/ COLORS(128)
RECORD /X$SET_WIN_ATTRIBUTES/ XSWDA
RECORD /X$GC_VALUES/ XGCVL
RECORD /X$SIZE_HINTS/ XSZHN
RECORD /X$EVENT/ EVENT
PARAMETER WINDOW_W = 600, WINDOW_H = 600,
1 BACK_W = 800, BACK_H = 800

OFFSET_X = 100
OFFSET_Y = 100

C Initialize display id and screen id
C

DPY = X$OPEN_DISPLAY()
SCREEN = X$DEFAULT_SCREEN_OF_DISPLAY(DPY)

STATUS = X$SYNCHRONIZE(DPY, 1, FUNC)

C
C Create the WINDOW window
C

WINDOW_X = (X$WIDTH_OF_SCREEN(SCREEN) - WINDOW_W) / 2
WINDOW_Y = (X$HEIGHT_OF_SCREEN(SCREEN) - WINDOW_H) / 2

DEPTH = X$DEFAULT_DEPTH_OF_SCREEN(SCREEN)
CALL X$DEFAULT_VISUAL_OF_SCREEN(SCREEN,VISUAL)
ATTR_MASK = X$M_CW_EVENT_MASK .OR. X$M_CW_BACK_PIXEL

XSWDA.X$L_SWDA_EVENT_MASK = X$M_EXPOSURE .OR. X$M_BUTTON_PRESS
1 .OR. X$M_EXPOSURE .OR. X$M_BUTTON_RELEASE .OR.
1 X$M_STRUCTURE_NOTIFY

XSWDA.X$L_SWDA_BACKGROUND_PIXEL =
1 X$BLACK_PIXEL_OF_SCREEN(SCREEN)

WINDOW = X$CREATE_WINDOW(DPY,
1 X$ROOT_WINDOW_OF_SCREEN(SCREEN),
1 WINDOW_X, WINDOW_Y, WINDOW_W, WINDOW_H, 0,
1 DEPTH, X$C_INPUT_OUTPUT, VISUAL, ATTR_MASK, XSWDA)

C Define the name of the window

CALL X$STORE_NAME(DPY, WINDOW,
1 ’Color Wheel: Press MB1 to Rotate or Click MB2 to Exit.’)

C
C Create graphics context
C

GC = X$CREATE_GC(DPY, WINDOW, 0, 0)
CALL X$SET_FOREGROUND(DPY, GC, X$WHITE_PIXEL_OF_SCREEN(SCREEN))

C
C Create the pixmap used for backing store
C
! PIXMAP = X$CREATE_PIXMAP(DPY, X$ROOT_WINDOW(DPY,

1 X$DEFAULT_SCREEN(DPY)), BACK_W, BACK_H, DEPTH)
CALL X$FILL_RECTANGLE(DPY, PIXMAP, GC, 0, 0, BACK_W, BACK_H)

C
C Create the initial colors for the wheel
C
" CALL CREATE_COLORS(DPY, SCREEN, VISUAL, COLORS, CMAP, FULL_COUNT)

(continued on next page)

5–16

Using Color
5.4 Allocating Colors for Exclusive Use

Example 5–3 (Cont.) Allocating Colors for Exclusive Use

C
C Create the wheel
C

CALL CREATE_WHEEL(DPY, SCREEN, GC, PIXMAP, COLORS)

C
C Map the window
C

CALL X$MAP_WINDOW(DPY, WINDOW)

C
C Handle events
C

DO WHILE (.TRUE.)

CALL X$NEXT_EVENT(DPY, EVENT)
C
C

IF (EVENT.EVNT_TYPE .EQ. X$C_EXPOSE) THEN
CALL X$COPY_AREA(DPY, PIXMAP, WINDOW, GC,

1 OFFSET_X + EVENT.EVNT_EXPOSE.X$L_EXEV_X,
1 OFFSET_Y + EVENT.EVNT_EXPOSE.X$L_EXEV_Y,
1 EVENT.EVNT_EXPOSE.X$L_EXEV_WIDTH,
1 EVENT.EVNT_EXPOSE.X$L_EXEV_HEIGHT,
1 EVENT.EVNT_EXPOSE.X$L_EXEV_X,
1 EVENT.EVNT_EXPOSE.X$L_EXEV_Y)

END IF
IF (EVENT.EVNT_TYPE .EQ. X$C_BUTTON_PRESS .AND.

1 EVENT.EVNT_BUTTON.X$L_BTEV_BUTTON .EQ. X$C_BUTTON1) THEN
BUTTON_IS_DOWN = 1

IF (BUTTON_IS_DOWN .EQ. 1) THEN
CALL CHANGE_COLORS(DPY, CMAP, COLORS, FULL_COUNT)

END IF
END IF
IF (EVENT.EVNT_TYPE .EQ. X$C_BUTTON_PRESS .AND.

1 EVENT.EVNT_BUTTON.X$L_BTEV_BUTTON .EQ. X$C_BUTTON2) THEN
CALL SYS$EXIT(%VAL(1))

END IF
IF (EVENT.EVNT_TYPE .EQ. X$C_BUTTON_RELEASE) THEN

BUTTON_IS_DOWN = 0
END IF

$ IF (EVENT.EVNT_TYPE .EQ. X$C_CONFIGURE_NOTIFY) THEN
OFFSET_X =

1 (BACK_W - EVENT.EVNT_CONFIGURE.X$L_CFEV_WIDTH)/2
OFFSET_Y =

1 (BACK_H - EVENT.EVNT_CONFIGURE.X$L_CFEV_HEIGHT)/2
END IF

END DO

END
C
C CREATE_COLORS SUBROUTINE
C
% SUBROUTINE CREATE_COLORS(DISP, SCRN, VISU, CLRS, MAP, FC)

INCLUDE ’SYS$LIBRARY:DECW$XLIBDEF’

INTEGER*4 DISP, SCRN, MAP, FC
INTEGER*4 PIXELS(128)
INTEGER*4 CONTIG, STATUS
INTEGER*4 PLANE_MASKS(128)

(continued on next page)

5–17

Using Color
5.4 Allocating Colors for Exclusive Use

Example 5–3 (Cont.) Allocating Colors for Exclusive Use

RECORD /X$VISUAL/ VISU
RECORD /X$COLOR/ CLRS(128)

IF (VISU.X$L_VISU_CLASS .EQ. X$C_PSEUDO_COLOR .OR.
1 VISU.X$L_VISU_CLASS .EQ. X$C_DIRECT_COLOR) THEN

& MAP = X$DEFAULT_COLORMAP_OF_SCREEN(SCRN)
FC = X$DISPLAY_CELLS(DISP, X$DEFAULT_SCREEN(DISP))
IF (FC .GT. 128) THEN

FC = 128
END IF
STATUS = X$ALLOC_COLOR_CELLS(DISP, MAP, CONTIG, PLANE_MASKS,

1 0, PIXELS, FC)
IF (STATUS .EQ. 0) THEN

CALL SYS$EXIT(%VAL(1))
END IF
CALL LOAD_COLORMAP(DISP, MAP, CLRS, PIXELS, FC)

ELSE
CALL SYS$EXIT(%VAL(1))

END IF

RETURN
END

C
C LOAD_COLORMAP SUBROUTINE
C
’ SUBROUTINE LOAD_COLORMAP(DIS, MP, COLR, PIXS, COUNT)

INCLUDE ’SYS$LIBRARY:DECW$XLIBDEF’

INTEGER*4 DIS, MP, COUNT
INTEGER*4 PIXS(128)
INTEGER*4 I, C, FLAGS
INTEGER*2 J(2)
EQUIVALENCE (C, J(1))
REAL*16 H, R, G, B

RECORD /X$COLOR/ COLR(128)

FLAGS = X$M_DO_RED .OR. X$M_DO_GREEN .OR. X$M_DO_BLUE
DO I = 1, COUNT

COLR(I).X$L_COLR_PIXEL = PIXS(I)
COLR(I).X$B_COLR_FLAGS = FLAGS

(H = I * 360./(COUNT + 1.)
CALL HLS_TO_RGB(H, .5, .5, R, G, B)
C = R * 65535.0
COLR(I).X$W_COLR_RED = J(1)
C = G * 65535.0
COLR(I).X$W_COLR_GREEN = J(1)
C = B * 65535.0
COLR(I).X$W_COLR_BLUE = J(1)

END DO
CALL X$STORE_COLORS(DIS, MP, COLR, COUNT)

(continued on next page)

5–18

Using Color
5.4 Allocating Colors for Exclusive Use

Example 5–3 (Cont.) Allocating Colors for Exclusive Use
RETURN
END

C
C HLS_TO_RGB SUBROUTINE
C

SUBROUTINE HLS_TO_RGB(HUE, LGHT, SATUR, RD, GRN, BLU)

REAL*16 VALUE
REAL*16 HUE, LGHT, SATUR
REAL*16 RD, GRN, BLU
REAL*16 M1, M2

IF (LGHT .LT. .05) THEN
M2 = L * (1 + SATUR)

ELSE
M2 = LGHT + SATUR - (LGHT * SATUR)

END IF
M1 = 2 * LGHT - M2
IF (SATUR .EQ. 0) THEN

RD = LGHT
GRN = LGHT
BLU = LGHT

ELSE
RD = VALUE(M1, M2, (HUE + 120.))
GRN = VALUE(M1, M2, (HUE + 000.))
BLU = VALUE(M1, M2, (HUE - 120.))

END IF

RETURN
END

C
C CREATE_WHEEL SUBROUTINE
C
) SUBROUTINE CREATE_WHEEL(DISP, SCRN, GRAPH_CON, PMAP, CLRS)

INCLUDE ’SYS$LIBRARY:DECW$XLIBDEF’

INTEGER*4 DISP, SCRN, GRAPH_CON, PMAP
INTEGER*4 I, J, PIXEL
INTEGER*4 X_CENT, Y_CENT
REAL*16 X, Y, XCENT_F, YCENT_F

RECORD /X$COLOR/ CLRS(128)
RECORD /X$POINT/ PGON(387)

PARAMETER PMAP_WIDTH = 800, PMAP_HEIGHT = 800

X_CENT = PMAP_WIDTH/2
Y_CENT = PMAP_HEIGHT/2

+> PGON(1).X$W_GPNT_X = PMAP_WIDTH
PGON(1).X$W_GPNT_Y = PMAP_HEIGHT/2

(continued on next page)

5–19

Using Color
5.4 Allocating Colors for Exclusive Use

Example 5–3 (Cont.) Allocating Colors for Exclusive Use

I = 2
DO WHILE (I .LT. 384)

PGON(I).X$W_GPNT_X = X_CENT
PGON(I).X$W_GPNT_Y = Y_CENT
I = I + 3

END DO
I = 2
PIXEL = 1
DO WHILE (PIXEL .LT. 129)

XCENT_F = X_CENT
YCENT_F = Y_CENT
X = COS((QFLOAT(PIXEL)/128)*2*3.14159)
Y = SIN((QFLOAT(PIXEL)/128)*2*3.14159)
PGON(I + 1).X$W_GPNT_X = (X * XCENT_F) + X_CENT
PGON(I + 1).X$W_GPNT_Y = (Y * YCENT_F) + Y_CENT
PGON(I + 2).X$W_GPNT_X = PGON(I + 1).X$W_GPNT_X
PGON(I + 2).X$W_GPNT_Y = PGON(I + 1).X$W_GPNT_Y
CALL X$SET_FOREGROUND(DISP, GRAPH_CON, CLRS((I+1)/3).X$L_COLR_PIXEL)
CALL X$FILL_POLYGON(DISP, PMAP, GRAPH_CON, PGON(I-1), 3,

1 XC_CONVEX, XC_COORD_MODE_ORIGIN)
I = I + 3
PIXEL = PIXEL + 1

END DO

RETURN
END

C
C CHANGE_COLORS SUBROUTINE
C
+? SUBROUTINE CHANGE_COLORS(DISP, MAP, CLRS, CNT)

INCLUDE ’SYS$LIBRARY:DECW$XLIBDEF’

INTEGER*4 DISP, MAP, CNT, PENDING
INTEGER*4 I, TEMP

RECORD /X$COLOR/ CLRS(128)

DO WHILE (X$PENDING(DISP) .EQ. 0)
TEMP = CLRS(1).X$L_COLR_PIXEL
I = 1
DO WHILE (I .LT. CNT)

CLRS(I).X$L_COLR_PIXEL = CLRS(I + 1).X$L_COLR_PIXEL
I = I +1

END DO
CLRS(CNT).X$L_COLR_PIXEL = TEMP
CALL X$STORE_COLORS(DISP, MAP, CLRS(1), CNT)

END DO

RETURN
END

C
C VALUE FUNCTION
C

REAL*16 FUNCTION VALUE(N1, N2, HUE)

REAL*16 N1, N2, HUE, VAL

(continued on next page)

5–20

Using Color
5.4 Allocating Colors for Exclusive Use

Example 5–3 (Cont.) Allocating Colors for Exclusive Use

IF (HUE .GT. 360.) THEN
HUE = HUE - 360.

END IF
IF (HUE .LT. 0) THEN

HUE = HUE + 360.
END IF
IF (HUE .LT. 60) THEN

VAL = N1 + (N2 - N1) * HUE/60.
ELSE IF (HUE .LT. 180.) THEN

VAL = N2
ELSE IF (HUE .LT. 240) THEN

VAL = N1 + (N2 - N1) * (240. - HUE)/60.
ELSE

VAL = N1
END IF
VALUE = VAL

RETURN
END

! The client uses a pixmap as a backing store for the color wheel. When a user
reconfigures the color wheel window, the client copies the color wheel from the
pixmap into the resized window. For information about creating and using
pixmaps, see Chapter 7.

" After creating the pixmap for a backing store, the client creates colors for the
wheel and the wheel itself. For details about these subroutines, see callouts
8, 9, and 10.

When the user reconfigures the window, the server generates an expose event.
In response to the event, the client copies the pixmap into the exposed area,
which is calculated using the offset from the original to the new position of
the window. For information about handling exposure events, see Chapter 9.

$ The client calculates the offset from the original window position in response
to a configure notify event. The server issues a configure notify event each
time the user resizes the color wheel window. For information about handling
configure notify events, see Chapter 9.

% The client-defined CREATE_COLORS routine allocates color cells for the
exclusive use and stores initial color values in the color map.

& The client uses the default color map, specifying that only 128 color cells
be allocated. After allocating color cells, the client calls the client-defined
LOAD_COLORMAP routine to define color values.

’ The LOAD_COLORMAP routine defines 128 colors and stores them in the
color map.

(Colors are defined initially using the Hue, Light, Saturation (HLS) system.
The values of color hues vary, while values for light and saturation remain
constant. After a color has been defined using HLS, the color is converted into
RGB values by the client-defined HLS_TO_RGB routine. When all colors are
defined, the client stores them in the color map by calling the client-defined
STORE COLORS routine.

) The client-defined CREATE_WHEEL routine defines the wheel used to
display colors and specifies initial color values.

5–21

Using Color
5.4 Allocating Colors for Exclusive Use

+> The wheel is composed of polygons. Each polygon is defined by three points,
one in the center of the wheel and two at the circumference. After the
initial polygon is specified, each polygon shares one point with the polygon
previously defined, as Figure 5–6 illustrates.

To define each point, the client uses a point data structure, which is described
in Chapter 6. After defining a polygon, the client fills it with a specified
foreground color.

+? The rotation of the color wheel is accomplished by changing values in the
color map. As long as there are no pending events and the user is pressing
MB1, the client-defined CHANGE_COLORS routine shifts color values by
one.

Figure 5–6 illustrates how the color wheel in Example 5–3 is composed of a set of
polygons.

Figure 5–6 Polygons That Define the Color Wheel

Pixmap

,2P 5, 8P ...P

1P

3P = P4

6P = P7

ZK−0532A−GE

When allocating colors from any shared color map, the client may exhaust the
resources of the color map. In this case, Xlib provides a routine for copying the
default color map entries into a new client-created color map.

5–22

Using Color
5.4 Allocating Colors for Exclusive Use

To create a new color map when the client exhausts the resources of a previously
shared color map, use the COPY COLORMAP AND FREE routine. The routine
creates a color map of the same visual type and for the same screen as the
previously shared color map. The previously shared color map can be either the
default color map or a client-created color map. The COPY COLORMAP AND
FREE routine has the following format:

X$COPY_COLORMAP_AND_FREE(display, colormap_id)

COPY COLORMAP AND FREE copies all allocated cells from the previously
shared color map to the new color map, keeping color values intact. The new
color map is created with the same value of the argument alloc as the previously
shared color map and has the following effect on the new color map entries.

Value of Alloc
on Old Color Map Effect

x$c_alloc_all All entries are copied from the previously-shared color map
and are then freed to create writable map entries

x$c_alloc_none The entries moved are all pixels and planes that have been
allocated using the following routines and that have not been
freed since they were allocated: ALLOC COLOR, ALLOC
NAMED COLOR, ALLOC COLOR CELLS, ALLOC COLOR
PLANES

5.4.3 Storing Color Values
After allocating color entries in the color map, store RGB values in the color map
cells using the following method:

1. Assign color values to the color data structure and set the X$B_COLR_FLAGS
member to indicate the components to be changed. Normally, all flags should
be set.

2. Call the STORE COLOR routine to store one color, the STORE COLORS
routine to store more than one color, and the STORE NAMED COLOR
routine to store a named color.

The STORE COLOR routine has the following format:

X$STORE_COLOR(display, colormap_id, screen_def_return)

The STORE COLORS routine has the following format:

X$STORE_COLORS(display, colormap_id, screen_defs_return,
num_colors)

The STORE NAMED COLOR routine has the following format:

X$STORE_NAMED_COLOR(display, colormap_id, color_name,
pixel, flags)

Refer to Example 5–3 for an example of using the STORE COLORS routine.

5.5 Freeing Color Resources
To free storage allocated for client colors, call the FREE COLORS routine. FREE
COLORS releases all storage allocated by the following color routines: ALLOC
COLOR, ALLOC COLOR CELLS, ALLOC NAMED COLORS, and ALLOC
COLOR PLANES.

5–23

Using Color
5.5 Freeing Color Resources

To delete the association between the color map ID and the color map, use the
FREE COLORMAP routine. FREE COLORMAP has no effect on the default color
map of the screen. If the color map is an installed color map, FREE COLORMAP
removes it.

5.6 Querying Color Map Entries
Xlib provides routines to return the RGB values of both the color map index and
a named color.

To query the RGB values of a specified pixel in the color map, use the QUERY
COLOR routine. The pixel value to look up is specified in the pixel member of the
color data structure. The RGB components of the color value are returned in the
red, green, and blue members of the data structure.

To query the RGB values of an array of pixel values, use the QUERY COLORS
routine. The values returned are the values passed in the pixel member of the
color data structure. Note that if the color map entry being queried is undefined,
the value returned by QUERY COLOR will not necessarily correspond to the color
displayed on the screen.

To look up the values associated with a named color, use the LOOKUP COLOR
routine. LOOKUP COLOR uses the specified color map to find out the values
with respect to a specific screen. It returns both the exact RGB values and the
closest RGB values supported by hardware.

5–24

6
Drawing Graphics

Xlib provides clients with routines that draw graphics into windows and pixmaps.
This chapter describes how to create and manage graphics drawn into windows,
including the following topics:

• Drawing points, lines, rectangles, and arcs

• Filling rectangles, polygons, and arcs

• Copying graphics

• Limiting graphics to a region of a window or pixmap

• Clearing graphics from a window

• Creating cursors

Chapter 7 describes drawing graphics into pixmaps.

6.1 Graphics Coordinates
Xlib graphics coordinates define the position of graphics drawn in a window or
pixmap. Coordinates are either relative to the origin of the window or pixmap
in which the graphics object is drawn or relative to a previously drawn graphics
object.

Xlib graphics coordinates are similar to the coordinates that define window
position. Xlib measures length along the x-axis from the origin to the right. Xlib
measures length along the y-axis from the origin down. Xlib specifies coordinates
in units of pixels.

6.2 Using Graphics Routines Efficiently
If clients use the same drawable and graphics context for each call, Xlib handles
back-to-back calls of DRAW POINT, DRAW LINE, DRAW SEGMENT, DRAW
RECTANGLE, FILL ARC, and FILL RECTANGLE in a batch. Batching increases
efficiency by reducing the number of requests to the server.

When drawing more than a single point, line, rectangle, or arc, clients can also
increase efficiency by using routines that draw or fill multiple graphics (DRAW
POINTS, DRAW LINES, DRAW SEGMENTS, DRAW RECTANGLES, DRAW
ARCS, FILL ARCS, and FILL RECTANGLES). Clipping negatively affects
efficiency. Consequently, clients should ensure that graphics they draw to a
window or pixmap are within the boundary of the drawable. Drawing outside
the window or pixmap decreases performance. Clients should also ensure that
windows into which they are drawing graphics are not occluded.

The most efficient method for clearing multiple areas is using the FILL
RECTANGLES routine. By using the FILL RECTANGLES routine, clients can
increase server performance. For information about using FILL RECTANGLES
to clear areas, see Section 6.6.1.

6–1

Drawing Graphics
6.3 Drawing Points and Lines

6.3 Drawing Points and Lines
Xlib includes routines that draw points and lines. When clients draw more than
one point or line, performance is affected. Performance is most efficient if clients
use Xlib routines that draw multiple points or lines rather than calling single
point and line-drawing routines many times.

This section describes using routines that draw both single and multiple points
and lines.

6.3.1 Drawing Points
To draw a single point, use the DRAW POINT routine, specifying x-axis and
y-axis coordinates, as in the following:

PARAMETER X = 100, Y = 100
.
.
.

CALL X$DRAW_POINT(DPY, WINDOW, GC, X, Y)

If drawing more than one point, use the following method:

1. Define an array of point data structures.

2. Call the DRAW POINTS routine, specifying the array that defines the points,
the number of points the server is to draw, and the coordinate system the
server is to use. The server draws the points in the order specified by the
array.

Xlib includes the point data structure to enable clients to define an array of points
easily. Figure 6–1 illustrates the data structure.

Figure 6–1 Point Data Structure

xw_gpnt_xxw_gpnt_y 0

Table 6–1 describes the members of the data structure.

Table 6–1 Point Data Structure Members

Member Name Contents

X$W_GPNT_X Defines the x value of the coordinate of a point

X$W_GPNT_Y Defines the y value of the coordinate of a point

The server determines the location of points according to the following:

• If the client specifies the constant x$c_coord_mode_origin, the server
defines all points in the array relative to the origin of the drawable.

• If the client specifies the constant x$c_coord_mode_previous, the server
defines the coordinates of the first point in the array relative to the origin
of the drawable and the coordinates of each subsequent point relative to the
point preceding it in the array.

6–2

Drawing Graphics
6.3 Drawing Points and Lines

The server refers to the following members of the GC data structure to define the
characteristics of points it draws:

Function Plane mask

Foreground Subwindow mode

Clip x origin Clip y origin

Clip mask

Chapter 4 describes GC data structure members.

Example 6–1 uses the DRAW POINTS routine to draw a circle of points each time
the user clicks MB1.

Figure 6–2 illustrates sample output from the program.

Example 6–1 Drawing Multiple Points

C Create window WINDOW on display DPY, defined as follows:
C Position: x = 100,y = 100
C Width = 600
C Height = 600
C GC refers to the graphics context

PARAMETER POINT_CNT = 100, RADIUS = 50
.
.
.

C
C Handle events
C

DO WHILE (.TRUE.)

CALL X$NEXT_EVENT(DPY, EVENT)

! IF (EVENT.EVNT_TYPE .EQ. X$C_EXPOSE) THEN
CALL X$DRAW_IMAGE_STRING(DPY, WINDOW, GC,

1 150, 25, ’To create points, click MB1’)
CALL X$DRAW_IMAGE_STRING(DPY, WINDOW, GC,

1 150, 50, ’Each click creates a new circle of points’)
CALL X$DRAW_IMAGE_STRING(DPY, WINDOW, GC,

1 150, 75, ’To exit, click MB2’)
END IF

" IF (EVENT.EVNT_TYPE .EQ. X$C_BUTTON_PRESS .AND.
1 EVENT.EVNT_BUTTON.X$L_BTEV_BUTTON .EQ. X$C_BUTTON1) THEN

X = EVENT.EVNT_BUTTON.X$L_BTEV_X
Y = EVENT.EVNT_BUTTON.X$L_BTEV_Y

DO I = 1, POINT_CNT
POINT_ARR(I).X$W_GPNT_X = X + RADIUS * COS(FLOAT(I))
POINT_ARR(I).X$W_GPNT_Y = Y + RADIUS * SIN(FLOAT(I))

END DO

CALL X$DRAW_POINTS(DPY, WINDOW, GC, POINT_ARR, POINT_CNT,
1 X$C_COORD_MODE_ORIGIN)

(continued on next page)

6–3

Drawing Graphics
6.3 Drawing Points and Lines

Example 6–1 (Cont.) Drawing Multiple Points

ENDIF
IF (EVENT.EVNT_TYPE .EQ. X$C_BUTTON_PRESS .AND.

1 EVENT.EVNT_BUTTON.X$L_BTEV_BUTTON .EQ. X$C_BUTTON2) THEN
CALL SYS$EXIT(%VAL(1))

END IF
END DO

! After receiving notification that the server has mapped the window, the client
writes three messages into the window. For information about using the
DRAW IMAGE STRING routine, see Chapter 8.

" If the user clicks MB1, the client draws 50 points. If the user clicks MB2,
the client exits from the system. The client determines which button the user
clicked by referring to the button member of the button event data structure.
For more information about the button event data structure, see Chapter 9.

The DRAW POINTS routine has the following format:

X$DRAW_POINTS(display, drawable_id, gc_id, points, num_points,
point_mode)

The point_mode argument specifies whether coordinates are relative to the
origin of the drawable or to the previous point in the array.

6–4

Drawing Graphics
6.3 Drawing Points and Lines

Figure 6–2 Circles of Points Created Using the DRAW POINTS Routine

Drawing Multiple Points

..

....

..

.. ..

. .

. .

..

....

..

.. ..

. .

. .

..

....

..

.. ..

. .

. .

..

....

..

.. ..

. .

. .

..

....

..

.. ..

. .

. .

..

....

..

.. ..

. .

. .

..

....

..

.. ..

. .

. .

..

....

..

.. ..

. .

. .

..

....

..

.. ..

. .

. .

..

....

..

.. ..

. .

. .

..

....

..

.. ..

. .

. .

..

....

..

.. ..

. .

. .

..

....

..

.. ..

. .

. .

..

....

..

.. ..

. .

. .

..

....

..

.. ..

. .

. .

..

....

..

.. ..

. .

. .

..

....

..

.. ..

. .

. .

..

....

..

.. ..

. .

. .

..

....

..

.. ..

. .

. .

..

....

..

.. ..

. .

. .

..

....

..

.. ..

. .

. .

..

....

..

.. ..

. .

. .

..

....

..

.. ..

. .

. .

..

....

..

.. ..

. .

. .

..

....

..

.. ..

. .

. .

..

....

..

.. ..

. .

. .

..

....

..

.. ..

. .

. .

..

....

..

.. ..

. .

. .

..

....

..

.. ..

. .

. .

..

....

..

.. ..

. .

. .

..

....

..

.. ..

. .

. .

..

....

..

.. ..

. .

. .

..

....

..

.. ..

. .

. .

..

....

..

.. ..

. .

. .

..

....

..

.. ..

. .

. .

..

....

..

.. ..

. .

. .

..

....

..

.. ..

. .

. .

..

....

..

.. ..

. .

. .

..

....

..

.. ..

. .

. .

..

....

..

.. ..

. .

. .

..

....

..

.. ..

. .

. .

..

....

..

.. ..

. .

. .

..

....

..

.. ..

. .

. .

..

....

..

.. ..

. .

. .

To exit, click MB2.

Each click creates a new circle of points.

To create points, click MB1.

..

....

..

.. ..

. .

. .

..

....

..

.. ..

. .

. .

..

....

..

.. ..

. .

. .

..

....

..

.. ..

. .

. .

ZK−2571A−GE

6.3.2 Drawing Lines and Line Segments
Xlib includes routines that draw single lines, multiple lines, and line segments.
To draw a single line, use the DRAW LINE routine, specifying beginning and
ending points, as in the following:

PARAMETER X1 = 100, Y1 = 100,
1 X2 = 200, Y2 = 200

.

.

.
CALL X$DRAW_LINE(DISPLAY, WINDOW, GC, X1, Y1, X2, Y2)

To draw multiple lines, use the following method:

1. Define an array of points using the point data structure described in
Section 6.3.1 to specify beginning and ending line points. The server
interprets pairs of array elements as beginning and ending points. For

6–5

Drawing Graphics
6.3 Drawing Points and Lines

example, if the array that defines the beginning point is ��������, the server
reads �������� �� as the corresponding ending point.

2. Call the DRAW LINES routine, specifying the following:

• The array that defines the points.

• The number of points that define the line.

• The coordinate system the server uses to locate the points. The server
draws the lines in the order specified by the array.

Clients can specify either the x$c_coord_mode_origin or the x$c_coord_
mode_previous constant to indicate how the server determines the location
of beginning and ending points. The server uses the methods described in
Section 6.3.1.

The server draws lines in the order the client has defined them in the point data
structure. Lines join correctly at all intermediate points. If the first and last
points coincide, the first and last line also join correctly. For any given line, the
server draws pixels only once. The server draws intersecting pixels multiple
times if zero-width lines intersect; it draws intersecting pixels of wider lines only
once.

Example 6–2 uses the DRAW LINES routine to draw a star when the server
notifies the client that the window is mapped.

Example 6–2 Drawing Multiple Lines

C Create window WINDOW on display DPY, defined as follows:
C Position: x = 100,y = 100
C Width = 600
C Height = 600
C GC refers to the graphics context

PARAMETER POINT_CNT = 100, RADIUS = 50
.
.
.

C
C Handle events
C

DO WHILE (.TRUE.)

CALL X$NEXT_EVENT(DPY, EVENT)

IF (EVENT.EVNT_TYPE .EQ. X$C_EXPOSE) THEN
CALL X$DRAW_IMAGE_STRING(DPY, WINDOW, GC,

1 150, 25, ’To create a star, click MB1.’)
CALL X$DRAW_IMAGE_STRING(DPY, WINDOW, GC,

1 150, 50, ’To exit, click MB2.’)
END IF

! IF (EVENT.EVNT_TYPE .EQ. X$C_BUTTON_PRESS .AND.
1 EVENT.EVNT_BUTTON.X$L_BTEV_BUTTON .EQ. X$C_BUTTON1) THEN

(continued on next page)

6–6

Drawing Graphics
6.3 Drawing Points and Lines

Example 6–2 (Cont.) Drawing Multiple Lines

POINT_ARR(1).X$W_GPNT_X = 75
POINT_ARR(1).X$W_GPNT_Y = 500
POINT_ARR(2).X$W_GPNT_X = 300
POINT_ARR(2).X$W_GPNT_Y = 100
POINT_ARR(3).X$W_GPNT_X = 525
POINT_ARR(3).X$W_GPNT_Y = 500
POINT_ARR(4).X$W_GPNT_X = 50
POINT_ARR(4).X$W_GPNT_Y = 225
POINT_ARR(5).X$W_GPNT_X = 575
POINT_ARR(5).X$W_GPNT_Y = 225
POINT_ARR(6).X$W_GPNT_X = 75
POINT_ARR(6).X$W_GPNT_Y = 500

" CALL X$DRAW_LINES(DPY, WINDOW, GC, POINT_ARR, POINTS,
1 X$C_COORD_MODE_ORIGIN)

ENDIF
IF (EVENT.EVNT_TYPE .EQ. X$C_BUTTON_PRESS .AND.

1 EVENT.EVNT_BUTTON.X$L_BTEV_BUTTON .EQ. X$C_BUTTON2) THEN
CALL SYS$EXIT(%VAL(1))

END IF
END DO

.

.

.

! The program uses point data structures to define beginning and ending points
of lines.

" The call to draw lines refers to a graphics context (GC), which the client
has previously defined, and an array of point data structures. The constant
x$c_coord_mode_origin indicates that all points are relative to the origin of
WINDOW (100, 100).

Figure 6–3 illustrates the resulting output.

6–7

Drawing Graphics
6.3 Drawing Points and Lines

Figure 6–3 Star Created Using the DRAW LINES Routine

Drawing Multiple Lines

ZK−2512A−GE

To create a star, click MB1.

To exit, click MB2.

Use the DRAW SEGMENTS routine to draw multiple, unconnected lines, defining
an array of segments in the segment data structure. Figure 6–4 illustrates the
data structure.

Figure 6–4 Segment Data Structure

xw_gseg_x1xw_gseg_y1 0

xw_gseg_x2xw_gseg_y2 4

6–8

Drawing Graphics
6.3 Drawing Points and Lines

Table 6–2 describes the members of the data structure.

Table 6–2 Segment Data Structure Members

Member Name Contents

X$W_GSEG_X1 The x value of the coordinate that specifies one endpoint of the
segment

X$W_GSEG_Y1 The y value of the coordinate that specifies one endpoint of the
segment

X$W_GSEG_X2 The x value of the coordinate that specifies the other endpoint
of the segment

X$W_GSEG_Y2 The y value of the coordinate that specifies the other endpoint
of the segment

The DRAW SEGMENTS routine functions like the DRAW LINES routine, except
the routine does not use the coordinate mode.

The DRAW LINE and DRAW SEGMENTS routines refer to all but the join style,
fill rule, arc mode, and font members of the GC data structure to define the
characteristics of lines. The DRAW LINES routine refers to all but the fill rule,
arc mode, and font members of the data structure.

Chapter 4 describes the GC data structure.

6.4 Drawing Rectangles and Arcs
As with routines that draw points and lines, Xlib provides clients the choice of
drawing either single or multiple rectangles and arcs. If a client is drawing more
than one rectangle or arc, use the multiple-drawing routines for most efficiency.

6.4.1 Drawing Rectangles
To draw a single rectangle, use the DRAW RECTANGLE routine, specifying the
coordinates of the upper left corner and the dimensions of the rectangle, as in the
following:

PARAMETER X = 50, Y = 100,
1 WIDTH = 25, LENGTH = 50

.

.

.
CALL X$DRAW_RECTANGLE(DISPLAY, WINDOW, GC, X, Y, WIDTH, LENGTH)

Figure 6–5 illustrates how Xlib interprets coordinate and dimension parameters.
The x- and y-coordinates are relative to the origin of the drawable.

6–9

Drawing Graphics
6.4 Drawing Rectangles and Arcs

Figure 6–5 Rectangle Coordinates and Dimensions

[x, y]

ZK−0078A−GE

w

h

[x + w, y]

[x, y + h] [x + w, y + h]

To draw multiple rectangles, use the following method:

1. Define an array of rectangles using the rectangle data structure.

2. Call the DRAW RECTANGLES routine, specifying the array that defines
rectangle origin, width, and height, and the number of array elements.

The server draws each rectangle as shown in Figure 6–6.

Figure 6–6 Rectangle Drawing

[x4 , y]=[x4 0 , y0]

[x , y3 3] [x , y2 2]

[x , y1 1]
Path of lines drawn

ZK−0077A−GE

For a specified rectangle, the server draws each pixel only once. If rectangles
intersect, the server draws intersecting pixels multiple times.

Xlib includes the rectangle data structure to enable clients to define an array of
rectangles easily. Figure 6–7 illustrates the data structure.

6–10

Drawing Graphics
6.4 Drawing Rectangles and Arcs

Figure 6–7 Rectangle Data Structure

xw_grec_xxw_grec_y 0

xw_grec_widthxw_grec_height 4

Table 6–3 describes the members of the data structure.

Table 6–3 Rectangle Data Structure Members

Member Name Contents

X$W_GREC_X Defines the x value of the rectangle origin

X$W_GREC_Y Defines the y value of the rectangle origin

X$W_GREC_WIDTH Defines the width of the rectangle

X$W_GREC_HEIGHT Defines the height of the rectangle

When drawing either single or multiple rectangles, the server refers to the
following members of the GC data structure to define rectangle characteristics:

Function Plane mask

Foreground Background

Line width Line style

Join style Fill style

Tile Stipple

Tile/stipple x origin Tile/stipple y origin

Subwindow mode Clip x origin

Clip y origin Clip mask

Dash offset Dashes

Chapter 4 describes the GC data structure members.

Example 6–3 illustrates using the DRAW RECTANGLES routine. Figure 6–8
shows the resulting output.

Example 6–3 Drawing Multiple Rectangles

C Create window WINDOW on display DPY, defined as follows:
C Position: x = 100,y = 100
C Width = 600
C Height = 600
C GC refers to the graphics context

PARAMETER POINT_CNT = 100, RADIUS = 50

(continued on next page)

6–11

Drawing Graphics
6.4 Drawing Rectangles and Arcs

Example 6–3 (Cont.) Drawing Multiple Rectangles

.

.

.
C
C Handle events
C

DO WHILE (.TRUE.)

CALL X$NEXT_EVENT(DPY, EVENT)

! IF (EVENT.EVNT_TYPE .EQ. X$C_EXPOSE) THEN
CALL X$DRAW_IMAGE_STRING(DPY, WINDOW, GC,

1 150, 25, ’To draw multiple rectangles, click MB1.’)
CALL X$DRAW_IMAGE_STRING(DPY, WINDOW, GC,

1 150, 50, ’To exit, click MB2.’)
END IF

" IF (EVENT.EVNT_TYPE .EQ. X$C_BUTTON_PRESS .AND.
1 EVENT.EVNT_BUTTON.X$L_BTEV_BUTTON .EQ. X$C_BUTTON1) THEN

DO I = 1, REC_CNT
REC_ARR(I).X$W_GREC_X = STEP * I
REC_ARR(I).X$W_GREC_Y = STEP * I
REC_ARR(I).X$W_GREC_WIDTH = STEP * 2
REC_ARR(I).X$W_GREC_HEIGHT = STEP * 3

END DO

CALL X$DRAW_RECTANGLES(DPY, WINDOW, GC, REC_ARR, REC_CNT)

ENDIF

IF (EVENT.EVNT_TYPE .EQ. X$C_BUTTON_PRESS .AND.
1 EVENT.EVNT_BUTTON.X$L_BTEV_BUTTON .EQ. X$C_BUTTON2) THEN

CALL SYS$EXIT(%VAL(1))

END IF
END DO

! After receiving notification that the server has mapped the window, the client
writes two messages into the window. For information about using the DRAW
IMAGE STRING routine, see Chapter 8.

" If the user clicks MB1, the client draws rectangles defined in the initialization
loop. If the user clicks MB2, the client exits the system. The client
determines which button the user has clicked by referring to the button
member of the button event data structure. For more information about the
button event data structure, see Chapter 9.

The DRAW RECTANGLE routine has the following format:

X$DRAW_RECTANGLES(display, drawable_id, gc_id, rectangles,
num_rectangles)

6–12

Drawing Graphics
6.4 Drawing Rectangles and Arcs

Figure 6–8 Rectangles Drawn Using the DRAW RECTANGLES Routine

Drawing Multiple Rectangles

ZK−2510A−GE

To exit, click MB2.

To draw multiple rectangles, click MB1.

6.4.2 Drawing Arcs
Xlib routines enable clients to draw either single or multiple arcs. To draw a
single arc, use the DRAW ARC routine, specifying a rectangle that defines the
boundaries of the arc and two angles that determine the start and extent of the
arc, as in the following:

PARAMETER X = 50, Y = 100,
1 WIDTH = 25, LENGTH = 50,
1 ANGLE1 = 5760, ANGLE2 = 5760

.

.

.
CALL X$DRAW_ARC(DISPLAY, WINDOW, GC, X, Y, WIDTH, HEIGHT,
1 ANGLE1, ANGLE2)

The server draws an arc within a rectangle. The client specifies the upper left
corner of the rectangle, relative to the origin of the drawable. The center of the
rectangle is the center of the arc. The width and height of the rectangle are the
major and minor axes of the arc, respectively.

6–13

Drawing Graphics
6.4 Drawing Rectangles and Arcs

Two angles specify the start and extent of the arc. The angles are signed integers
in degrees scaled up by 64. For example, a client would specify a 90-degree arc
as �� � �	 or
��	. The start of the arc is specified by the first angle, relative to
the three o’clock position from the center of the rectangle. The extent of the arc
is specified by the second angle, relative to the start of the arc. Positive integers
indicate counterclockwise motion; negative integers indicate clockwise motion.

To draw multiple arcs, use the following method:

1. Define an array of arc data structures.

2. Call the DRAW ARCS routine, specifying the array that defines the arcs and
the number of array elements.

Figure 6–9 illustrates the arc data structure.

Figure 6–9 Arc Data Structure

xw_garc_xxw_garc_y 0

xw_garc_widthxw_garc_height 4

x$w_garc_angle1x$w_garc_angle2 8

Table 6–4 describes the members of the arc data structure.

Table 6–4 Arc Data Structure Members

Member Name Contents

X$W_GARC_X Defines the x-coordinate value of the rectangle in which
the server draws the arc

X$W_GARC_Y Defines the y-coordinate value of the rectangle in which
the server draws the arc

X$W_GARC_WIDTH Defines the major axis of the arc

X$W_GARC_HEIGHT Defines the minor axis of the arc

X$W_GARC_ANGLE1 Defines the starting point of the arc relative to the 3
o’clock position from the center of the rectangle

X$W_GARC_ANGLE2 Defines the extent of the arc relative to the starting point

6–14

Drawing Graphics
6.4 Drawing Rectangles and Arcs

When drawing either single or multiple arcs, the server refers to the following
members of the GC data structure to define arc characteristics:

Function Plane mask

Foreground Background

Line width Line style

Join style Cap style

Fill style Tile

Tile/stipple x origin Tile/stipple y origin

Clip x origin Clip y origin

Clip mask Dash offset

Dashes Stipple

Subwindow mode

Chapter 4 describes the GC data structure members.

If the last point in one arc coincides with the first point in the following arc, the
two arcs join. If the first point in the first arc coincides with the last point in the
last arc, the two arcs join.

If two arcs join, the line width is greater than zero, and the arcs intersect, the
server draws all pixels only once. Otherwise, it may draw intersecting pixels
multiple times.

Example 6–4 illustrates using the DRAW ARCS routine.

Example 6–4 Drawing Multiple Arcs

C Create window WINDOW on display DPY, defined as follows:
C Position: x = 100,y = 100
C Width = 600
C Height = 600
C GC refers to the graphics context

PARAMETER ARC_CNT = 16, RADIUS = 50,
1 INNER_RADIUS = 20

.

.

.

C
C Handle events
C

DO WHILE (.TRUE.)

CALL X$NEXT_EVENT(DPY, EVENT)

IF (EVENT.EVNT_TYPE .EQ. X$C_EXPOSE) THEN
CALL X$DRAW_IMAGE_STRING(DPY, WINDOW, GC,

1 150, 25, ’To create arcs, click MB1.’)
CALL X$DRAW_IMAGE_STRING(DPY, WINDOW, GC,

1 150, 50, ’Each click creates a new circle of arcs.’)
CALL X$DRAW_IMAGE_STRING(DPY, WINDOW, GC,

1 150, 75, ’To exit, click MB2.’)
END IF

IF (EVENT.EVNT_TYPE .EQ. X$C_BUTTON_PRESS .AND.
1 EVENT.EVNT_BUTTON.X$L_BTEV_BUTTON .EQ. X$C_BUTTON1) THEN

(continued on next page)

6–15

Drawing Graphics
6.4 Drawing Rectangles and Arcs

Example 6–4 (Cont.) Drawing Multiple Arcs

! X = EVENT.EVNT_BUTTON.X$L_BTEV_X
Y = EVENT.EVNT_BUTTON.X$L_BTEV_Y

DO I = 1, ARC_CNT
ARC_ARR(I).X$W_GARC_ANGLE1 = (64 * 360)/ARC_CNT * I
ARC_ARR(I).X$W_GARC_ANGLE2 = (64 * 360)/ARC_CNT * 3
ARC_ARR(I).X$W_GARC_WIDTH = RADIUS * 2
ARC_ARR(I).X$W_GARC_HEIGHT = RADIUS * 2
ARC_ARR(I).X$W_GARC_X = X - RADIUS +

1 SIN(2*3.14159/ARC_CNT*I) * INNER_RADIUS
ARC_ARR(I).X$W_GARC_Y = Y - RADIUS +

1 COS(2*3.14159/ARC_CNT*I) * INNER_RADIUS
END DO

" CALL X$DRAW_ARCS(DPY, WINDOW, GC, ARC_ARR, ARC_CNT)
ENDIF

IF (EVENT.EVNT_TYPE .EQ. X$C_BUTTON_PRESS .AND.
1 EVENT.EVNT_BUTTON.X$L_BTEV_BUTTON .EQ. X$C_BUTTON2) THEN

CALL SYS$EXIT(%VAL(1))
END IF

END DO

! The x and y variables specify the upper left corner of the rectangle that
defines the boundary of the arc. The client determines the rectangle
coordinates by taking the values of the x and y arguments from the button
event data structure. Because these values indicate the position of the cursor
when the user clicks the mouse button, the server draws the arcs relative to
the position of the cursor. For more information about the button event data
structure, see Chapter 9.

" The DRAW ARCS routine has the following format:

X$DRAW_ARCS(display,drawable_id,gc_id,arcs,num_arcs)

Figure 6–10 illustrates the resulting output.

6–16

Drawing Graphics
6.4 Drawing Rectangles and Arcs

Figure 6–10 Multiple Arcs Drawn Using the DRAW ARCS Routine

Drawing Multiple Arcs

To create arcs, click MB1.

Each click creates a new circle of arcs.

To exit, click MB2.

ZK−2568A−GE

6.5 Filling Areas
This section describes using Xlib routines to fill single rectangles, arcs, and
polygons, and multiple rectangles and arcs.

6.5.1 Filling Rectangles and Arcs
The FILL RECTANGLE, FILL RECTANGLES, FILL ARC, and FILL ARCS
routines create single and multiple rectangles or arcs and fill them using the fill
style that the client specifies in a graphics context data structure.

The method of calling the fill routines is identical to that for drawing rectangles
and arcs. For example, to create rectangles filled solidly with foreground color
in Example 6–3, the client needs only to call the FILL RECTANGLES routine
instead of DRAW RECTANGLES. The default value of the GC data structure fill
style member is solid. If the client were to specify a tile or stipple for filling the
rectangles, the client would have to change the graphics context used by the FILL
RECTANGLES routine.

6–17

Drawing Graphics
6.5 Filling Areas

The server refers to the following members of the GC data structure to define
characteristics of the rectangles and arcs it fills:

Function Plane mask

Foreground Background

Fill style Tile

Stipple Subwindow mode

Tile/stipple x origin Tile/stipple y origin

Clip x origin Clip y origin

Clip mask

Additionally, the server refers to the arc mode member if filling arcs.

For information about using graphics context, see Chapter 4.

6.5.2 Filling a Polygon
To fill a polygon, use the following method:

1. Define an array of point data structures.

2. Call the FILL POLYGON routine, specifying the array that defines the points
of the polygon, the number of points the server is to draw, the shape of the
polygon, and the coordinate system the server is to use. The server draws the
points in the order specified by the array.

See Figure 6–1 for an illustration of the point data structure.

To improve performance, clients can specify whether the shape of the polygon is
complex, convex, or nonconvex, as follows:

• Specify the constant x$c_complex as the shape argument if the path that
draws the polygon may intersect itself.

• Specify the constant x$c_convex if the path that draws the shape is wholly
convex. If a client specifies x$c_convex as the shape argument for a path
that is not convex, the results are undefined.

• Specify the constant x$c_nonconvex as the shape argument if the path does
not intersect itself, but the shape is not wholly convex. If a client specifies
x$c_nonconvex for a path that intersects itself, the results are undefined.

When filling the polygon, the server draws each pixel only once.

The server determines the location of points as follows:

• If the client specifies the constant x$c_coord_mode_origin, the server
defines all points in the array relative to the origin of the drawable.

• If the client specifies the constant x$c_coord_mode_previous, the server
defines the coordinates of the first point in the array relative to the origin
of the drawable and the coordinates of each subsequent point relative to the
point preceding it in the array.

If the last point does not coincide with the first point, the server closes the
polygon automatically.

6–18

Drawing Graphics
6.5 Filling Areas

The server refers to the following members of the GC data structure to define the
characteristics of the polygon it fills:

Function Plane mask

Foreground Fill style

Fill rule (if polygon is complex) Tile

Tile/stipple x origin Tile/stipple y origin

Clip x origin Clip y origin

Subwindow mode Clip mask

Stipple Background

Chapter 4 describes GC data structure members.

Example 6–5 uses the FILL POLYGON routine to draw and fill the star created
in Example 6–2.

Example 6–5 Filling a Polygon

C Create window WINDOW on display DPY, defined as follows:
C Position: x = 100,y = 100
C Width = 600
C Height = 600
C GC refers to the graphics context

! RECORD /X$POINT/ PT_ARR(6)

PT_ARR(1).X$W_GPNT_X = 75
PT_ARR(1).X$W_GPNT_Y = 500
PT_ARR(2).X$W_GPNT_X = 300
PT_ARR(2).X$W_GPNT_Y = 100
PT_ARR(3).X$W_GPNT_X = 525
PT_ARR(3).X$W_GPNT_Y = 500
PT_ARR(4).X$W_GPNT_X = 50
PT_ARR(4).X$W_GPNT_Y = 225
PT_ARR(5).X$W_GPNT_X = 575
PT_ARR(5).X$W_GPNT_Y = 225
PT_ARR(6).X$W_GPNT_X = 75
PT_ARR(6).X$W_GPNT_Y = 500

.

.

.
C
C Handle events
C

DO WHILE (.TRUE.)

CALL X$NEXT_EVENT(DPY, EVENT)

IF (EVENT.EVNT_TYPE .EQ. X$C_EXPOSE) THEN
CALL X$DRAW_IMAGE_STRING(DPY, WINDOW, GC,

1 150, 25, ’To create a filled polygon, click MB1’)
CALL X$DRAW_IMAGE_STRING(DPY, WINDOW, GC,

1 150, 50, ’To exit, click MB2’)
END IF

(continued on next page)

6–19

Drawing Graphics
6.5 Filling Areas

Example 6–5 (Cont.) Filling a Polygon

" IF (EVENT.EVNT_TYPE .EQ. X$C_BUTTON_PRESS .AND.
1 EVENT.EVNT_BUTTON.X$L_BTEV_BUTTON .EQ. X$C_BUTTON1) THEN

CALL X$FILL_POLYGON(DPY, WINDOW, GC, PT_ARR, 6, X$C_COMPLEX,
1 X$C_COORD_MODE_ORIGIN)

ENDIF
.
.
.

! Use an array of point data structures to specify the points that define the
polygon.

" The call to fill the polygon refers to a graphics context (GC), which the client
has previously defined, and an array of point data structures. The constant
x$c_complex indicates that the path of the line that draws the polygon
intersects itself. The constant x$c_coord_mode_origin indicates that all
points are relative to the origin of WINDOW (100,100).

Figure 6–11 illustrates the resulting output.

6–20

Drawing Graphics
6.5 Filling Areas

Figure 6–11 Filled Star Created Using the FILL POLYGON Routine

ZK−2569A−GE

Filling a Polygon

To create a filled polygon, click MB1.

To exit, click MB2.

6.6 Clearing and Copying Areas
Xlib includes routines that enable clients to clear or copy a specified area of a
drawable. Because pixmaps do not have defined backgrounds, clients clearing
an area of a pixmap must use the FILL RECTANGLE routine described in
Section 6.5.1. For more information about pixmaps, see Chapter 7.

This section describes how to clear windows and copy areas of windows and
pixmaps.

6.6.1 Clearing Window Areas
To clear an area of a window, use the CLEAR AREA or CLEAR WINDOW routine.
The CLEAR AREA routine clears a specified area and generates an expose event,
if the client directs the server to do so.

The CLEAR WINDOW routine clears the entire area of the specified window. If
the window has a defined background tile, the window is retiled. If the window
has no defined background, the server does not change the window contents.

6–21

Drawing Graphics
6.6 Clearing and Copying Areas

Example 6–6 illustrates clearing a window.

Example 6–6 Clearing a Window
.
.
.

IF (EVENT.EVNT_TYPE .EQ. X$C_BUTTON_PRESS .AND.
1 EVENT.EVNT_BUTTON.X$L_BTEV_BUTTON .EQ. X$C_BUTTON1) THEN

X = EVENT.EVNT_BUTTON.X$L_BTEV_X
Y = EVENT.EVNT_BUTTON.X$L_BTEV_Y

DO I = 1, ARC_CNT
ARC_ARR(I).X$W_GARC_ANGLE1 = (64 * 360)/ARC_CNT * I
ARC_ARR(I).X$W_GARC_ANGLE2 = (64 * 360)/ARC_CNT * 3
ARC_ARR(I).X$W_GARC_WIDTH = RADIUS * 2
ARC_ARR(I).X$W_GARC_HEIGHT = RADIUS * 2
ARC_ARR(I).X$W_GARC_X = X - RADIUS +

1 SIN(2*3.14159/ARC_CNT*I) * INNER_RADIUS
ARC_ARR(I).X$W_GARC_Y = Y - RADIUS +

1 COS(2*3.14159/ARC_CNT*I) * INNER_RADIUS
END DO
CALL X$DRAW_ARCS(DPY, WINDOW, GC, ARC_ARR, ARC_CNT)
ENDIF

IF (EVENT.EVNT_TYPE .EQ. X$C_BUTTON_PRESS .AND.
1 EVENT.EVNT_BUTTON.X$L_BTEV_BUTTON .EQ. X$C_BUTTON2) THEN

CALL SYS$EXIT(%VAL(1))
END IF
IF (EVENT.EVNT_TYPE .EQ. X$C_BUTTON_PRESS .AND.

1 EVENT.EVNT_BUTTON.X$L_BTEV_BUTTON .EQ. X$C_BUTTON3) THEN
CALL X$CLEAR_WINDOW(DPY, WINDOW)

END IF
END DO

The example modifies Example 6–4 to clear the window when the user clicks
MB3.

To clear multiple areas, using the FILL RECTANGLES routine is faster than
using the CLEAR WINDOW or CLEAR AREA routine. To clear multiple
areas on a monochrome screen, first set the function member of the GC data
structure to the value specified by the constant X$C_GX_CLEAR. Then call the
FILL RECTANGLES routine. If the screen is a color type, set the value of the
background to the background of the window before calling FILL RECTANGLES.

6.6.2 Copying Areas of Windows and Pixmaps
Xlib includes the COPY AREA and COPY PLANE routines to enable clients to
copy a rectangular area defined on one window or pixmap (the source) to an
area of another window or pixmap (the destination). COPY AREA copies areas
between drawables of the same root and depth. COPY PLANE copies a single bit
plane of the specified drawable to another drawable, regardless of their depths.
The bit plane is treated as a stipple with a fill style of x$c_fill_opaque_stippled.
Both drawables must have the same root window.

6–22

Drawing Graphics
6.6 Clearing and Copying Areas

The server refers to the following members of the GC data structure when
copying areas and planes:

Function Plane mask

Clip x origin Clip y origin

Subwindow mode Clip mask

Graphics exposures

If the client calls the COPY PLANE routine, the server additionally refers to the
foreground and background members.

6.7 Defining Regions
A region is an arbitrarily defined area within which graphics drawing is clipped.
In other words, clipping regions are portions of either windows or pixmaps in
which clients can restrict output. As Chapter 4 notes, the SET CLIP MASK, SET
CLIP ORIGIN, and SET CLIP RECTANGLES routines define clipping regions.
Xlib provides other, more convenient, routines that enable clients to define
regions and associate them with drawables without having to change graphics
context values directly.

This section describes how to create and manage clipping using Xlib region
routines.

6.7.1 Creating Regions
Xlib includes the CREATE REGION and POLYGON REGION routines for
creating regions. CREATE REGION creates an empty region. POLYGON
REGION creates a region defined by an array of points.

Example 6–7 illustrates using POLYGON REGION to create a star-shaped region.
Using the DRAW ARCS routine of Example 6–4, the program limits arc drawing
to the star region.

Example 6–7 Defining a Region Using the POLYGON REGION Routine

C Create window WINDOW on display DPY, defined as follows:
C Position: x = 100,y = 100
C Width = 600
C Height = 600
C GC refers to the graphics context

INTEGER*4 STAR_REGION

PARAMETER WINDOW_W = 600, WINDOW_H = 600,
1 ARC_CNT = 16, RADIUS = 50,
1 INNER_RADIUS = 20, NUM_POINTS = 6

RECORD /X$ARC/ ARC_ARR(ARC_CNT)
RECORD /X$POINT/ POINT_ARR(NUM_POINTS)

(continued on next page)

6–23

Drawing Graphics
6.7 Defining Regions

Example 6–7 (Cont.) Defining a Region Using the POLYGON REGION Routine

! POINT_ARR(1).X$W_GPNT_X = 75
POINT_ARR(1).X$W_GPNT_Y = 500
POINT_ARR(2).X$W_GPNT_X = 300
POINT_ARR(2).X$W_GPNT_Y = 100
POINT_ARR(3).X$W_GPNT_X = 525
POINT_ARR(3).X$W_GPNT_Y = 500
POINT_ARR(4).X$W_GPNT_X = 50
POINT_ARR(4).X$W_GPNT_Y = 225
POINT_ARR(5).X$W_GPNT_X = 575
POINT_ARR(5).X$W_GPNT_Y = 225
POINT_ARR(6).X$W_GPNT_X = 75
POINT_ARR(6).X$W_GPNT_Y = 500

.

.

.
" STAR_REGION = X$POLYGON_REGION(POINT_ARR, NUM_POINTS,

1 X$C_WINDING_RULE)
C
C Handle events
C

DO WHILE (.TRUE.)

CALL X$NEXT_EVENT(DPY, EVENT)

IF (EVENT.EVNT_TYPE .EQ. X$C_EXPOSE) THEN
CALL X$DRAW_IMAGE_STRING(DPY, WINDOW, GC,

1 150, 25, ’To create arcs, click MB1.’)
CALL X$DRAW_IMAGE_STRING(DPY, WINDOW, GC,

1 150, 50, ’Each click creates a new circle of arcs.’)
CALL X$DRAW_IMAGE_STRING(DPY, WINDOW, GC,

1 150, 75, ’To exit, click MB2.’)
END IF

IF (EVENT.EVNT_TYPE .EQ. X$C_BUTTON_PRESS .AND.
1 EVENT.EVNT_BUTTON.X$L_BTEV_BUTTON .EQ. X$C_BUTTON1) THEN

X = EVENT.EVNT_BUTTON.X$L_BTEV_X
Y = EVENT.EVNT_BUTTON.X$L_BTEV_Y

CALL X$SET_REGION(DPY, GC, STAR_REGION)
DO I = 1, ARC_CNT

ARC_ARR(I).X$W_GARC_ANGLE1 = (64 * 360)/ARC_CNT * I
ARC_ARR(I).X$W_GARC_ANGLE2 = (64 * 360)/ARC_CNT * 3
ARC_ARR(I).X$W_GARC_WIDTH = RADIUS * 2
ARC_ARR(I).X$W_GARC_HEIGHT = RADIUS * 2
ARC_ARR(I).X$W_GARC_X = X - RADIUS +

1 SIN(2*3.14159/ARC_CNT*I) * INNER_RADIUS
ARC_ARR(I).X$W_GARC_Y = Y - RADIUS +

1 COS(2*3.14159/ARC_CNT*I) * INNER_RADIUS
END DO
CALL X$DRAW_ARCS(DPY, WINDOW, GC, ARC_ARR, ARC_CNT)
ENDIF

IF (EVENT.EVNT_TYPE .EQ. X$C_BUTTON_PRESS .AND.
1 EVENT.EVNT_BUTTON.X$L_BTEV_BUTTON .EQ. X$C_BUTTON2) THEN

CALL SYS$EXIT(%VAL(1))
END IF

END DO

6–24

Drawing Graphics
6.7 Defining Regions

! Define an array of point data structures to define the clipping region.

" Define the clipping region. Note that defining the region does not associate it
with a graphics context.

Fill rule can be either even/odd rule or winding rule. For more information
about fill rule, see Chapter 4.

Associate the region with a graphics context. The association sets fields in
the specified GC data structure that control clipping. Drawables that refer to
the GC data structure have output clipped to the region.

Figure 6–12 illustrates sample output from the program.

Figure 6–12 Arcs Drawn Within a Region

Drawing Multiple Arcs in a Region

To create arcs, click MB1.

Each click creates a new circle of arcs.

To exit, click MB2.

ZK−2507A−GE

6–25

Drawing Graphics
6.7 Defining Regions

6.7.2 Managing Regions
Xlib includes routines that enable clients to do the following:

• Move and shrink a region

• Compute the intersection, union, and results of two regions

• Determine if regions are empty or equal

• Locate a point or rectangle within a region

Table 6–5 lists and describes Xlib routines that manage regions.

Table 6–5 Routines for Managing Regions

Routine Description

Creating, Copying, and Destroying

CREATE REGION Creates a new empty region

SET REGION Sets the clip mask of a GC to a region

DESTROY REGION Deallocates storage associated with a specified region

Moving and Shrinking

OFFSET REGION Moves a region a specified amount

SHRINK REGION Reduces a region a specified amount

Computing

INTERSECT REGION Computes the intersection of two regions

UNION REGION Computes the union of two regions

UNION RECT WITH REGION Creates a union of a source region with a rectangle

SUBTRACT REGION Subtracts two regions

XOR REGION Calculates the difference between the union and
intersection of two regions

Determining If Regions Are Empty or Equal

EMPTY REGION Determines if a region is empty

EQUAL REGION Determines if two regions have the same offset, size,
and shape

Locating a Point or Rectangle Within a Region

POINT IN REGION Determines if a point is within a region

RECT IN REGION Determines if a rectangle is within a region

Example 6–8 illustrates creating a region from the intersection of two others.

Example 6–8 Defining the Intersection of Two Regions

(continued on next page)

6–26

Drawing Graphics
6.7 Defining Regions

Example 6–8 (Cont.) Defining the Intersection of Two Regions

C Create window WINDOW on display DPY, defined as
C follows:
C Position: x = 100,y = 100
C Width = 600
C Height = 600
C GC refers to the graphics context

INTEGER*4 PIXMAP_1
INTEGER*4 PIXMAP_2
INTEGER*4 PIXMAP_3
INTEGER*4 REGION_1
INTEGER*4 REGION_2
INTEGER*4 REGION_3

! RECORD /X$POINT/ PT_ARR1(4)
RECORD /X$POINT/ PT_ARR2(4)

PT_ARR1(1).X$W_GPNT_X = 200
PT_ARR1(1).X$W_GPNT_Y = 100
PT_ARR1(2).X$W_GPNT_X = 50
PT_ARR1(2).X$W_GPNT_Y = 300
PT_ARR1(3).X$W_GPNT_X = 200
PT_ARR1(3).X$W_GPNT_Y = 500
PT_ARR1(4).X$W_GPNT_X = 350
PT_ARR1(4).X$W_GPNT_Y = 300

PT_ARR2(1).X$W_GPNT_X = 400
PT_ARR2(1).X$W_GPNT_Y = 100
PT_ARR2(2).X$W_GPNT_X = 250
PT_ARR2(2).X$W_GPNT_Y = 300
PT_ARR2(3).X$W_GPNT_X = 400
PT_ARR2(3).X$W_GPNT_Y = 500
PT_ARR2(4).X$W_GPNT_X = 550
PT_ARR2(4).X$W_GPNT_Y = 300

C
C Initialize the counter for mapping regions
C

I = 0
.
.
.

C
C Create pixmaps for tiling
C
" PIXMAP_1 = X$CREATE_PIXMAP(DPY, WINDOW, PIX_WIDTH, PIX_HEIGHT, DEPTH)

PIXMAP_2 = X$CREATE_PIXMAP(DPY, WINDOW, PIX_WIDTH, PIX_HEIGHT, DEPTH)
PIXMAP_3 = X$CREATE_PIXMAP(DPY, WINDOW, PIX_WIDTH, PIX_HEIGHT, DEPTH)

CALL X$FILL_RECTANGLE(DPY, PIXMAP_1, GC, 0, 0, PIX_WIDTH,
1 PIX_HEIGHT)
CALL X$FILL_RECTANGLE(DPY, PIXMAP_2, GC, 0, 0, PIX_WIDTH,
1 PIX_HEIGHT)
CALL X$FILL_RECTANGLE(DPY, PIXMAP_3, GC, 0, 0, PIX_WIDTH,
1 PIX_HEIGHT)

CALL X$SET_FOREGROUND(DPY, GC, DEFINE_COLOR(DPY, SCREEN,
1 VISUAL, 2))

CALL X$DRAW_LINE(DPY, PIXMAP_1, GC, 0, 4, 0, 8)
CALL X$DRAW_LINE(DPY, PIXMAP_2, GC, 4, 0, 8, 0)
CALL X$DRAW_LINE(DPY, PIXMAP_3, GC, 0, 4, 0, 8)
CALL X$DRAW_LINE(DPY, PIXMAP_3, GC, 4, 0, 8, 0)

(continued on next page)

6–27

Drawing Graphics
6.7 Defining Regions

Example 6–8 (Cont.) Defining the Intersection of Two Regions

C
C Create the regions
C

REGION_1 = X$POLYGON_REGION(PT_ARR1, 4, X$C_WINDING_RULE)
REGION_2 = X$POLYGON_REGION(PT_ARR2, 4, X$C_WINDING_RULE)

.

.

.
C
C Handle events
C

DO WHILE (.TRUE.)

CALL X$NEXT_EVENT(DPY, EVENT)

IF (EVENT.EVNT_TYPE .EQ. X$C_EXPOSE) THEN
CALL X$DRAW_IMAGE_STRING(DPY, WINDOW, GC,

1 150, 25, ’To map regions click MB1 three times.’)
CALL X$DRAW_IMAGE_STRING(DPY, WINDOW, GC,

1 150, 75, ’To exit, click MB2’)
END IF

IF (EVENT.EVNT_TYPE .EQ. X$C_BUTTON_PRESS .AND.
1 EVENT.EVNT_BUTTON.X$L_BTEV_BUTTON .EQ. X$C_BUTTON1) THEN

I = I + 1

IF (I .EQ. 1) THEN
CALL X$SET_FILL_STYLE(DPY, GC, X$C_FILL_TILED)

CALL X$CLEAR_WINDOW(DPY, WINDOW)
CALL X$SET_TILE(DPY, GC, PIXMAP_1)

$ CALL X$SET_REGION(DPY, GC, REGION_1)
% CALL X$FILL_RECTANGLE(DPY, WINDOW, GC, X_ORIGIN,

1 Y_ORIGIN, WINDOW_W, WINDOW_H)
END IF
IF (I .EQ. 2) THEN

& CALL X$CLEAR_WINDOW(DPY, WINDOW)
CALL X$SET_TILE(DPY, GC, PIXMAP_2)
CALL X$SET_REGION(DPY, GC, REGION_2)
CALL X$FILL_RECTANGLE(DPY, WINDOW, GC, X_ORIGIN,

1 Y_ORIGIN, WINDOW_W, WINDOW_H)
END IF
IF (I .EQ. 3) THEN

CALL X$CLEAR_WINDOW(DPY, WINDOW)
’ REGION_3 = X$CREATE_REGION()

CALL X$INTERSECT_REGION(REGION_1, REGION_2,
1 REGION_3)

CALL X$SET_TILE(DPY, GC, PIXMAP_3)
CALL X$SET_REGION(DPY, GC, REGION_3)
CALL X$FILL_RECTANGLE(DPY, WINDOW, GC, X_ORIGIN,

1 Y_ORIGIN, WINDOW_W, WINDOW_H)
END IF
IF (I .GT. 3) THEN

(CALL X$SET_FILL_STYLE(DPY, GC, X$C_FILL_SOLID)
CALL X$DRAW_IMAGE_STRING(DPY, WINDOW, GC,

1 150, 75, ’That’’s it! Click MB2 to exit.’)
END IF

END IF
.
.
.

(continued on next page)

6–28

Drawing Graphics
6.7 Defining Regions

Example 6–8 (Cont.) Defining the Intersection of Two Regions

6–29

Drawing Graphics
6.7 Defining Regions

! Arrays of point data structures define two regions.

" The pixmaps are used to tile the window with horizontal, vertical, and
cross-hatched lines. For information about pixmaps, see Chapter 7.

After writing messages in the window, the fill style defined in the GC data
structure is changed to tile the window with pixmaps. The subsequent
call to SET TILE defines one of the three pixmaps created earlier as the
window background pixmap. For information about fill styles and tiling, see
Chapter 4.

$ The SET REGION routine specifies the clipping region in the graphics
context. The region defined by PT_ARR1 is first specified.

% FILL RECTANGLE repaints the window, filling it with the tiling pattern
defined in PIXMAP_1. Tiling is restricted to the region defined by REGION_1.

& Before specifying a new tiling pattern and region, the window is cleared.

’ CREATE REGION creates an empty region and returns an identifier,
REGION_3. Xlib returns the results of intersecting REGION_1 and
REGION_2 to REGION_3.

(Before displaying a final message in the window, the fill style is redefined to
solid to enable text writing.

Figure 6–13 illustrates the output from the program.

6–30

Drawing Graphics
6.7 Defining Regions

Figure 6–13 Intersection of Two Regions

Intersection of Two Regions

ZK−2508A−GE

6.8 Defining Cursors
A cursor is a bit image on the screen that indicates either the movement of a
pointing device or the place where text will next appear. Xlib enables clients to
associate a cursor with each window they create. After making the association
between cursor and window, the cursor is visible whenever it is in the window. If
the cursor indicates movement of a pointing device, the movement of the cursor
in the window automatically reflects the movement of the device.

Xlib and VMS DECwindows provide fonts of predefined cursors. Clients that
want to create their own cursors can either define a font of shapes and masks or
create cursors using pixmaps.

This section describes the following:

• Creating cursors using the Xlib cursor font, a font of shapes and masks, and
pixmaps

• Associating cursors with windows

• Managing cursors

6–31

Drawing Graphics
6.8 Defining Cursors

• Freeing memory allocated to cursors when clients no longer need them

6.8.1 Creating Cursors
Xlib enables clients to use predefined cursors or to create their own cursors. To
create a predefined Xlib cursor, use the CREATE FONT CURSOR routine. Xlib
cursors are predefined in SYS$LIBRARY:DECW$XLIBDEF. See the X and Motif
Quick Reference Guide for a list of the constants that refer to the predefined Xlib
cursors.

The following example creates a sailboat cursor, one of the predefined Xlib
cursors, and associates the cursor with a window:

INTEGER*4 FONTCURSOR
.
.
.

FONTCURSOR = X$CREATE_FONT_CURSOR(DPY, X$C_SAILBOAT_CURSOR)
CALL X$DEFINE_CURSOR(DPY, WIN, FONTCURSOR)

The DEFINE CURSOR routine makes the sailboat cursor automatically visible
when the pointer is in window WIN.

In addition to the standard Xlib cursors, VMS DECwindows provides
another set of cursors. VMS DECwindows cursors are predefined in
SYS$LIBRARY:DECW$XLIBDEF. Table 6–6 lists the constants that refer to
the predefined VMS DECwindows cursors.

Table 6–6 Predefined VMS DECwindows Cursors

decw$c_select_cursor decw$c_leftselect_cursor

decw$c_help_select_cursor decw$c_wait_cursor

decw$c_inactive_cursor decw$c_resize_cursor

decw$c_vpane_cursor decw$c_hpane_cursor

decw$c_text_insertion_cursor decw$c_text_insertion_bl_cursor

decw$c_cross_hair_cursor decw$c_draw_cursor

decw$c_pencil_cursor decw$c_rpencil_cursor

decw$c_center_cursor decw$c_rightselect_cursor

decw$c_wselect_cursor decw$c_eselect_cursor

decw$c_x_cursor decw$c_circle_cursor

decw$c_mouse_cursor decw$c_lpencil_cursor

decw$c_leftgrab_cursor decw$c_grabhand_cursor

decw$c_rightgrab_cursor decw$c_leftpointing_cursor

decw$c_uppointing_cursor decw$c_rightpointing_cursor

6–32

Drawing Graphics
6.8 Defining Cursors

To create a predefined VMS DECwindows cursor, use the CREATE GLYPH
CURSOR routine. CREATE GLYPH CURSOR selects a cursor shape and cursor
mask from the VMS DECwindows cursor font, defines how the cursor appears
on the screen, and assigns a unique cursor identifier. The following example
illustrates creating the select cursor and associating the cursor with a window:

INTEGER*4 CURSOR_FONT
INTEGER*4 GLYPHCURSOR

RECORD/ X$COLOR/ FORE_COLOR, BACK_COLOR
.
.
.

CURSOR_FONT = X$LOAD_FONT(DPY, ’DECW$CURSOR’)
CALL X$SET_FONT(DPY, GC, CURSOR_FONT)
GLYPHCURSOR = X$CREATE_GLYPH_CURSOR(DPY, CURSOR_FONT,
1 CURSOR_FONT, DECW$C_SELECT_CURSOR,
1 DECW$C_SELECT_CURSOR + 1, FORE_COLOR, BACK_COLOR)
CALL X$DEFINE_CURSOR(DPY, WIN, GLYPHCURSOR)

To create client-defined cursors, either create a font of cursor shapes or define
cursors using pixmaps. In each case, the cursor consists of the following
components:

• Shape—Defines the cursor as it appears without modification in a window

• Mask—Acts as a clip mask to define how the cursor actually appears in a
window

• Background color—Specifies RGB values used for the cursor background

• Foreground color—Specifies RGB values used for the cursor foreground

• Hotspot—Defines the position on the cursor that reflects movements of the
pointing device

Figure 6–14 illustrates the relationship between the cursor shape and the cursor
mask. The cursor shape defines the cursor as it would appear on the screen
without modification. The cursor mask bits that are set to 1 select which bits
of the cursor shape are actually displayed. If the mask bit has a value of 1, the
corresponding shape bit is displayed whether it has a value of 1 or 0. If the mask
bit has a value of 0, the corresponding shape bit is not displayed.

In the resulting cursor shape, bits with a 0 value are displayed in the specified
background color; bits with a 1 value are displayed in the specified foreground
color.

6–33

Drawing Graphics
6.8 Defining Cursors

Figure 6–14 Cursor Shape and Cursor Mask

0 0 0 0 0 0 0 0

0 1 11 1 1 0 0

0 0 1 1 0 00 1 0

0 1 1 1 1 0 0

0 0 1 1 0 0 0

0 0 1 1 0 0 0

0 0 1 1 0 0 0

0 0 1 1 0 0 0

0 1 1 1 1 0 0

0 1 11 1 1 0 0

Cursor Shape

0

0 0

0 1 11 1 1 0

0 1 1 00 0 1 0

0 1 01 1 1 0

0 1 0 1 0

00 1 0 1 0

00 1 0 1 0

0 1 0 1 0

0 1 0 1 0

0 1 1 0

0 1 1 1 1 0

Cursor Mask

ZK−0154A−GE

0 0

0 1 1 0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

00 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0

0

0

0

0

0

0

0

0

0

0

0

0

0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1

1

1

1

1

1

1

1

1

1 1 1 1 1 1 1

1

1

1

1

1

1

1

1

0

0

1

1

1

1

1

0 00

0

0

0

0

0

0

00 0

0

Resulting Cursor

Background

Transparent

Foreground

1

1

1

1

0 0 0

1 1

To create a client-defined cursor from a font of glyphs, use the CREATE GLYPH
CURSOR routine, specifying the cursor and mask fonts that contain the glyphs.
To create a cursor from pixmaps, use the CREATE PIXMAP CURSOR routine.
The pixmaps must have a depth of one. If the depth is not one, the server
generates an error.

6–34

Drawing Graphics
6.8 Defining Cursors

The size of the pixmap cursor must be supported by the display on which the
cursor is visible. To determine the supported size closest to the size the client
specifies, use the QUERY BEST CURSOR routine. Example 6–9 illustrates
creating a pencil pointer cursor from two pixmaps.

Example 6–9 Creating a Pixmap Cursor

PROGRAM PIXMAP_CURSOR

INCLUDE ’SYS$LIBRARY:DECW$XLIBDEF’

INTEGER*4 DPY
INTEGER*4 SCREEN
INTEGER*4 WINDOW
INTEGER*4 GC_MASK
INTEGER*4 ATTR_MASK
INTEGER*4 GC
INTEGER*4 FONT
INTEGER*4 PIXMAP
INTEGER*4 PENCIL, PENCIL_MASK
INTEGER*4 PENCIL_CURSOR
INTEGER*4 I, STATUS
INTEGER*4 DEFINE_COLOR
INTEGER*4 WINDOW_X, WINDOW_Y, DEPTH
LOGICAL*1 PENCIL_BITS(32)
LOGICAL*1 PENCIL_MASK_BITS(32)

RECORD /X$COLOR/ COLOR_DUMMY ! used for the pixmap
RECORD /X$COLOR/ CURSOR_FOREGROUND ! used for the pixmap
RECORD /X$COLOR/ CURSOR_BACKGROUND ! used for the pixmap
RECORD /X$VISUAL/ VISUAL ! visual type
RECORD /X$SET_WIN_ATTRIBUTES/ XSWDA ! window attributes
RECORD /X$GC_VALUES/ XGCVL ! gc values
RECORD /X$SIZE_HINTS/ XSZHN ! hints
RECORD /X$EVENT/ EVENT ! input event

PARAMETER WINDOW_W = 600, WINDOW_H = 600,
1 PENCIL_WIDTH = 16, PENCIL_HEIGHT = 16,
1 PENCIL_XHOT = 1, PENCIL_YHOT = 15

DATA PENCIL_BITS /’0000’X, ’0070’X, ’0000’X, ’0088’X, ’0000’X,
1 ’008C’X, ’0000’X, ’0096’X, ’0000’X, ’0069’X, ’0080’X,
1 ’0030’X, ’0040’X, ’0010’X, ’0020’X, ’0008’X, ’0010’X,
1 ’0004’X, ’0008’X, ’0002’X, ’0008’X, ’0001’X, ’0094’X,
1 ’0000’X, ’0064’X, ’0000’X, ’001E’X, ’0000’X, ’0006’X,
1 ’0000’X, ’0000’X, ’0000’X/

DATA PENCIL_MASK_BITS /’00’X, ’F8’X, ’00’X, ’FC’X, ’00’X,
1 ’FE’X, ’00’X, ’FF’X, ’80’X, ’FF’X, ’C0’X, ’7F’X,
1 ’E0’X, ’3F’X, ’F0’X, ’1F’X, ’F8’X, ’0F’X, ’FC’X,
1 ’07’X, ’FC’X, ’03’X, ’FE’X, ’01’X, ’FE’X, ’00’X,
1 ’7F’X, ’00’X, ’1F’X, ’00’X, ’07’X, ’00’X/

.

.

.
C
C Create the pixmap cursor
C

(continued on next page)

6–35

Drawing Graphics
6.8 Defining Cursors

Example 6–9 (Cont.) Creating a Pixmap Cursor

! PIXMAP = X$CREATE_PIXMAP(DPY, X$ROOT_WINDOW_OF_SCREEN(SCREEN),
1 1, 1, 1)

" CALL X$LOOKUP_COLOR(DPY, X$DEFAULT_COLORMAP_OF_SCREEN(SCREEN),
1 ’BLACK’, COLOR_DUMMY, CURSOR_FOREGROUND)
CALL X$LOOKUP_COLOR(DPY, X$DEFAULT_COLORMAP_OF_SCREEN(SCREEN),
1 ’WHITE’, COLOR_DUMMY, CURSOR_BACKGROUND)

PENCIL = X$CREATE_PIX_FROM_BITMAP_DATA(DPY, PIXMAP, PENCIL_BITS,
1 PENCIL_WIDTH, PENCIL_HEIGHT, 1, 0, 1)
PENCIL_MASK = X$CREATE_PIX_FROM_BITMAP_DATA(DPY, PIXMAP,
1 PENCIL_MASK_BITS, PENCIL_WIDTH, PENCIL_HEIGHT, 1, 0, 1)

$ PENCIL_CURSOR = X$CREATE_PIXMAP_CURSOR(DPY, PENCIL, PENCIL_MASK,
1 CURSOR_FOREGROUND, CURSOR_BACKGROUND, PENCIL_XHOT,
1 PENCIL_YHOT)
CALL X$DEFINE_CURSOR(DPY, WINDOW, PENCIL_CURSOR)

.

.

.

! The client first creates a pixmap into which it will draw bit images for the
cursor and cursor mask. Note that the depth of the pixmap must be one. For
information about creating pixmaps, see Chapter 7.

" The LOOKUP COLOR routine returns the color value associated with the
named color to the CURSOR_FOREGROUND and CURSOR_BACKGROUND
variables. For information about LOOKUP COLOR, see Chapter 5.

The CREATE PIXMAP FROM BITMAP DATA routine writes an image into a
specified pixmap. The client uses the routine to write images for the cursor
and the cursor mask into two pixmaps.

$ The CREATE PIXMAP CURSOR routine uses the two pixmaps to create the
pixmap cursor.

6.8.2 Managing Cursors
To dissociate a cursor from a window, call the UNDEFINE CURSOR routine.
After a call to UNDEFINE CURSOR, the cursor associated with the parent
window is used. If the window is a root window, UNDEFINE CURSOR restores
the default cursor. UNDEFINE CURSOR does not destroy a cursor. Using its
identifier, the client can still refer to the cursor and associate it with a window.

To change the color of a cursor, use the RECOLOR CURSOR routine. If the cursor
is displayed on the screen, the change is immediately visible. For information
about defining foreground and background colors, see Chapter 5. For information
about loading fonts, see Chapter 8.

6.8.3 Destroying Cursors
To destroy a cursor, use the FREE CURSOR routine. FREE CURSOR deletes the
association between the cursor identifier and the specified cursor. It also frees
memory allocated for the cursor.

6–36

7
Using Pixmaps and Images

Xlib enables clients to create and work with both on-screen graphics, such
as lines and cursors, and off-screen images, such as pixmaps. Chapter 4 and
Chapter 6 describe how to work with on-screen graphics objects.

This chapter describes how to work with off-screen graphics resources, including
the following topics:

• Creating and freeing pixmaps

• Creating and managing bitmaps

• Working with images

7.1 Creating and Freeing Pixmaps
A pixmap is an area of memory into which clients can either define an image or
temporarily save part of a screen. Pixmaps are useful for defining cursors and
icons, for creating tiling patterns, and for saving portions of a window that have
been exposed. Additionally, drawing complicated graphics sequences into pixmaps
and then copying the pixmaps to a window are often faster than drawing the
sequences directly to a window.

Use the CREATE PIXMAP routine to create a pixmap. The routine creates a
pixmap of a specified width, height, and depth. If the width or height is zero or
the depth is not supported by the drawable root window, the server returns an
error. The pixmap must be associated with a window, which can be either an
input-output or an input-only window.

Example 7–1 illustrates creating a pixmap to use as a backing store for drawing
the star of Example 6–5.

Example 7–1 Creating a Pixmap

C Create window WINDOW on display DPY, defined
C as follows:
C Position: x = 100,y = 100
C Width = 600
C Height = 600
C GC refers to the graphics context

INTEGER*4 PIXMAP
INTEGER*4 EXPOSE_FLAG

.

.

.
C
C Create graphics context
C

(continued on next page)

7–1

Using Pixmaps and Images
7.1 Creating and Freeing Pixmaps

Example 7–1 (Cont.) Creating a Pixmap

GC_MASK = X$M_GC_FOREGROUND .OR. X$M_GC_BACKGROUND

! XGCVL.X$L_GCVL_FOREGROUND =
1 DEFINE_COLOR(DPY, SCREEN, VISUAL, 3)

XGCVL.X$L_GCVL_BACKGROUND =
1 DEFINE_COLOR(DPY, SCREEN, VISUAL, 3)

GC = X$CREATE_GC(DPY, WINDOW, GC_MASK, XGCVL)
C
C Create the pixmap
C
" PIXMAP = X$CREATE_PIXMAP(DPY, WINDOW, WINDOW_W, WINDOW_H, DEPTH)
CALL X$FILL_RECTANGLE(DPY, PIXMAP, GC, 0, 0, WINDOW_W,

1 WINDOW_H)
CALL X$SET_FOREGROUND(DPY, GC, DEFINE_COLOR(DPY, SCREEN,
1 VISUAL, 2))

$ CALL X$FILL_POLYGON(DPY, PIXMAP, GC, PT_ARR, 6, X$C_COMPLEX,
1 X$C_COORD_MODE_ORIGIN)

.

.

.
C
C Handle events
C

DO WHILE (.TRUE.)

CALL X$NEXT_EVENT(DPY, EVENT)

IF (EVENT.EVNT_TYPE .EQ. X$C_EXPOSE) THEN
CALL X$DRAW_IMAGE_STRING(DPY, WINDOW, GC,

1 150, 25, ’To create a filled polygon, click MB1’)
CALL X$DRAW_IMAGE_STRING(DPY, WINDOW, GC,

1 150, 75, ’To exit, click MB2’)
% IF (EXPOSE_FLAG .EQ. 0) THEN

EXPOSE_FLAG = 1
ELSE

CALL X$COPY_AREA(DPY, PIXMAP, WINDOW, GC, 0, 0,
1 WINDOW_W, WINDOW_H, 0, 0)

CALL X$DRAW_IMAGE_STRING(DPY, WINDOW, GC,
1 150, 75, ’To exit, click MB2’)

END IF
END IF

IF (EVENT.EVNT_TYPE .EQ. X$C_BUTTON_PRESS .AND.
1 EVENT.EVNT_BUTTON.X$L_BTEV_BUTTON .EQ. X$C_BUTTON1) THEN

CALL X$COPY_AREA(DPY, PIXMAP, WINDOW, GC, 0, 0,
1 WINDOW_W, WINDOW_H, 0, 0)

CALL X$DRAW_IMAGE_STRING(DPY, WINDOW, GC,
1 150, 75, ’To exit, click MB2’)

ENDIF

IF (EVENT.EVNT_TYPE .EQ. X$C_BUTTON_PRESS .AND.
1 EVENT.EVNT_BUTTON.X$L_BTEV_BUTTON .EQ. X$C_BUTTON2) THEN

CALL SYS$EXIT(%VAL(1))
END IF

END DO

END

! Pixmaps use only the foreground member of the graphics context to define
color. Because the client is using the pixmap as backing store, which is copied
into the window to repaint exposed areas, both foreground and background

7–2

Using Pixmaps and Images
7.1 Creating and Freeing Pixmaps

members of the graphics context are first defined as the window background
color.

" The pixmap has the width, height, and depth of the window.

FILL RECTANGLE fills the pixmap with the background color of the window.
After filling the pixmap to ensure that pixel values of both the pixmap
and window background are the same, the foreground color is redefined for
graphics operations.

$ After redefining foreground color, the client draws the polygon into the
pixmap. For a description of specifying and filling the polygon, see
Example 6–5.

% At the first window exposure, the client draws only the text into the window.
On subsequent exposures, the client copies the pixmap into the window to
repaint exposed areas. For a description of handling exposure events, see
Chapter 9.

Note that the CREATE PIXMAP routine is not a synchronous routine and does
not return an error if the routine fails to create a pixmap. Although Xlib returns
a resource ID for this routine, it does not indicate that a valid resource was
created by the server. Refer to Section 9.13.3 for a method to check if a pixmap,
or any X resource, has been created.

When a client no longer needs a pixmap, use the FREE PIXMAP routine to free
storage associated with it. FREE PIXMAP first deletes the association between
the pixmap identifier and the pixmap and then frees pixmap storage.

7.2 Creating and Managing Bitmaps
Xlib enables clients to create files of bitmap data and then to use those files to
create either bitmaps or pixmaps. To create a bitmap data file, use the WRITE
BITMAP FILE routine. Example 7–2 illustrates creating a pixmap and writing
the pixmap data into a bitmap data file.

Example 7–2 Creating a Bitmap Data File

(continued on next page)

7–3

Using Pixmaps and Images
7.2 Creating and Managing Bitmaps

Example 7–2 (Cont.) Creating a Bitmap Data File

PT_ARR(1).X$W_GPNT_X = 20
PT_ARR(1).X$W_GPNT_Y = 0
PT_ARR(2).X$W_GPNT_X = 20
PT_ARR(2).X$W_GPNT_Y = 5
PT_ARR(3).X$W_GPNT_X = 20
PT_ARR(3).X$W_GPNT_Y = 10
PT_ARR(4).X$W_GPNT_X = 20
PT_ARR(4).X$W_GPNT_Y = 15
PT_ARR(5).X$W_GPNT_X = 20
PT_ARR(5).X$W_GPNT_Y = 20

.

.

.
C
C Create the pixmap
C

PIXMAP = X$CREATE_PIXMAP(DPY, WINDOW, PIX_WIDTH, PIX_HEIGHT,
1 DEPTH)
CALL X$FILL_RECTANGLE(DPY, PIXMAP, GC, 0, 0, PIX_WIDTH,
1 PIX_HEIGHT)
CALL X$SET_FOREGROUND(DPY, GC, DEFINE_COLOR(DPY, SCREEN,
1 VISUAL, 2))
CALL X$DRAW_LINES(DPY, PIXMAP, GC, PT_ARR, 5, X$C_COORD_MODE)
STATUS = X$WRITE_BITMAP_FILE(DPY, ’BITFILE.DAT’, PIXMAP,
1 20, 20, 0, 0)

The client first creates a pixmap using the method described in Section 7.1 and
then calls the WRITE BITMAP FILE routine to write the pixmap data into the
BITFILE.DAT bitmap file.

To create a bitmap or pixmap from a bitmap data file, use either the CREATE
BITMAP FROM DATA or CREATE PIXMAP FROM DATA routine. Example 7–3
illustrates creating a pixmap from the bitmap data stored in BITFILE.DAT.

Example 7–3 Creating a Pixmap from Bitmap Data
.
.
.

LOGICAL*1 LINES(60)

PARAMETER PIX_WIDTH = 16, PIX_HEIGHT = 16

DATA LINES /’AA’X, ’AA’X, ’0A’X, ’55’X, ’55’X, ’05’X,
1 ’AA’X, ’AA’X, ’0A’X, ’55’X, ’55’X, ’05’X, ’AA’X,
1 ’AA’X, ’0A’X, ’55’X, ’55’X, ’05’X, ’AA’X, ’AA’X,
1 ’0A’X, ’55’X, ’55’X, ’05’X, ’AA’X, ’AA’X, ’0A’X,
1 ’55’X, ’55’X, ’05’X, ’AA’X, ’AA’X, ’0A’X, ’55’X,
1 ’55’X, ’05’X, ’AA’X, ’AA’X, ’0A’X, ’55’X, ’55’X,
1 ’05’X, ’AA’X, ’AA’X, ’0A’X, ’55’X, ’55’X, ’05’X,
1 ’AA’X, ’AA’X, ’0A’X, ’55’X, ’55’X, ’05’X, ’AA’X,
1 ’AA’X, ’0A’X, ’55’X, ’55’X, ’05’X/

.

.

.

C
C Create the pixmap
C

(continued on next page)

7–4

Using Pixmaps and Images
7.2 Creating and Managing Bitmaps

Example 7–3 (Cont.) Creating a Pixmap from Bitmap Data

PIX_FOREGROUND = XGCVL.X$L_GCVL_FOREGROUND
PIX_BACKGROUND = XGCVL.X$L_GCVL_BACKGROUND
PIXMAP = X$CREATE_PIX_FROM_BITMAP_DATA(DPY, WINDOW, LINES,
1 PIX_WIDTH, PIX_HEIGHT, PIX_FOREGROUND,
1 PIX_BACKGROUND, DEPTH)
CALL X$SET_WINDOW_BACKGROUND_PIXMAP(DPY, WINDOW, PIXMAP)

.

.

.

The client uses the pixmap to define window background.

7.3 Working with Images
Instead of managing images directly, clients perform operations on them by using
the image data structure, which includes a pointer to data such as the LINES
array defined in Example 7–3. In addition to the image data, the image data
structure includes pointers to client-defined functions that perform the following
operations:

• Destroying an image

• Getting a pixel from the image

• Storing a pixel in the image

• Extracting part of the image

• Adding a constant to the image

If the client has not defined a function, the corresponding Xlib routine is called by
default.

Figure 7–1 illustrates the data structure.

Figure 7–1 Image Data Structure

x$l_imag_width 0

x$l_imag_height 4

x$l_imag_xoffset 8

x$l_imag_format 12

x$a_imag_data 16

x$l_imag_byte_order 20

x$l_imag_bitmap_unit 24

x$l_imag_bitmap_bit_order 28

x$l_imag_bitmap_pad 32

(continued on next page)

7–5

Using Pixmaps and Images
7.3 Working with Images

x$l_imag_depth 36

x$l_imag_bytes_per_line 40

x$l_imag_bits_per_pixel 44

x$l_imag_red_mask 48

x$l_imag_green_mask 52

x$l_imag_blue_mask 56

x$a_imag_obdata 60

x$a_imag_create_image 64

x$a_imag_destroy_image 68

x$a_imag_get_pixel 72

x$a_imag_put_pixel 76

x$a_imag_sub_image 80

x$a_imag_add_pixel 84

Table 7–1 describes the members of the data structure.

Table 7–1 Image Data Structure Members

Member Name Contents

X$L_IMAG_WIDTH Specifies the width of the image.

X$L_IMAG_HEIGHT Specifies the height of the image.

X$L_IMAG_OFFSET Specifies the number of pixels offset in the x direction.
Specifying an offset permits the server to ignore the beginning
of scanlines and rapidly display images when Z pixmap format
is used.

X$L_IMAG_FORMAT Specifies whether the data is stored in XY pixmap or Z pixmap
format. The following flags facilitate specifying data format:

Flag Name Description

x$c_xy_bitmap A single bitmap representing
one plane

x$c_xy_pixmap A set of bitmaps representing
individual planes

x$c_z_pixmap Data organized as a list of pixel
values viewed as a horizontal
row

(continued on next page)

7–6

Using Pixmaps and Images
7.3 Working with Images

Table 7–1 (Cont.) Image Data Structure Members

Member Name Contents

X$A_IMAG_DATA Specifies the address of the image data.

X$L_IMAG_BYTE_ORDER Indicates whether the least significant or the most significant
byte is first.

X$L_IMAG_BITMAP_UNIT Specifies whether the bitmap is organized in units of 8-, 16-, or
32-bits.

X$L_IMAG_BITMAP_BIT_ORDER Specifies whether the bitmap order is least or most significant.

X$L_IMAG_BITMAP_PAD Specifies whether padding in XY format or Z format should be
done in units of 8-, 16-, or 32-bits.

X$L_IMAG_DEPTH Specifies the depth of the image.

X$L_IMAG_BYTES_PER_LINE Specifies the bytes per line to be used as an accelerator.

X$L_IMAG_BITS_PER_PIXEL Indicates for Z format the number of bits per pixel.

X$L_IMAG_RED_MASK Specifies the red value of Z format.

X$L_IMAG_GREEN_MASK Specifies the green value of Z format.

X$L_IMAG_BLUE_MASK Specifies blue values of Z format.

X$A_IMAG_OBDATA Specifies a data structure that contains object routines.

X$A_IMAG_CREATE_IMAGE Specifies a client-defined function that creates an image.

X$A_IMAG_DESTROY_IMAGE Specifies a client-defined function that destroys an image.

X$A_IMAG_GET_PIXEL Specifies a client-defined function that gets the value of a pixel
in the image.

X$A_IMAG_PUT_PIXEL Specifies a client-defined function that changes the value of a
pixel in the image.

X$A_IMAG_SUB_IMAGE Specifies a client-defined function that creates a new image
from an existing one.

X$A_IMAG_ADD_PIXEL Specifies a client-defined function that increments each pixel
value in the image by a constant.

7–7

Using Pixmaps and Images
7.3 Working with Images

To create an image, use either the CREATE IMAGE or the GET IMAGE routine.
CREATE IMAGE initializes an image data structure, including a reference to the
image data. For example, the following call creates an image data structure that
points to the image data LINES, illustrated in Example 7–3:

RECORD /X$IMAGE/ IMAGE
.
.
.

PARAMETER WINDOW_W = 600, WINDOW_H = 600,
1 PIX_WIDTH = 16, PIX_HEIGHT = 16,
1 BITMAP_PAD 16, BYTES_PER_LINE 16

.

.

.
STATUS = X$CREATE_IMAGE(DPY, VISUAL, DEPTH, X$C_Z_PIXMAP,
1 0, LINES, PIX_WIDTH, PIX_HEIGHT, BITMAP_PAD,
1 BYTES_PER_LINE, IMAGE)
IF (STATUS .EQ. 0) THEN

WRITE(6,*) ’Image not created!’
CALL SYS$EXIT(%VAL(1))

ENDIF
.
.
.

Note that the CREATE IMAGE routine does not allocate storage space for the
image data.

To create an image from a drawable, use the GET IMAGE routine. In the
following example, the client creates an image from a pixmap:

PARAMETER X_ORIGIN = 0, Y_ORIGIN = 0,
1 PIX_WIDTH = 16, PIX_HEIGHT = 16

.

.

.
IMAGE = X$GET_IMAGE(DPY, PIXMAP, X_ORIGIN, Y_ORIGIN,
1 PIX_WIDTH, PIX_HEIGHT, XGCVL.X$L_GCVL_PLANE_MASK,
1 X$C_Z_PIXMAP)

.

.

.

When the client calls the GET IMAGE routine and the drawable is a window,
the window must be mapped. In addition, if there are no inferiors or overlapping
windows, the specified rectangle of the window should be fully visible on the
screen and wholly contained within the outside edges of the window. In other
words, an error results if the GET IMAGE routine is called to get a portion of a
window that is off-screen.

7–8

Using Pixmaps and Images
7.3 Working with Images

To transfer an image from memory to a drawable, use the PUT IMAGE routine.
In the following example, the client transfers the image from memory to a
window:

PARAMETER SRC_X = 0, SRC_Y = 0,
1 DST_X = 200, DST_Y = 200,
1 PIX_WIDTH = 16, PIX_HEIGHT = 16

.

.

.
CALL X$PUT_IMAGE(DPY, WINDOW, GC, IMAGE, SRC_X, SRC_Y,
1 DST_X, DST_Y, PIX_WIDTH, PIX_HEIGHT)

.

.

.

The call transfers the entire image, which was created in the call to GET IMAGE,
from memory to coordinates (200, 200) in the window.

As the description of the image data structure indicates, Xlib enables clients to
store an image in the following ways:

• As a bitmap—XY bitmap format stores the image as a two-dimensional array.
Figure 7–2 illustrates XY bitmap format.

• As a set of bitmaps—XY pixmap format stores the image as a stack of
bitmaps. Figure 7–3 illustrates XY pixmap format.

• As a list of pixel values—Z pixmap format stores the image as a list of pixel
values viewed as a horizontal row. Each example of creating an image uses Z
pixmap format. Figure 7–4 illustrates scanline order.

Figure 7–2 XY Bitmap Format

1 2 3

4

7

5 6

8 9

ZK−0157A−GE

7–9

Using Pixmaps and Images
7.3 Working with Images

Figure 7–3 XY Pixmap Format

1
2 2 2

1 1

1

2

1

1

2

2

1 2 3

4 5 6

7 8 9

ZK−0155A−GE

Figure 7–4 Z Format

1
2 2 2

1

1

2

1

2

2

1

4

7

ZK−0156A−GE

5 6

8 9

1

2

1

3

Xlib includes routines to change images by manipulating their pixel values and
creating new images out of subsections of existing images. Table 7–2 lists these
routines and their use. Clients can override these routines by defining functions
referred to in the image data structure.

Table 7–2 Routines That Change Images

Routine Description

ADD PIXEL Increments each pixel in an image by a constant value

GET PIXEL Returns the pixel value of an image

PUT PIXEL Sets the pixel value of an image

SUB IMAGE Creates a new image out of a subsection of an existing image

When a client no longer needs an image, use the DESTROY IMAGE routine to
deallocate memory associated with the image data structure.

7–10

8
Writing Text

This chapter describes writing text using Xlib. The chapter includes the following
topics:

• Characters and fonts—A description of the composition of characters and
types of fonts and their components

• Specifying fonts—How to load a font and associate it with a graphics context

• Getting information about fonts—How to get information about fonts and text

• Freeing font resources—How to free memory associated with fonts

• Computing text size—How to determine the size of text

• Drawing text—How to write text on the screen

• Using fonts efficiently—How to speed up font searches and other hints

VMS DECwindows provides a font compiler to enable programmers to convert
ASCII files into binary form. For a guide to using the font compiler, see
Appendix A.

8.1 Characters and Fonts
The smallest unit of text the server displays on a screen is a character. Pixels
that form a character are enclosed within a bounding box that defines the
number of pixels the server turns on or off to represent the character on the
screen. For example, Figure 8–1 illustrates the bounding box that encloses the
character y.

The server turns each pixel within the bounding box either on or off, depending
on the character. Consequently, bounding box size affects performance. Larger
bounding boxes require more server time to process than do smaller boxes.

The character is positioned relative to the baseline and the character origin.
The baseline is logically viewed as the x-axis that runs just below nondescending
characters. The character origin is a point along the baseline. The left
bearing of the character is the distance from the origin to the left edge of the
bounding box; the right bearing is the distance from the origin to the right
edge. Ascent and descent measure the distance from the baseline to the top and
bottom of the bounding box, respectively. Character width is the distance from
the origin to the next character origin (�� ����	
 �).

8–1

Writing Text
8.1 Characters and Fonts

Figure 8–1 Composition of a Character

Character Width

Right Bearing

Left Bearing

Baseline

Descent

Ascent

−7

−6

−5

−4

−3

−2

−1

7

6

5

4

3

2

1

0

−1

−2

−3

−4

0

1

2

3

4

Origin of
Character

Character
Origin of Next

ZK−0290A−GE

Bounding
Box

Figure 8–2 illustrates that the bounding box of a character can extend beyond
the character origin. The bounding box of the slash extends one pixel to the left
of the origin of the slash, giving the character a left bearing of ��. The slash is
also unusual because its bounding box extends to the right of the next character.
The width of the slash, measured from origin to origin, is 5; the right bearing,
measured from origin to the right edge of the bounding box, is 6.

8–2

Writing Text
8.1 Characters and Fonts

Figure 8–2 Composition of a Slash

Bounding Box of Slash

ZK−0289A−GE

Origin of Next CharacterOrigin of Slash

The left bearing, right bearing, ascent, descent, and width of a character are its
character metrics. Xlib maintains information about character metrics in a
char struct data structure. Figure 8–3 illustrates the data structure.

Figure 8–3 Char Struct Data Structure

x$w_char_lbearingx$w_char_rbearing 0

xw_char_widthxw_char_ascent 4

x$w_char_descentx$w_char_attributes 8

Table 8–1 describes members of the char struct data structure. Any member
of the data structure can have a negative value, except the X$W_CHAR_
ATTRIBUTES member.

8–3

Writing Text
8.1 Characters and Fonts

Table 8–1 Char Struct Data Structure Members

Member Name Contents

X$W_CHAR_LBEARING Distance from the origin to the left edge of the
bounding box.

X$W_CHAR_RBEARING Distance from the origin to the right edge of the
bounding box.

X$W_CHAR_WIDTH Distance from the current origin to the origin of
the next character. Text written right-to-left, such
as Arabic, uses a negative width to place the next
character to the left of the current origin.

X$W_CHAR_ASCENT Distance from the baseline to the top of the
bounding box.

X$W_CHAR_DESCENT Distance from the baseline to the bottom of the
bounding box.

X$W_CHAR_ATTRIBUTES Attributes defined in the bitmap distribution
format file. A character is not guaranteed to have
any attributes.

A font is a group of characters that have the same style and size. Xlib supports
both fixed and proportional fonts. A fixed font has equal metrics. For example,
all characters in the font have the same value for left bearing. Consequently,
the bounding box for all characters is the same. All metrics in a proportional
font can vary from character to character. A monospaced font is a special
type of proportional font in which only the width of all characters must be equal.
Bounding boxes of characters in a monospaced font vary depending on the size
of characters. If the same font is compiled as a monospaced font and a fixed
font, the bounding boxes of the monospaced font are typically smaller than the
bounding box that encloses fixed-font characters. For information about compiling
fonts, see Appendix A.

Xlib uses indexes to refer to characters that compose a font. The indexes, each
defined by a byte, are arranged in one or more rows of up to 256 indexes. A font
can contain as many as 256 rows of character indexes, used contiguously. Fonts
seldom use all possible indexes.

For example, the font illustrated in Figure 8–4 comprises 219 characters in
columns 32 through 250, one column for each character index. Columns 1
through 31 and 251 through 256 are undefined. The first character of the font
is located at column 32; the last character is located at column 250. Because all
characters are defined in one row of 256 indexes, the font is a single-row font.
In the illustration, character ‘‘A’’ is located at column 65.

8–4

Writing Text
8.1 Characters and Fonts

Figure 8–4 Single-Row Font

256 250 65 32 1

"A"Last Character First Character

ZK−0274A−GE

Multiple-row fonts, such as Kanji, comprise more characters than can be
indexed by a single row of 256 bytes. Figure 8–5 illustrates the configuration
of a multiple-row font. Byte 1 refers to the row. Byte 2 refers to the column in
the row. In Figure 8–5, the character is located at column 36 in row 17. Note
that each row of a multiple-row font has the same number of undefined bytes at
the beginning and end. In each row, characters begin at column 32 and end at
column 250.

Figure 8–5 Multiple-Row Font

1

2

Byte 1

Byte 2

0 10 0 10 0 0

0 0 1 0 0 0 01

17

ZK−0273A−GE

256 250 36 35 34 33 32 2 1

8 1

First Character

15

16

255

256

Char 2B Structure

Last Character

Xlib provides a char 2B data structure to enable clients to index multiple-row
fonts easily. Figure 8–6 illustrates the data structure.

Figure 8–6 Char 2B Data Structure

8–5

Writing Text
8.1 Characters and Fonts

xt_ch2b_byte1xt_ch2b_byte2

Table 8–2 describes members of the data structure.

Table 8–2 Char 2B Data Structure Members

Member Name Contents

X$T_CHAR2B_BYTE1 Row in which the character is indexed

X$T_CHAR2B_BYTE2 Position of the character in the row

Xlib provides clients a font struct data structure to record the characteristics of
single-row and multiple-row fonts. Figure 8–7 illustrates the font struct data
structure.

Figure 8–7 Font Struct Data Structure

x$a_fstr_ext_data 0

x$l_fstr_fid 4

x$l_fstr_direction 8

x$l_fstr_min_char_or_byte2 12

x$l_fstr_max_char_or_byte2 16

x$l_fstr_min_byte1 20

x$l_fstr_max_byte1 24

x$l_fstr_all_chars_exist 28

x$l_fstr_default_char 32

x$l_fstr_n_properties 36

x$a_fstr_properties 40

x$a_fstr_min_bounds 44

x$a_fstr_max_bounds 48

x$a_fstr_per_char 52

x$l_fstr_ascent 56

x$l_fstr_descent 60

8–6

Writing Text
8.1 Characters and Fonts

Table 8–3 describes members of the data structure.

Table 8–3 Font Struct Data Structure Members

Member Name Contents

X$A_FSTR_EXT_DATA Data used by extensions.

X$L_FSTR_FID Identifier of the font.

X$L_FSTR_DIRECTION Hint about the direction in which the font is painted. The
direction can be either left-to-right, specified by the constant
x$c_font_left_to_right, or right-to-left, specified by the
constant x$c_font_right_to_left.

X$L_FSTR_MIN_CHAR_OR_BYTE2 First character in the font.

X$L_FSTR_MAX_CHAR_OR_BYTE2 Last character in the font.

X$L_FSTR_MIN_BYTE1 First row that exists.

X$L_FSTR_MAX_BYTE1 Last row that exists.

X$L_FSTR_ALL_CHARS_EXIST If the value of this member is true, all characters in the
array pointed to by X$A_FSTR_PER_CHAR have nonzero
bounding boxes.

X$L_FSTR_DEFAULT_CHAR Character used when an undefined or nonexistent character
is printed.

X$L_FSTR_N_PROPERTIES Number of properties associated with the font.

X$A_FSTR_PROPERTIES Address of an array of font prop data structures that define
font properties. For a description of the font prop data
structure, see Section 8.3.

X$A_FSTR_MIN_BOUNDS Minimum metrics values of all the characters in the font.
The metrics define the left and right bearings, ascent and
descent, and width of characters.

For a description of the use of X$A_FSTR_MIN_BOUNDS,
see X$A_FSTR_MAX_BOUNDS.

X$A_FSTR_MAX_BOUNDS Maximum metrics values of all the characters in the font.

X$A_FSTR_PER_CHAR Address of an array of char struct data structures that
define each character in the font. For a fixed font, the value
of this member is null.

X$L_FSTR_ASCENT Distance from the baseline to the top of the bounding box.
With X$L_FSTR_DESCENT, X$L_FSTR_ASCENT is used
to determine line spacing.

X$L_FSTR_DESCENT The distance from the baseline to the bottom of the
bounding box. With XL_FSTR_ASCENT, XL_FSTR_
DESCENT is used to determine line spacing.

As Table 8–3 indicates, Xlib records metrics for each character in an array of
char struct data structures specified by the font struct X$A_FSTR_PER_CHAR
member. The array comprises as many char struct data structures as there
are characters in the font. However, the indexes that refer to the location of
characters in the array differs from the indexes to characters in the font. For
example, 32 indexes the first character of the font illustrated in Figure 8–8,
whereas 0 indexes its char struct data structure in the array.

8–7

Writing Text
8.1 Characters and Fonts

Figure 8–8 Indexing Single-Row Font Character Metrics

256 250 65 32 1

"A"

Last Character

ZK−0271A−GE

First Character

Char Struct

Char Struct

Char Struct

Char Struct 219

34

2

1 Defines Metrics of First Character (32)

Defines Metrics of Second Character (33)

Defines Metrics of "A" (65)

Defines Metrics of Last Character

Array of Char Struct Structures

To locate the char struct data structure that defines the metrics of any character
in a single-row font, subtract the value of the column that indexes the first
character in the font, specified by X$L_FSTR_MIN_CHAR_OR_BYTE_2, from the
position of the character. Then add 1 to this number. For instance, in Figure 8–8
the metrics of character ‘‘A’’ are located at index 34 in the array of char struct
data structures specified by the X$A_FSTR_PER_CHAR member.

To locate the char struct data structure that defines the metrics of a character of
a mulitple-row font, use the following formula to adjust for both the number of
rows in the font and the position of the character in a row:

���� � ���� ��� � �	�������� �� � ��������� �� ������� ���� ������

� is equal to the last column minus the first column plus 1.

For example, the array index of the character specified in Figure 8–9 is 443.

8–8

Writing Text
8.1 Characters and Fonts

Figure 8–9 Indexing Multiple-Row Font Character Metrics

1

2

Byte 1

Byte 2

0 10 0 10 0 0

0 0 1 0 0 0 01

16

15

17

Last Character

1

219

Defines Metrics of Character at Row 15, Column 32

Defines Metrics of Character in Row 15, Column 250

ZK−0272A−GE

First Character

256 250 36 35 34 33 32 2 1

8 1
Char 2B Structure

256

255

Char Struct

Char Struct

Char Struct

Char Struct

Char Struct

220 Defines Metrics of Character in Row 16, Column 32

52997 Defines Metrics of Last Character

443 Defines Metrics of Char 2B Character

Array of Char Struct Structures

Font Characters

Like windows, fonts may have properties associated with them. However, font
properties differ from window properties. Window properties are data associated
with windows; font properties describe font characteristics, such as spacing
between words. When the font is compiled, its properties are defined in an array
of font prop data structures.

Just as atoms name window properties, atoms name font properties. If the
atoms are predefined, they have associated literals. For example, the predefined
atom that identifies the height of capitalized letters is referred to by the literal
X$C_XA_CAP_HEIGHT.

8–9

Writing Text
8.1 Characters and Fonts

When working with properties, clients must know beforehand how to interpret
the font property identified by an atom. Figure 8–10 illustrates this concept.

The server maintains an atom table for font properties. The table associates
values with strings. For example, the atom table illustrated in Figure 8–10
defines two atoms. One associates the string FULL_NAME with the value 41.
The other associates the string CAP_HEIGHT with the value 42. Notice that the
string in the atom table is different from X$C_XA_FULL_NAME, the literal that
refers to the atom.

Both atoms uniquely identify different types of data. FULL_NAME identifies
string data that names the font. CAP_HEIGHT identifies integer data that
defines the size of capitalized letters.

Although the atoms identify different types of data, the property table illustrated
in Figure 8–10 associates both atoms with integers. The integer associated with
CAP_HEIGHT defines without further interpretation the height of capitalized
letters. However, the integer listed with FULL_NAME is an atom value. This
integer, 90, corresponds to a value in the atom table that has an associated
string, HELVETICA BOLD. To use the string, the client must know that the
value associated with the atom is itself an atom value.

8–10

Writing Text
8.1 Characters and Fonts

Figure 8–10 Atoms and Font Properties

Value String

FULL_NAME

CAP_HEIGHT

HELVETICA BOLD

Array of Font Prop Structures

Font Prop (n)

Font Prop (n+1)

ZK−0320A−GE

90

41

42

41

42

90

10

Atom Value

Atom Table

Literals

X$C_XA_FULL_NAME

X$C_XA_CAP_HEIGHT

Xlib lists each font property and its corresponding atom in a font prop data
structure. The property value table in Figure 8–10 is an array of font prop data
structures.

Figure 8–11 illustrates the font prop data structure.

8–11

Writing Text
8.1 Characters and Fonts

Figure 8–11 Font Prop Data Structure

x$l_fntp_name 0

x$l_fntp_card32 4

Table 8–4 describes members of the data structure.

Table 8–4 Font Prop Data Structure Members

Member Name Contents

X$L_FNTP_NAME String of characters that names the property

X$L_FNTP_CARD32 A 32-bit value that defines the font property

8.2 Specifying Fonts
To specify a font for writing text, first load the font and then associate the loaded
font with a graphics context. The font files are stored in:

• DECW$SYSCOMMON:[SYSFONT.DECW.75DPI]

• DECW$SYSCOMMON:[SYSFONT.DECW.100DPI]

• DECW$SYSCOMMON:[SYSFONT.DECW.COMMON]

Appendix C lists VMS DECwindows font names.

To load a font, use either the LOAD FONT or the LOAD QUERY FONT routine.
LOAD FONT loads the specified font and returns a font identifier. LOAD QUERY
FONT loads the specified font and returns information about the font to a font
struct data structure.

Because LOAD QUERY FONT returns information to a font struct data structure,
calling the routine takes significantly longer than calling LOAD FONT, which
returns only the font identifier.

When using either routine, pass the display identifier and font name. Xlib font
names consist of the following fields, in left-to-right order:

1. Foundry that supplied the font, or the font designer

2. Typeface family of the font

3. Weight (Book, Demi, Medium, Bold, Light)

4. Slant (R (roman), I (italic), O (oblique))

5. Width per horizontal unit of the font (Normal, Wide, Double Wide, Narrow)

6. Additional style font identifier

7. Pixel font size

8. Point size (80, 100, 120, 140, 180, 240) in decipoints (for example, 120 means
12.0 points)

9. X resolution in pixels (dots) per inch

8–12

Writing Text
8.2 Specifying Fonts

10. Y resolution in pixels (dots) per inch

11. Spacing (M (monospaced), P (proportional), or C (character cell))

12. Average width of all characters in the font in decipixels

13. Character set registry

14. Character set encoding

For more information about font names, see the X Logical Font Description
(XLFD) in the X Window System.

The full XLFD name of a representative font is as follows:

-Adobe-ITC Avant Garde Gothic-Book-R-Normal--14-100-100-100-P-80-ISO8859-1

The font foundry is Adobe. The font family is ITC Avant Garde Gothic. Font
weight is Book, font slant is R (roman), and width between font units is Normal.

The pixel size is 14 and the decipoint size is 100. (The actual point size is 10.)

Horizontal and vertical resolution in dots per inch (dpi) is 100. When the dpi is
100, 14 pixels are required to be a 10-point font.

The font is proportionally spaced. Average width of characters is 80 decipixels.
Character encoding is ISO Latin-1.

The following designates the full XLFD name of the comparable font designed for
a 75 dpi monitor:

-Adobe-ITC Avant Garde Gothic-Book-R-Normal--10-100-75-75-P-59-ISO8859-1

Unlike the previous font, this font requires only 10 pixels to be 10 points. Note
that this font differs from the previous font only in pixel size, resolution, and
average character width.

Xlib enables clients to substitute a question mark for a single character and an
asterisk (*) for one or more fields in a font name. The following illustrates using
the asterisk to specify a 10-point ITC Avant Garde Gothic font of book weight,
roman style, and normal spacing for display on either 75 or 100 dpi monitors:

-Adobe-ITC Avant Garde Gothic-Book-R-Normal--*-100-*-*-P-*-ISO8859-1

See Section 8.7 for more information about using asterisks in font names.

The following example illustrates loading the 10-point font:

CHARACTER*58 FONT_NAME
DATA FONT_NAME
1 /’-Adobe-ITC Avant Garde Gothic-Book-R-Normal--*-100-*-*-P-*-ISO8859-1’/

.

.

.

FONT = X$LOAD_FONT(DPY, FONT_NAME)
.
.
.

After loading a font, associate it with a graphics context by calling the SET FONT
routine. Specify the font identifier that either LOAD FONT or LOAD QUERY
FONT returned and a graphics context, as in the following example:

CALL X$SET_FONT(DPY, GC, FONT)

The call associates FONT with GC.

8–13

Writing Text
8.2 Specifying Fonts

When loading fonts, note that the LOAD FONT routine is an asychronous routine
and does not return an error if the call is unsuccessful. Use one of the following
three methods to determine the validity of the font id:

• Force the error by calling the SYNC routine and using an error handler. (For
more information about this method, refer to Section 9.13.3.)

• Check that the font exists by calling the LIST FONTS routine, and load the
font by calling the LOAD FONT routine.

• Use the LOAD QUERY FONT routine. LOAD QUERY FONT is a
synchronous routine that loads the font, returns a pointer to a font struct
data structure, and checks that the call is successful. However, note that
because LOAD QUERY FONT returns information to a font struct data
structure, calling the routine takes significantly longer than calling LOAD
FONT, which returns only the font identifier.

8.3 Getting Information About a Font
Xlib provides clients with routines that list available fonts, get font information
with or without character metrics, and return the value of a specified font
property.

To get a list of available fonts, use the LIST FONTS routine, specifying the font
searched for.

LIST FONTS returns a list of available fonts that match the specified font name.

To receive both a list of fonts and information about the fonts, use the LIST
FONTS WITH INFO routine. LIST FONTS WITH INFO returns both a list of
fonts that match the font specified by the client and the address of a font struct
data structure for each font listed. Each data structure contains information
about the font. The data structure does not include character metrics in the
X$A_FSTR_PER_CHAR member. For a description of the information returned,
see Table 8–3.

To receive information about a font, including character metrics, use the QUERY
FONT routine. Because the server returns character metrics, calling QUERY
FONT takes approximately eight times longer than calling LIST FONTS WITH
INFO. To get the value of a specified property, use the GET FONT PROPERTY
routine.

Although a font is not guaranteed to have any properties, it should have at least
the properties described in Table 8–5. The table lists properties by atom name
and data type. For information about properties, see Section 3.5.

Table 8–5 Atom Names of Font Properties

Atom Data Type Description of the Property

X$C_XA_MIN_SPACE unsigned Minimum spacing between words, in pixels.

X$C_XA_NORMAL_SPACE unsigned Normal spacing between words, in pixels.

X$C_XA_MAX_SPACE unsigned Maximum spacing between words, in pixels.

X$C_XA_END_SPACE unsigned Additional spacing at the end of a sentence,
in pixels.

(continued on next page)

8–14

Writing Text
8.3 Getting Information About a Font

Table 8–5 (Cont.) Atom Names of Font Properties

Atom Data Type Description of the Property

X$C_XA_SUPERSCRIPT_X signed With X$C_XA_SUPERSCRIPT_Y, the
offset from the character origin where
superscripts should begin, in pixels. If the
origin is [x, y], superscripts should begin at
the following coordinates:

x + X$C_XA_SUPERSCRIPT_X,
y - X$C_XA_SUPERSCRIPT_Y

X$C_XA_SUPERSCRIPT_Y signed With X$C_XA_SUPERSCRIPT_X, the
offset from the character origin where
superscripts should begin, in pixels. See the
description under X$C_XA_SUPERSCRIPT_
X.

X$C_XA_SUBSCRIPT_X signed With X$C_XA_SUBSCRIPT_Y, the offset
from the character origin where subscripts
should begin, in pixels. If the origin is [x,
y], subscripts should begin at the following
coordinates:

x + X$C_XA_SUBSCRIPT_X,
y + X$C_XA_SUBSCRIPT_Y

X$C_XA_SUBSCRIPT_Y signed With X$C_XA_SUBSCRIPT_X, the offset
from the character origin where subscripts
should begin, in pixels. See the description
under X$C_XA_SUBSCRIPT_X.

X$C_XA_UNDERLINE_POSITION signed The y offset from the baseline to the top of
an underline, in pixels. If the baseline
y-coordinate is y, then the top of the
underline is at y + X$C_XA_UNDERLINE_
POSITION.

X$C_XA_UNDERLINE_THICKNESS unsigned Thickness of the underline, in pixels.

X$C_XA_STRIKEOUT_ASCENT signed With X$C_XA_STRIKEOUT_DESCENT,
the vertical extent for boxing or voiding
characters, in pixels. If the baseline y-
coordinate is y, the top of the strikeout box
is y - X$C_XA_STRIKEOUT_ASCENT. The
height of the box is as follows:

X$C_XA_STRIKEOUT_ASCENT +
X$C_XA_STRIKEOUT_DESCENT

X$C_XA_STRIKEOUT_DESCENT signed With X$C_XA_STRIKEOUT_ASCENT,
the vertical extent for boxing or voiding
characters, in pixels. See the description
under X$C_XA_STRIKEOUT_ASCENT.

X$C_XA_ITALIC_ANGLE signed The angle of the dominant staffs of
characters in the font, in degrees scaled
by 64, relative to the 3 o’clock position
from the character origin. Positive values
indicate counterclockwise motion.

X$C_XA_X_HEIGHT signed One ex, as in TeX, but expressed in units of
pixels. Often the height of lowercase x.

(continued on next page)

8–15

Writing Text
8.3 Getting Information About a Font

Table 8–5 (Cont.) Atom Names of Font Properties

Atom Data Type Description of the Property

X$C_XA_QUAD_WIDTH signed One em, as in TeX, but expressed in units of
pixels. Often the width of the digits 0 to 9.

X$C_XA_CAP_HEIGHT signed The y offset from the baseline to the top
of capital letters, ignoring ascents. If the
baseline y-coordinate is y, the top of the
capitals is at y - X$C_XA_CAP_HEIGHT.

X$C_XA_WEIGHT unsigned Weight or boldness of the font, expressed as
a value between 0 and 1000.

X$C_XA_POINT_SIZE unsigned Point size of the font at ideal resolution,
expressed in 1/10 points.

X$C_XA_RESOLUTION unsigned Number of pixels per point, expressed in
1/100, at which the font was created.

X$C_XA_COPYRIGHT unsigned Copyright date of the font.

X$C_XA_NOTICE unsigned Copyright date of the font name.

X$C_XA_FONT_NAME atom Font name. For example: -Adobe-
Helvetica-Bold-R-Normal--10-100-
75-75-P-60-ISO8859-1

X$C_XA_FAMILY_NAME atom Name of the font family. For example:
Helvetica

X$C_XA_FULL_NAME atom Full name of the font. For example:
Helvetica Bold

8.4 Freeing Font Resources
Because allocating fonts requires large amounts of memory, it is important to
deallocate these resources when the client no longer needs them. Table 8–6 lists
complimentary font routines and the result when the deallocating routine is
called.

Table 8–6 Complimentary Font Routines

Allocating Routine Deallocating Routine Result

LOAD FONT UNLOAD FONT Deletes the association between the font resource
ID and the specified font and unloads it from
server memory

LOAD QUERY FONT FREE FONT Unloads and frees the storage used by the font
structure

UNLOAD FONT Unloads the font from server memory

Note that because the routines LIST FONTS and LIST FONT WITH INFO return
the font information via a single descriptor, the deallocating routine FREE FONT
NAMES is not needed.

8–16

Writing Text
8.5 Computing the Size of Text

8.5 Computing the Size of Text
Use the TEXT WIDTH and TEXT WIDTH 16 routines to compute the width of
8-bit and 2-byte strings, respectively. The routines return the sum of the width of
each character in the specified string. To compute the bounding box of a specified
8-bit string, use either the TEXT EXTENTS or QUERY TEXT EXTENTS routine.
Both TEXT EXTENTS and QUERY TEXT EXTENTS return the direction hint,
ascent, descent, and overall size of the character string being queried.

TEXT EXTENTS passes to Xlib the font struct data structure returned by a
previous call to either LOAD QUERY FONT or QUERY FONT. QUERY TEXT
EXTENTS queries the server for font information, which the server returns
to a font struct data structure. Because Xlib can process TEXT EXTENTS
locally, without querying the server for font metrics, calling TEXT EXTENTS is
significantly faster than calling QUERY TEXT EXTENTS.

To compute the bounding boxes of a specified 2-byte string, use either the TEXT
EXTENTS 16 or the QUERY TEXT EXTENTS 16 routine. Both routines return
information identical to information returned by TEXT EXTENTS and QUERY
TEXT EXTENTS. As with TEXT EXTENTS, calling TEXT EXTENTS 16 is
significantly faster than calling QUERY TEXT EXTENTS 16 because Xlib can
process the call without making the round-trip to the server.

8.6 Drawing Text
Xlib enables clients to draw text stored in text data structures, text whose
foreground bits only are displayed, and text whose foreground and background
bits are displayed.

To draw 8-bit or 2-byte text stored in data structures, use either the DRAW TEXT
or the DRAW TEXT 16 routine. Xlib includes text item and text item 16 data
structures to enable clients to store text. Figure 8–12 illustrates the text item
data structure.

Figure 8–12 Text Item Data Structure

x$a_text_chars 0

x$l_text_n_chars 4

x$l_text_delta 8

x$l_text_font 12

8–17

Writing Text
8.6 Drawing Text

Table 8–7 describes members of the text item data structure.

Table 8–7 Text Item Data Structure Members

Member Name Contents

X$A_TEXT_CHARS Address of a string of characters.

X$L_TEXT_N_CHARS Number of characters in the string.

X$L_TEXT_DELTA Horizontal spacing before the start of the string.
Spacing is always added to the string origin and is not
dependent on the font used.

X$L_TEXT_FONT Identifier of the font used to print the string. If the
value of this member is x$c_none, the server uses the
current font in the GC data structure. If the member
has a value other than x$c_none, the specified font is
stored in the GC data structure.

Figure 8–13 illustrates the text item 16 data structure.

Figure 8–13 Text Item 16 Data Structure

x$a_tx16_chars 0

x$l_tx16_n_chars 4

x$l_tx16_delta 8

x$l_tx16_font 12

Table 8–8 describes members of the text item 16 data structure.

Table 8–8 Text Item 16 Data Structure Members

Member Name Contents

X$A_TX16_CHARS Address of a string of characters stored in a char 2B data
structure. For a description of the char 2B data structure,
see Figure 8–6.

X$L_TX16_N_CHARS Number of characters in the string.

X$L_TX16_DELTA Horizontal spacing before the start of the string. Spacing
is always added to the string origin and is not dependent
on the font used.

X$L_TX16_FONT Identifier of the font used to print the string. If the value
of this member is x$c_none, the server uses the current
font in the GC data structure. If the member has a value
other than x$c_none, the specified font is stored in the GC
data structure.

Xlib processes each text item in turn. Each character image, as defined by the
font in the graphics context, is treated as an additional mask for a fill operation
on the drawable. The drawable is modified only where the font character has a
bit set to 1.

8–18

Writing Text
8.6 Drawing Text

Example 8–1 illustrates using the DRAW TEXT routine to draw three words in
one call.

Example 8–1 Drawing Text Using the DRAW TEXT Routine
.
.
.

RECORD /X$TEXT_ITEM/ TEXT_ARR(3)

CHARACTER*57 FIRST_FONT
DATA FIRST_FONT
1 /’-Adobe-New Century Schoolbook-Bold-R-NormaL--*-80-*-*-P-*-ISO8859-1’/

CHARACTER*58 SECOND_FONT
DATA SECOND_FONT
1 /’-Adobe-New Century Schoolbook-Bold-R-Normal--*-140-*-*-P-*-ISO8859-1’/

CHARACTER*58 THIRD_FONT
DATA THIRD_FONT
1 /’-Adobe-New Century Schoolbook-Bold-R-Normal--*-240-*-*-P-*-ISO8859-1’/

CHARACTER*5 FIRST_WORD
DATA FIRST_WORD /’SMALL’/

CHARACTER*6 SECOND_WORD
DATA SECOND_WORD /’BIGGER’/

CHARACTER*7 THIRD_WORD
DATA THIRD_WORD /’BIGGEST’/

.

.

.
C
C Load the fonts for text writing
C

FONT_1 = X$LOAD_FONT(DPY, FIRST_FONT)

TEXT_ARR(1).X$A_TEXT_CHARS = %LOC(FIRST_WORD)
TEXT_ARR(1).X$L_TEXT_N_CHARS = 5
TEXT_ARR(1).X$L_TEXT_DELTA = 0
TEXT_ARR(1).X$L_TEXT_FONT = FONT_1

FONT_2 = X$LOAD_FONT(DPY, SECOND_FONT)
CALL X$SET_FONT(DPY, GC, FONT_2)

TEXT_ARR(2).X$A_TEXT_CHARS = %LOC(SECOND_WORD)
TEXT_ARR(2).X$L_TEXT_N_CHARS = 6
TEXT_ARR(2).X$L_TEXT_DELTA = 20
TEXT_ARR(2).X$L_TEXT_FONT = FONT_2

FONT_3 = X$LOAD_FONT(DPY, THIRD_FONT)

TEXT_ARR(3).X$A_TEXT_CHARS = %LOC(THIRD_WORD)
TEXT_ARR(3).X$L_TEXT_N_CHARS = 7
TEXT_ARR(3).X$L_TEXT_DELTA = 20
TEXT_ARR(3).X$L_TEXT_FONT = FONT_3

.

.

.
C
C Handle events
C

DO WHILE (.TRUE.)

CALL X$NEXT_EVENT(DPY, EVENT)

(continued on next page)

8–19

Writing Text
8.6 Drawing Text

Example 8–1 (Cont.) Drawing Text Using the DRAW TEXT Routine

IF (EVENT.EVNT_TYPE .EQ. X$C_EXPOSE) THEN
CALL X$DRAW_IMAGE_STRING(DPY, WINDOW, GC,

1 150, 25, ’To draw text, click MB1’)
CALL X$DRAW_IMAGE_STRING(DPY, WINDOW, GC,

1 150, 50, ’To exit, click MB2’)
END IF

IF (EVENT.EVNT_TYPE .EQ. X$C_BUTTON_PRESS .AND.
1 EVENT.EVNT_BUTTON.X$L_BTEV_BUTTON .EQ. X$C_BUTTON1) THEN

CALL X$DRAW_TEXT(DPY, WINDOW, GC, 100, 200, TEXT_ARR(1), 3)
END IF

IF (EVENT.EVNT_TYPE .EQ. X$C_BUTTON_PRESS .AND.
1 EVENT.EVNT_BUTTON.X$L_BTEV_BUTTON .EQ. X$C_BUTTON2) THEN

CALL SYS$EXIT(%VAL(1))
END IF

END DO

To draw 8-bit or 2-byte text, use the DRAW STRING, DRAW STRING 16, DRAW
IMAGE STRING, and DRAW IMAGE STRING 16 routines. DRAW STRING and
DRAW STRING 16 display the foreground values of text only. DRAW IMAGE
STRING and DRAW IMAGE STRING 16 display both foreground and background
values.

Example 8–2 illustrates drawing text with the DRAW STRING routine. The
example modifies the sample program in Chapter 1 to draw shadow text.

Example 8–2 Drawing Text Using the DRAW STRING Routine
.
.
.

IF (EVENT.EVNT_TYPE .EQ. X$C_EXPOSE .AND.
1 EVENT.EVNT_EXPOSE.X$L_EXEV_WINDOW .EQ. WINDOW_2) THEN

CALL X$CLEAR_WINDOW(DPY, WINDOW_2)
CALL X$SET_FOREGROUND(DPY, GC,

1 DEFINE_COLOR(DPY, SCREEN, VISUAL,3))
CALL X$DRAW_STRING(DPY, WINDOW_2, GC,

1 35, 75, MESSAGE(STATE))
CALL X$SET_FOREGROUND(DPY, GC,

1 DEFINE_COLOR(DPY, SCREEN, VISUAL,4))
CALL X$DRAW_STRING(DPY, WINDOW_2, GC,

1 31, 71, MESSAGE(STATE))
END IF

(continued on next page)

8–20

Writing Text
8.6 Drawing Text

Example 8–2 (Cont.) Drawing Text Using the DRAW STRING Routine

IF (EVENT.EVNT_TYPE .EQ. X$C_BUTTON_PRESS) THEN
IF (EVENT.EVNT_EXPOSE.X$L_EXEV_WINDOW .EQ. WINDOW_1) THEN

STATE = 2
CALL X$CLEAR_WINDOW(DPY, WINDOW_2)
CALL X$SET_FOREGROUND(DPY, GC,

1 DEFINE_COLOR(DPY, SCREEN, VISUAL, 3))
CALL X$DRAW_STRING(DPY, WINDOW_2, GC,

1 35, 75, MESSAGE(STATE))
CALL X$SET_FOREGROUND(DPY, GC,

1 DEFINE_COLOR(DPY, SCREEN, VISUAL, 4))
CALL X$DRAW_STRING(DPY, WINDOW_2, GC,

1 31, 71, MESSAGE(STATE))
ELSE

C
C Unmap and destroy windows
C

CALL X$UNMAP_WINDOW(DPY, WINDOW_1)
CALL X$DESTROY_WINDOW(DPY, WINDOW_1)
CALL X$CLOSE_DISPLAY(DPY)
CALL SYS$EXIT(%VAL(1))

END IF
END IF

END DO

END

The server refers to the following members of the GC data structure when writing
text with DRAW TEXT, DRAW TEXT 16, DRAW STRING, and DRAW STRING
16:

Function Plane mask

Foreground Subwindow mode

Stipple Font

Background Tile

Tile stipple x origin Tile stipple y origin

Clip x origin Clip y origin

Clip mask Fill style

To draw both foreground and background values of text, use the DRAW IMAGE
STRING and DRAW IMAGE STRING 16 routines. For example, the sample
program uses the DRAW IMAGE routine to write the text ‘‘Click here to exit,’’ as
follows:

INTEGER*4 STATE !flag for text

CHARACTER*19 MESSAGE(2)
DATA MESSAGE /’Click here to exit ’, ’Click HERE to exit!’/

.

.

.
CALL X$DRAW_IMAGE_STRING(DPY, WINDOW_2, GC,
1 75, 75, MESSAGE(STATE))

8–21

Writing Text
8.6 Drawing Text

The effect is first to fill a rectangle with the background defined in the graphics
context and then to paint the text with the foreground pixel. The upper left
corner of the filled rectangle is at �

 ��
���� ������. The width of the rectangle
is equal to the width of the string. The height of the rectangle is equal to
��� ������� ��� �������.

When drawing text in response to calls to DRAW IMAGE STRING and DRAW
IMAGE STRING 16, the server ignores the function and fill style the client has
defined in the graphics context. The value of the function member of the GC data
structure is effectively the value specified by the constant x$c_gx_copy. The
value of the fill style member is effectively the value specified by the constant
x$c_fill_solid.

The server refers to the following members of the GC data structure when writing
text with DRAW IMAGE STRING and DRAW IMAGE STRING 16:

Subwindow mode Plane mask

Foreground Background

Stipple Font

Clip x origin Clip y origin

Clip mask

8.7 Font Usage Hints
This section includes information about the Digital font fallback strategy and
hints for using font names efficiently.

8.7.1 Font Fallback Strategy
When specifying fonts, the client should use fonts that are common to both
DECwindows Motif and X Window System, Version 11, Release 4 software. Using
common fonts makes a client application interoperable and enables it to display
on a wide variety of third-party workstations and X terminals. The following lists
the common font families:

• Courier

• Helvetica

• New Century Schoolbook

• Symbol

• Times

If clients use other font families (such as ITC Avant Garde Gothic, ITC
Lubalin Graph, or ITC Souvenir), the DECwindows toolkit provides the
DxmFindFontFallback routine that supports the Digital font fallback strategy.
For more information about this routine, see the DECwindows Extensions to
Motif.

Digital recommends that clients not use certain fonts. Table 8–9 lists the font
families and the reason why. All other font families are for general use.

8–22

Writing Text
8.7 Font Usage Hints

Table 8–9 Fonts Not Recommended for General Use

Font Family Reason

Interim DEC Math For use only by the DECwindows Bookreader. This
font will eventually be phased out.

Menu For use by the DECwindows Toolkit.

Terminal For use by terminal emulators.

Fixed Available for compatibility reasons only. Should not be
used by new clients.

Variable Available for compatibility reasons only. Should not be
used by new clients.

Fixed Width Available for compatibility reasons only. Should not be
used by new clients.

8.7.2 Speeding Up Font Name Searches
The DECwindows X server uses a heuristic to speed up font name searching.
When the client specifies the FAMILY_NAME, WEIGHT_NAME, SLANT,
SETWIDTH_NAME, CHARSET_REGISTRY, and CHARSET_ENCODING fields
explicitly, the server uses a hash table to speed up font name searching. For
example, the following font name is specified correctly to use the heuristic:

-*-Times-Medium-R-Normal--*-140-*-*-P-*-ISO8859-1

The previous example will be found more quickly than the following because a
wildcard has been used in the SLANT field:

-*-Times-Medium-*-Normal--*-140-*-*-P-*-ISO8859-1

The client can specify other fields, such as the FOUNDRY field; however, all
fourteen hyphens in a font name must be specified for the heuristic to work. The
ADD_STYLE_NAME field (the field after Normal in the example) should be left
empty because this field may be used in the hashing algorithm in the future.

8.7.3 Monitor Density Independence
To choose a particular sized font without regard to the density of the monitor, the
client should always use a wildcard for the PIXEL_SIZE field and never use a
wildcard for the POINT_SIZE field. In addition, the client should use a wildcard
for the RESOLUTION_X and RESOLUTION_Y fields.

8.7.4 Character Set Considerations
The client should always explicitly specify the CHARSET_REGISTRY and
CHARSET_ENCODING fields (for example, ISO8859-1), not only because they
speed up font name searching, but because they ensure that the client uses
the correct character set. ISO8859-1 specifies the Latin-1 character set that is
normally used in text files. There are other possible character sets that could
match a wildcard search, such as Latin-2 or Latin-3, but they should not be used
if the client can only process and display Latin-1 text.

8–23

9
Handling Events

An event is a report of either a change in the state of a device (such as a mouse)
or the execution of a routine called by a client. An event can be either unsolicited
or solicited. Typically, unsolicited events are reports of keyboard or pointer
activity. Solicited events are Xlib responses to calls by clients.

Xlib reports events asynchronously. When any event occurs, Xlib processes the
event and sends it to clients that have specified an interest in that type of event.

This chapter describes the following concepts needed to manage events:

• Event processing—An overview of types of events

• Event type selection—A description of how clients can specify the types of
events Xlib reports to them

• Event handling—A description of handling specific types of events

This chapter provides information for a subset of event types. For a complete
reference of event handling routines and data structures, see the DECwindows
Motif for OpenVMS Guide to Non-C Bindings and the X Window System.

9.1 Event Processing
Apart from errors, which Section 9.13 describes, Xlib events issue from operations
on either windows or pixmaps. Most events result from operations associated
with windows. The smallest window that contains the pointer when a window
event occurs is the source window.

Xlib searches the window hierarchy upward from the source window until one of
the following applies:

• Xlib finds a window that one or more clients have identified as interested in
the event. This window is the event window. After Xlib locates an event
window, it sends information about the event to appropriate clients.

• Xlib finds a window whose X$L_SWDA_DO_NOT_PROPAGATE attribute
has been set by a client. Setting this attribute specifies that Xlib should not
notify ancestors of the window owned by the client of events occurring in the
window and its children. For more information about the X$L_SWDA_DO_
NOT_PROPAGATE attribute, see Chapter 3.

• Xlib reaches the top of the window hierarchy without finding a window that a
client has identified as interested in the event. In this case, the event is not
sent.

While there are many types of window events, events associated with pixmaps
occur only when a client cannot compute a destination region because the source
region is out-of-bounds (see Chapter 6 for a description of source and destination
regions). When a client attempts an operation on an out-of-bounds pixmap region,
Xlib puts the event on the event queue and checks a list to determine if a client

9–1

Handling Events
9.1 Event Processing

is interested in the event. If a client is interested, Xlib sends information to the
client using an event data structure.

Xlib can report 30 types of events related to keyboards, mice, windowing, and
graphics operations. A flag identifies each type to facilitate referring to the event.
Table 9–1 lists event types, grouped by category, and the flags that represent
them.

Table 9–1 Event Types

Event Type Flag Name

Keyboard Events

Key press x$c_key_press

Key release x$c_key_release

Pointer Motion Events

Button press x$c_button_press

Button release x$c_button_release

Motion notify x$c_motion_notify

Window Crossing Events

Enter notify x$c_enter_notify

Leave notify x$c_leave_notify

Input Focus Events

Focus in x$c_focus_in

Focus out x$c_focus_out

Keymap State Event

Keymap notify x$c_keymap_notify

Exposure Events

Expose x$c_expose

Graphics expose x$c_graphics_expose

No expose x$c_no_expose

Data Structure Control Events

Circulate request x$c_circulate_request

Configure request x$c_configure_request

Map request x$c_map_request

Resize request x$c_resize_request

(continued on next page)

9–2

Handling Events
9.1 Event Processing

Table 9–1 (Cont.) Event Types

Event Type Flag Name

Window State Events

Circulate notify x$c_circulate_notify

Configure notify x$c_configure_notify

Create notify x$c_create_notify

Destroy notify x$c_destroy_notify

Gravity notify x$c_gravity_notify

Map notify x$c_map_notify

Mapping notify x$c_mapping_notify

Reparent notify x$c_reparent_notify

Unmap notify x$c_unmap_notify

Visibility notify x$c_visibility_notify

Color Map State Events

Color map notify x$c_colormap_notify

Client Communication Events

Client message x$c_client_message

Property notify x$c_property_notify

Selection clear x$c_selection_clear

Selection notify x$c_selection_notify

Selection request x$c_selection_request

Every event type has a corresponding data structure that Xlib uses to pass
information to clients. See the sections that describe handling specific event types
for a description of the relevant event-specific data structures.

Xlib includes the any event data structure, which clients can use to receive
reports of any type of event. Figure 9–1 illustrates the data structure.

Figure 9–1 Any Event Data Structure

x$l_anyv_type 0

x$l_anyv_serial 4

x$l_anyv_send_event 8

x$a_anyv_display 12

x$l_anyv_window 16

9–3

Handling Events
9.1 Event Processing

Table 9–2 describes members of the data structure.

Table 9–2 Any Event Data Structure Members

Member Name Contents

X$L_ANYV_TYPE Type of event Xlib is reporting

X$L_ANYV_SERIAL Number of the last request processed by the server

X$L_ANYV_SEND_EVENT Value defined by the constant true if the event came
from a SEND EVENT request

X$A_ANYV_DISPLAY Display on which the event occurred

X$L_ANYV_WINDOW Window in which the event occurred

To enable clients to manage multiple types of events easily, Xlib also includes an
event data structure, which is composed of the union of individual event data
structures. Figure 9–2 illustrates the data structure.

Figure 9–2 Event Data Structure

x$l_evnt_type 0

�variable event data, depending upon x$l_evnt_type (92 bytes) 4�

The X$L_EVNT_TYPE member specifies the type of event being reported. For
descriptions of the other members of the event data structure, see the section
that describes the specific event.

9.2 Selecting Event Types
Xlib sends information about an event only to clients that have specified an
interest in that event type. Clients use one of the following methods to indicate
interest in event types:

• By calling the SELECT INPUT routine. SELECT INPUT indicates to Xlib
which events to report.

• By specifying event masks when creating a window.

• By specifying event masks when changing window attributes.

• By specifying the graphics exposure mask when creating the graphics
context. For more information about specifying a graphics exposure mask, see
Chapter 4.

Note that Xlib always reports client messages, mapping notifications, selection
clearings, selection notifications, and selection requests.

See the description of the SELECT INPUT routine in the X Window System for
restrictions on event reporting to multiple clients.

9–4

Handling Events
9.2 Selecting Event Types

9.2.1 Using the SELECT INPUT Routine
Use the SELECT INPUT routine to specify the types of events Xlib reports to a
client. Select event types by passing to Xlib one or more of the masks listed in
Table 9–3.

Table 9–3 Event Masks

Event Mask Event Reported (Event Type)

x$m_button_motion At least one button on the pointing device is pressed while the pointer
moves (x$c_motion_notify).

x$m_button1_motion Pointing device button 1 is pressed while the pointer moves (x$c_
motion_notify).

x$m_button2_motion Pointing device button 2 is pressed while the pointer moves (x$c_
motion_notify).

x$m_button3_motion Pointing device button 3 is pressed while the pointer moves (x$c_
motion_notify).

x$m_button4_motion Pointing device button 4 is pressed while the pointer moves (x$c_
motion_notify).

x$m_button5_motion Pointing device button 5 is pressed while the pointer moves (x$c_
button_press).

x$m_button_press Any pointing device button is pressed (x$c_button_press).

x$m_button_release Any pointing device button is released (x$c_button_release).

x$m_colormap_change A client installs, changes, or removes a color map (x$c_colormap_notify).

x$m_enter_window The pointer enters a window (x$c_enter_notify).

x$m_exposure A window becomes visible, a graphics region cannot be computed, a
graphics request exposes a region or all source available, and a no
expose generated (xc_expose, xc_graphics_expose, x$c_graphics_
noexpose).

x$m_leave_window The pointer leaves a window (x$c_leave_notify).

x$m_focus_change The keyboard focus changes (xc_focus_in, xc_focus_out).

x$m_keymap_state The key map changes (x$c_keymap_notify).

x$m_key_press A key is pressed or released (xc_key_press, xc_key_release).

x$m_owner_grab_button Not applicable.

x$m_pointer_motion The pointer moves (x$c_motion_notify).

x$m_pointer_motion_hint Xlib is free to report only one pointer-motion event (x$c_motion_notify)
until one of the following occurs:

• Either the key or button state changes.

• The pointer leaves the window.

• The client calls QUERY POINTER or GET MOTION EVENTS.

x$m_property_change A client changes a property (x$c_property_notify).

(continued on next page)

9–5

Handling Events
9.2 Selecting Event Types

Table 9–3 (Cont.) Event Masks

Event Mask Event Reported (Event Type)

x$m_structure_notify One of the following operations occurs on a window:

• Circulate (x$c_circulate_notify)

• Configure (x$c_configure_notify)

• Destroy (x$c_destroy_notify)

• Move (x$c_gravity_notify)

• Map (x$c_map_notify)

• Reparent (x$c_reparent_notify)

• Unmap (x$c_unmap_notify)

x$m_substructure_notify One of the following operations occurs on the child of a window:

• Circulate (x$c_circulate_notify)

• Configure (x$c_configure_notify)

• Create (x$c_create_notify)

• Destroy (x$c_destroy_notify)

• Move (x$c_gravity_notify)

• Map (x$c_map_notify)

• Reparent (x$c_reparent_notify)

• Unmap (x$c_unmap_notify)

x$m_visibility_change The visibility of a window changes (x$c_visibility_notify).

The following illustrates using the SELECT INPUT routine:

.

.

.
CALL X$SELECT_INPUT(DPY, WINDOW, X$M_STRUCTURE_NOTIFY)

Clients specify the x$m_structure_notify mask to indicate an interest in one or
more of the following window operations (see Table 9–3):

Circulating Configuring

Destroying Reparenting

Changing gravity Mapping and unmapping

Moving

9.2.2 Specifying Event Types When Creating a Window
To specify event types when calling the CREATE WINDOW routine, use the
method described in Section 3.2.2 for setting window attributes. Indicate the type
of event Xlib reports to a client by doing the following:

1. Set the X$L_SWDA_EVENT_MASK window attribute to one or more masks
listed in Table 9–3.

9–6

Handling Events
9.2 Selecting Event Types

2. Specify the event mask flag in the value_mask argument of the CREATE
WINDOW routine.

Example 9–1 illustrates this method of selecting events. The program specifies
that Xlib notify the client of exposure events.

Example 9–1 Selecting Event Types Using the CREATE WINDOW Routine

INTEGER*4 WINDOW_1
.
.
.

PARAMETER WINDOW_W = 400, WINDOW_H = 300

C
C Create the WINDOW_1 window
C

WINDOW_1X = (X$WIDTH_OF_SCREEN(SCREEN) - WINDOW_1W) / 2
WINDOW_1Y = (X$HEIGHT_OF_SCREEN(SCREEN) - WINDOW_1H) / 2

DEPTH = X$DEFAULT_DEPTH_OF_SCREEN(SCREEN)
CALL X$DEFAULT_VISUAL_OF_SCREEN(SCREEN,VISUAL)
ATTR_MASK = X$M_CW_EVENT_MASK .OR. X$M_CW_BACK_PIXEL

! XSWDA.X$L_SWDA_EVENT_MASK = X$M_EXPOSURE .OR. X$M_BUTTON_PRESS
XSWDA.X$L_SWDA_BACKGROUND_PIXEL =
1 DEFINE_COLOR(DPY, SCREEN, VISUAL, 1)

" WINDOW_1 = X$CREATE_WINDOW(DPY,
1 X$ROOT_WINDOW_OF_SCREEN(SCREEN),
1 WINDOW_1X, WINDOW_1Y, WINDOW_1W, WINDOW_1H, 0,
1 DEPTH, X$C_INPUT_OUTPUT, VISUAL, ATTR_MASK, XSWDA)

! Set the event mask of the set window attributes data structure to indicate
interest in exposure events.

" The window attribute is referred to by ATTR_MASK, which specifies the
attribute.

9.2.3 Specifying Event Types When Changing Window Attributes
To specify one or more event types when changing window attributes, use the
method described in Section 3.9 for changing window attributes. Indicate an
interest in event types by doing the following:

1. Set the X$L_SWDA_EVENT_MASK window attribute to one or more masks
listed in Table 9–3.

2. Specify the event mask flag using the value_mask argument of the CHANGE
WINDOW ATTRIBUTES routine.

The following illustrates this method:

.

.

.
ATTR_MASK = X$M_STRUCTURE_NOTIFY

CALL X$CHANGE_WINDOW_ATTRIBUTES(DPY, WINDOW, ATTR_MASK, XSWA)

9–7

Handling Events
9.3 Pointer Events

9.3 Pointer Events
Xlib reports pointer events to interested clients when the button on the pointing
device is pressed or released or when the pointer moves.

This section describes how to handle the following pointer events:

• Pressing a button on the pointing device

• Releasing a button on the pointing device

• Moving the pointing device

The section also describes the button event and motion event data structures.

9.3.1 Handling Button Presses and Releases
To receive event notification of button presses and releases, pass the window
identifier and either the x$m_button_press or the x$m_button_release mask
when using the selection method described in Section 9.2.

When a button is pressed, Xlib searches for ancestors of the event window from
the root window down to determine whether or not a client has specified a
passive grab, an exclusive interest in the button. If Xlib finds no passive grab, it
starts an active grab, reserving the button for the sole use of the client receiving
notification of the event. Xlib also sets the time of the last pointer grab to the
current server time. The effect is the same as calling the GRAB BUTTON routine
with argument values listed in Table 9–4.

Table 9–4 Values Used for Grabbing Buttons

Argument Value

window_id Event window.

event_mask Client pointer motion mask.

pointer_mode The value specified by the constant x$c_grab_mode_async.

keyboard_mode The value specified by the constant x$c_grab_mode_async.

owner_events True, if the owner has specified x$m_owner_grab_button.
Otherwise, false.

confine_to None.

cursor None.

Xlib terminates the grab automatically when the button is released. Clients can
modify the active grab by calling the UNGRAB POINTER and CHANGE ACTIVE
POINTER GRAB routines.

Xlib uses the button event data structure to report button presses and releases.
Figure 9–3 illustrates the data structure.

Figure 9–3 Button Event Data Structure

x$l_btev_type 0

x$l_btev_serial 4

(continued on next page)

9–8

Handling Events
9.3 Pointer Events

x$l_btev_send_event 8

x$a_btev_display 12

x$l_btev_window 16

x$l_btev_root 20

x$l_btev_subwindow 24

x$l_btev_time 28

x$l_btev_x 32

x$l_btev_y 36

x$l_btev_x_root 40

x$l_btev_y_root 44

x$l_btev_state 48

x$l_btev_button 52

x$l_btev_same_screen 56

Table 9–5 describes members of the button event data structure.

Table 9–5 Button Event Data Structure Members

Member Name Contents

X$L_BTEV_TYPE Type of event reported. The event type can be either x$c_button_press
or x$c_button_release.

X$L_BTEV_SERIAL Number of the last request processed by the server.

X$L_BTEV_SEND_EVENT Value defined by the constant true if the event came from a SEND
EVENT request.

X$A_BTEV_DISPLAY Display on which the event occurred.

X$L_BTEV_WINDOW Event window.

X$L_BTEV_ROOT Root window in which the event occurred.

X$L_BTEV_SUBWINDOW Source window in which the event occurred.

X$L_BTEV_TIME Time in milliseconds at which the event occurred.

X$L_BTEV_X The x value of the pointer coordinates in the source window at the
time the event occurred.

X$L_BTEV_Y The y value of the pointer coordinates in the source window at the
time the event occurred.

X$L_BTEV_X_ROOT The x value of the pointer coordinates, relative to the root window.

X$L_BTEV_Y_ROOT The y value of the pointer coordinates, relative to the root window.

(continued on next page)

9–9

Handling Events
9.3 Pointer Events

Table 9–5 (Cont.) Button Event Data Structure Members

Member Name Contents

X$L_BTEV_STATE State of the button just prior to the event. Xlib can set this member
to the bitwise OR of one or more of the following masks:

x$m_button1 x$m_button2

x$m_button3 x$m_button4

x$m_button5 x$m_mod1

x$m_mod2 x$m_mod3

x$m_mod4 x$m_mod5

X$L_BTEV_BUTTON Buttons that changed state. Xlib can set this member to one of the
following values:

x$c_button1 x$c_button2

x$c_button3 x$c_button4

x$c_button5

X$L_BTEV_SAME_SCREEN Indicates whether or not the event window is on the same screen as
the root window.

Example 9–2 illustrates the button press event handling routine of the sample
program described in Chapter 1.

Example 9–2 Handling Button Presses
.
.
.

IF (EVENT.EVNT_TYPE .EQ. X$C_BUTTON_PRESS) THEN
IF (EVENT.EVNT_EXPOSE.X$L_EXEV_WINDOW .EQ. WINDOW_1) THEN

STATE = 2
CALL X$DRAW_IMAGE_STRING(DPY, WINDOW_2, GC,

1 75, 75, MESSAGE(STATE))
ELSE

CALL X$UNMAP_WINDOW(DPY, WINDOW_1)
CALL X$DESTROY_WINDOW(DPY, WINDOW_1)
CALL X$CLOSE_DISPLAY(DPY)
CALL SYS$EXIT(%VAL(1))

END IF
END IF

.

.

.

9–10

Handling Events
9.3 Pointer Events

The program calls shutdown routines when the user presses the mouse button in
WINDOW_2. When creating WINDOW_1 and WINDOW_2, the client indicated
an interest in exposures and button presses by setting the event mask field of the
set window attributes data structure, as follows:

RECORD /X$SET_WIN_ATTRIBUTES/ XSWDA
.
.
.

XSWDA.X$L_SWDA_EVENT_MASK = X$M_CW_EVENT_MASK
.OR. X$M_CW_BUTTON_PRESS

For more information about selecting event types, see Section 9.2.

9.3.2 Handling Pointer Motion
To only receive pointer motion events when a specified button is pressed, pass
the window identifier and one of the following masks when using the selection
method described in Section 9.2:

x$m_button_motion x$m_button1_motion

x$m_button2_motion x$m_button3_motion

x$m_button4_motion x$m_button5_motion

Xlib reports pointer motion events to interested clients whenever the pointer
moves and the movement begins and ends in the window. Spatial and temporal
resolution of the events is not guaranteed, but clients are assured they will
receive at least one event when the pointer moves and then rests. Figure 9–4
illustrates the data structure Xlib uses to report these events.

Figure 9–4 Motion Event Data Structure

x$l_mtev_type 0

x$l_mtev_serial 4

x$l_mtev_send_event 8

x$a_mtev_display 12

x$l_mtev_window 16

x$l_mtev_root 20

x$l_mtev_subwindow 24

x$l_mtev_time 28

x$l_mtev_x 32

x$l_mtev_y 36

x$l_mtev_x_root 40

x$l_mtev_y_root 44

(continued on next page)

9–11

Handling Events
9.3 Pointer Events

x$l_mtev_state 48

x$b_mtev_is_hintx$l_mtev_same_screen
��

52

...x$l_mtev_same_screen

Table 9–6 describes members of the data structure.

Table 9–6 Motion Event Data Structure Members

Member Name Contents

X$L_MTEV_TYPE Type of event reported. The member can have only the value
specified by the constant x$c_motion_notify.

X$L_MTEV_SERIAL Number of the last request processed by the server.

X$L_MTEV_SEND_EVENT Value defined by the constant true if the event came from a SEND
EVENT request.

X$A_MTEV_DISPLAY Display on which the event occurred.

X$L_MTEV_WINDOW Event window.

X$L_MTEV_ROOT Root window in which the event occurred.

X$L_MTEV_SUBWINDOW Source window in which the event occurred.

X$L_MTEV_TIME Time in milliseconds at which the event occurred.

X$L_MTEV_X The x value of the pointer coordinates in the source window.

X$L_MTEV_Y The y value of the pointer coordinates in the source window.

X$L_MTEV_X_ROOT The x value of the pointer coordinates relative to the root window.

X$L_MTEV_Y_ROOT The y value of the pointer coordinates relative to the root window.

X$L_MTEV_STATE State of the button just prior to the event. Xlib can set this member
to the bitwise OR of one or more of the following masks:

x$m_button1 x$m_button2

x$m_button3 x$m_button4

x$m_button5 x$m_mod1

x$m_mod2 x$m_mod3

x$m_mod4 x$m_mod5

X$B_MTEV_IS_HINT Indicates that motion hints are active. No other events reported
until pointer moves out of window.

X$L_MTEV_SAME_SCREEN Indicates whether or not the event window is on the same screen as
the root window.

Example 9–3 illustrates pointer motion event handling.

Example 9–3 Handling Pointer Motion

(continued on next page)

9–12

Handling Events
9.3 Pointer Events

Example 9–3 (Cont.) Handling Pointer Motion
.
.
.

IF (EVENT.EVNT_TYPE .EQ. X$C_MOTION_NOTIFY) THEN

X = EVENT.EVNT_MOTION.X$L_MTEV_X
Y = EVENT.EVNT_MOTION.X$L_MTEV_Y

CALL X$FILL_RECTANGLE(DPY, WINDOW, GC, X, Y, WIDTH, LENGTH)
ENDIF

.

.

.

Each time the pointer moves, the program draws a filled rectangle at the
resulting x and y coordinates.

To receive pointer motion events, the client specifies the x$c_motion_notify flag
when removing events from the queue. The client indicated an interest in pointer
motion events when creating window WINDOW, as follows:

XSWDA.X$L_SWDA_EVENT_MASK = X$M_EXPOSURE
1 .OR. X$M_BUTTON_PRESS
1 .OR. X$M_POINTER_MOTION
XSWDA.X$L_SWDA_BACKGROUND_PIXEL =
1 DEFINE_COLOR(DPY, SCREEN, VISUAL, 1)

WINDOW = X$CREATE_WINDOW(DPY,
1 X$ROOT_WINDOW_OF_SCREEN(SCREEN),
1 WINDOW_X, WINDOW_Y, WINDOW_W, WINDOW_H, 0,
1 DEPTH, X$C_INPUT_OUTPUT, VISUAL, ATTR_MASK, XSWDA)

The server reports pointer movement. Xlib records the resulting position of the
pointer in a motion data structure, one of the event structures that constitute the
event structure. The client determines the origin of the filled rectangle it draws
by referring to the motion event data structure x and y members.

9.4 Window Entries and Exits
Xlib reports window entries and exits to interested clients when one of the
following occurs:

• The pointer moves into or out of a window due to either pointer movement or
to a change in window hierarchy. This is normal window entry and exit.

• A client calls WARP POINTER, which moves the pointer to any specified
point on the screen.

• A client calls CHANGE ACTIVE POINTER GRAB, GRAB KEYBOARD,
GRAB POINTER, or UNGRAB POINTER. This is pseudomotion, which
simulates window entry or exit without actual pointer movement.

To receive event notification of window entries and exits, pass the window
identifier and either the x$m_enter_window mask or the x$m_leave_window
mask when using the selection method described in Section 9.2.

Xlib uses the crossing event data structure to report window entries and exits.
Figure 9–5 illustrates the data structure.

9–13

Handling Events
9.4 Window Entries and Exits

Figure 9–5 Crossing Event Data Structure

x$l_crev_type 0

x$l_crev_serial 4

x$l_crev_send_event 8

x$a_crev_display 12

x$l_crev_window 16

x$l_crev_root 20

x$l_crev_subwindow 24

x$l_crev_time 28

x$l_crev_x 32

x$l_crev_y 36

x$l_crev_x_root 40

x$l_crev_y_root 44

x$l_crev_mode 48

x$l_crev_detail 52

x$l_crev_same_screen 56

x$l_crev_focus 60

x$l_crev_state 64

Table 9–7 describes members of the data structure.

Table 9–7 Crossing Event Data Structure Members

Member Name Contents

X$L_CREV_TYPE Value defined by either the x$c_enter_notify or the x$c_leave_notify
constant.

X$L_CREV_SERIAL Number of the last request processed by the server.

X$L_CREV_SEND_EVENT Value defined by the constant true if the event came from a SEND
EVENT request.

X$A_CREV_DISPLAY Display on which the event occurred.

X$L_CREV_WINDOW Event window.

X$L_CREV_ROOT Root window in which the event occurred.

(continued on next page)

9–14

Handling Events
9.4 Window Entries and Exits

Table 9–7 (Cont.) Crossing Event Data Structure Members

Member Name Contents

X$L_CREV_SUBWINDOW Source window in which the event occurred.

X$L_CREV_TIME Time in milliseconds at which the event occurred.

X$L_CREV_X The x value of the pointer coordinates in the source window.

X$L_CREV_Y The y value of the pointer coordinates in the source window.

X$L_CREV_X_ROOT The x value of the pointer coordinates relative to the root window.

X$L_CREV_Y_ROOT The y value of the pointer coordinates relative to the root window.

X$L_CREV_MODE Indicates whether the event is normal or pseudomotion. Xlib can set
this member to the value specified by xc_notify_normal, xc_notify_
grab, and x$c_notify_ungrab. See Section 9.4.1 and Section 9.4.2 for
descriptions of normal and pseudomotion events.

X$L_CREV_DETAIL Indicates which windows Xlib notifies of the window entry or exit
event. Xlib can specify in this member one of the following constants:

x$c_notify_ancestor x$c_notify_virtual

x$c_notify_inferior x$c_notify_nonlinear

x$c_notify_nonlinear_virtual

X$L_CREV_SAME_SCREEN Indicates whether or not the event window is on the same screen as
the root window.

X$L_CREV_FOCUS Specifies whether the event window or an inferior is the focus window.
If true, the event window is the focus window. If false, an inferior is
the focus window.

X$L_CREV_STATE State of buttons and keys just prior to the event. Xlib can return the
following constants:

x$m_button1 x$m_button2

x$m_button3 x$m_button4

x$m_button5 x$m_mod1

x$m_mod2 x$m_mod3

x$m_mod4 x$m_mod5

x$m_shift x$m_control

x$m_lock

9.4.1 Normal Window Entries and Exits
A normal window entry or exit event occurs when the pointer moves from one
window to another due to either a change in window hierarchy or the movement
of the pointer. In either case, Xlib sets the X$L_CREV_MODE member of the
crossing event data structure to the constant x$c_notify_normal.

If the pointer leaves or enters a window as a result of one of the following changes
in window hierarchy, Xlib reports the event after reporting the hierarchy event:

Mapping Unmapping

Configuring Circulating

Changing gravity

Xlib can report a window entry or exit event caused by changes in focus, visibility,
and exposure either before or after reporting these events.

9–15

Handling Events
9.4 Window Entries and Exits

See the X Window System for a description of the events that Xlib reports when
the pointer moves from window A to window B as a result of normal window
entry or exit.

Example 9–4 illustrates window entry and exit event handling. The program
changes the color of a window when the pointer enters or leaves the window.

Figure 9–6 shows the resulting output.

Example 9–4 Handling Window Entries and Exits

C Create windows WINDOW, SUB1, SUB2,
C SUB3, and SUB4 on display DPY.
C Position of WINDOW is: x = 100,y = 100

PARAMETER WINDOW_W = 600, WINDOW_H = 600,
1 SUB_WIDTH = 120, SUB_HEIGHT= 120,
1 SUB1_X = 120, SUB1_Y = 120,
1 SUB2_X = 360, SUB2_Y = 120,
1 SUB3_X = 120, SUB3_Y = 360,
1 SUB4_X = 360, SUB4_Y = 360

.

.

.

IF (EVENT.EVNT_TYPE .EQ. X$C_ENTER_NOTIFY) THEN
! CROSS_WINDOW = EVENT.EVNT_CROSSING.X$L_CREV_WINDOW

CALL X$SET_WINDOW_BACKGROUND(DPY, CROSS_WINDOW,
1 DEFINE_COLOR(DPY, SCREEN, VISUAL, 3))

" CALL X$CLEAR_AREA(DPY, CROSS_WINDOW, 0, 0, SUB_WIDTH,
1 SUB_HEIGHT, 0)

END IF

IF (EVENT.EVNT_TYPE .EQ. X$C_LEAVE_NOTIFY) THEN
CROSS_WINDOW = EVENT.EVNT_CROSSING.X$L_CREV_WINDOW
CALL X$SET_WINDOW_BACKGROUND(DPY, CROSS_WINDOW,

1 DEFINE_COLOR(DPY, SCREEN, VISUAL, 2))
CALL X$CLEAR_AREA(DPY, CROSS_WINDOW, 0, 0, SUB_WIDTH,

1 SUB_HEIGHT, 0)
END IF

! Xlib gives the window identifier in the crossing event data structure window
field. This occurs when the pointer cursor enters the new window. The
program uses the identifier to define the window background and clear the
window.

" The CLEAR AREA routine clears the window and repaints it with the newly
defined window background.

9–16

Handling Events
9.4 Window Entries and Exits

Figure 9–6 Window Entries and Exits

ZK−2509A−GE

Window Entry and Exit

Subwindows turn gray when pointer cursor is in them.

To exit, click MB2.

9.4.2 Pseudomotion Window Entries and Exits
Pseudomotion window entry and exit events occur when the pointer cursor moves
from one window to another due to activating or deactivating a pointer grab.

Xlib reports a pseudomotion window entry if a client grabs the pointer, causing
the pointer cursor to change from one window to another even though the pointer
cursor has not moved. For example, if the pointer cursor is in window A and a
client maps window B over window A, the pointer cursor changes from being in
window A to being in window B. If possible, the pointer cursor remains in the
same position on the screen. When the placement of the two windows prevents
the pointer cursor from maintaining the same position, the pointer cursor moves
to the location closest to its original position.

9–17

Handling Events
9.4 Window Entries and Exits

Clients can grab pointers actively by calling the GRAB POINTER routine or
passively by calling the GRAB BUTTON routine. Whether the grab is active or
passive, Xlib sets the following members of the crossing event data structure
to the indicated constants after the pointer cursor moves from one window to
another:

• X$L_CREV_TYPE member—x$c_enter_notify

• X$L_CREV_MODE member—x$c_notify_grab

When a client passively grabs the pointer by calling the GRAB BUTTON routine,
Xlib reports a button press event after reporting the pointer grab.

Xlib reports a pseudomotion window exit when a client deactivates a pointer grab,
causing the pointer cursor to change from one window to another even though the
pointer cursor has not moved.

Clients can deactivate pointer grabs either actively by calling the UNGRAB
POINTER routine or passively by calling the UNGRAB BUTTON routine.
Whether deactivating the grab is active or passive, Xlib sets the following
members of the crossing event data structure to the indicated constants after the
pointer cursor moves from one window to another:

• X$L_CREV_TYPE member—x$c_leave_notify

• X$L_CREV_MODE member—x$c_notify_ungrab

When a client passively deactivates a pointer grab by calling the UNGRAB
BUTTON routine, Xlib reports a button release event before reporting that the
pointer has been released.

9.5 Input Focus Events
Input focus defines the window to which Xlib sends keyboard input. The keyboard
is always attached to some window. Typically, keyboard input goes to either the
root window or to a window at the top of the stack called the focus window. The
focus window and the position of the pointer determine the window that receives
keyboard input.

When the keyboard input focus changes from one window to another, Xlib reports
a focus out event and a focus in event. The window that loses the input focus
receives the focus out event. The window that gains the focus receives a focus in
event. Additionally, Xlib notifies other windows in the hierarchy of focus in and
focus out events.

To receive notification of input focus events, pass the window identifier and
the x$m_focus_change mask when using the selection method described in
Section 9.2.

Xlib uses the focus change event data structure to report keyboard input focus
events.

9.6 Exposure Events
Xlib reports an exposure event when one of the following conditions occurs:

• A formerly obscured window or window region becomes visible.

• A destination region cannot be computed.

• A graphics request exposes one or more regions.

This section describes how to handle window exposures and graphics exposures.

9–18

Handling Events
9.6 Exposure Events

9.6.1 Handling Window Exposures
A window exposure occurs when a formerly obscured window becomes visible
again. Because Xlib does not guarantee to preserve the contents of regions when
windows are obscured or reconfigured, clients are responsible for restoring the
contents of the exposed window.

To receive notification of window exposure events, pass the window identifier
and the x$m_exposure mask when using the selection method described in
Section 9.2. Xlib notifies clients of window exposures using the expose event data
structure. Figure 9–7 illustrates the data structure.

Figure 9–7 Expose Event Data Structure

x$l_exev_type 0

x$l_exev_serial 4

x$l_exev_send_event 8

x$a_exev_display 12

x$l_exev_window 16

x$l_exev_x 20

x$l_exev_y 24

x$l_exev_width 28

x$l_exev_height 32

x$l_exev_count 36

Table 9–8 describes members of the data structure.

Table 9–8 Expose Event Data Structure Members

Member Name Contents

X$L_EXEV_TYPE Value defined by the x$c_expose constant.

X$L_EXEV_SERIAL Number of the last request processed by the server.

X$L_EXEV_SEND_EVENT Value defined by the constant true if the event
came from a SEND EVENT request.

X$A_EXEV_DISPLAY Display on which the event occurred.

X$L_EXEV_WINDOW Event window.

X$L_EXEV_X The x value of the coordinates that define the upper
left corner of the exposed region. The coordinates
are relative to the origin of the drawable.

(continued on next page)

9–19

Handling Events
9.6 Exposure Events

Table 9–8 (Cont.) Expose Event Data Structure Members

Member Name Contents

X$L_EXEV_Y The y value of the coordinates that define the upper
left corner of the exposed region. The coordinates
are relative to the origin of the drawable.

X$L_EXEV_WIDTH Width of the exposed region.

X$L_EXEV_HEIGHT Height of the exposed region.

X$L_EXEV_COUNT Number of exposure events that are to follow. If
Xlib sets the count to zero, no more exposure events
follow for this window.

Clients that do not optimize redisplay by
distinguishing between
subareas of its windows can ignore all exposure
events with nonzero counts and perform full
redisplays on events with zero counts.

The following fragment from the sample program in Chapter 1 illustrates window
exposure event handling:

.

.

.
IF (EVENT.EVNT_TYPE .EQ. X$C_EXPOSE .AND.

1 EVENT.EVNT_EXPOSE.X$L_EXEV_WINDOW .EQ. WINDOW_2) THEN
CALL X$CLEAR_WINDOW(DPY, WINDOW_2)
CALL X$DRAW_IMAGE_STRING(DPY, WINDOW_2, GC,

1 75, 75, ’Click here to exit’)
END IF

.

.

.

The program checks exposure events to verify that the server has mapped the
second window. After the window is mapped, the program writes text into it.

9.6.2 Handling Graphics Exposures
Xlib reports graphics exposures when one of the following conditions occurs:

• A destination region could not be computed due to an obscured or out-of-
bounds source region. For information about destination and source regions,
see Chapter 6.

• A graphics request exposes one or more regions. If the request exposes more
than one region, Xlib reports them continuously.

Instead of using the SELECT INPUT routine to indicate an interest in graphics
exposure events, assign a value of true to the X$L_GCVL_GRAPHICS_
EXPOSURES member of the GC values data structure. Clients can set the
value to true at the time they create a graphics context. If a graphics context
exists, use the SET GRAPHICS EXPOSURES routine to set the value of the field.
For information about creating a graphics context and using the SET GRAPHICS
EXPOSURES routine, see Chapter 4.

Xlib uses the graphics expose event data structure to report graphics exposures.
Figure 9–8 illustrates the data structure.

9–20

Handling Events
9.6 Exposure Events

Figure 9–8 Graphics Expose Event Data Structure

x$l_geev_type 0

x$l_geev_serial 4

x$l_geev_send_event 8

x$a_geev_display 12

x$l_geev_drawable 16

x$l_geev_x 20

x$l_geev_y 24

x$l_geev_width 28

x$l_geev_height 32

x$l_geev_count 36

x$l_geev_major_code 40

x$l_geev_minor_code 44

Table 9–9 describes members of the data structure.

Table 9–9 Graphics Expose Event Data Structure Members

Member Name Contents

X$L_GEEV_TYPE Value defined by the constant x$c_graphics_expose.

X$L_GEEV_SERIAL Number of the last request processed by the server.

X$L_GEEV_SEND_EVENT Value defined by the constant true if the event
came from a SEND EVENT request.

X$L_GEEV_DISPLAY Display on which the event occurred.

X$L_GEEV_DRAWABLE Window or pixmap reporting the event.

X$L_GEEV_X The x value of the coordinates that define the upper
left corner of the exposed region. The coordinates
are relative to the origin of the drawable.

X$L_GEEV_Y The y value of the coordinates that define the
upper left corner of the region that is exposed.
The coordinates are relative to the origin of the
drawable.

X$L_GEEV_WIDTH Width of the exposed region.

X$L_GEEV_HEIGHT Height of the exposed region.

(continued on next page)

9–21

Handling Events
9.6 Exposure Events

Table 9–9 (Cont.) Graphics Expose Event Data Structure Members

Member Name Contents

X$L_GEEV_COUNT Number of exposure events that are to follow. If
Xlib sets the count to zero, no more exposure events
follow for this window.

X$L_GEEV_MAJOR_CODE Indicates whether the graphics request was a copy
area or copy plane.

X$L_GEEV_MINOR_CODE The value zero. Reserved for use by extensions.

Xlib uses the no expose event data structure to report when a graphics request
that might have produced an exposure did not. Figure 9–9 illustrates the data
structure.

Figure 9–9 No Expose Event Data Structure

x$l_neev_type 0

x$l_neev_serial 4

x$l_neev_send_event 8

x$a_neev_display 12

x$l_neev_drawable 16

x$l_neev_major_code 20

x$l_neev_minor_code 24

Table 9–10 describes members of the no expose event data structure.

Table 9–10 No Expose Event Data Structure Members

Member Name Contents

X$L_NEEV_TYPE Value defined by the constant x$c_no_expose.

X$L_NEEV_SERIAL Number of the last request processed by the server.

X$L_NEEV_SEND_EVENT Value defined by the constant true if the event
came from a SEND EVENT request.

X$A_NEEV_DISPLAY Display on which the event occurred.

X$L_NEEV_DRAWABLE Window or pixmap reporting the event.

X$L_NEEV_MAJOR_CODE Indicates whether the graphics request was a copy
area or a copy plane.

X$L_NEEV_MINOR_CODE The value zero. Reserved for use by extensions.

Example 9–5 illustrates handling graphics exposure events. The program checks
for graphics exposures and no exposures to scroll up a window.

9–22

Handling Events
9.6 Exposure Events

Figure 9–10 shows the resulting output of the program.

Example 9–5 Handling Graphics Exposures

INTEGER*4 X, Y
INTEGER*4 PX, PY
INTEGER*4 WIDTH, HEIGHT
INTEGER*4 BUTTON_IS_DOWN
INTEGER*4 VY

.

.

.
C
C Handle events
C

DO WHILE (.TRUE.)

CALL X$NEXT_EVENT(DPY, EVENT)
IF (EVENT.EVNT_TYPE .EQ. X$C_EXPOSE) THEN

CALL X$DRAW_IMAGE_STRING(DPY, WINDOW, GC,
1 150, 25, ’To scroll, press MB1.’)

CALL X$DRAW_IMAGE_STRING(DPY, WINDOW, GC,
1 150, 75, ’To exit, click MB2.’)

END IF
IF (EVENT.EVNT_TYPE .EQ. X$C_BUTTON_PRESS .AND.

1 EVENT.EVNT_BUTTON.X$L_BTEV_BUTTON .EQ. X$C_BUTTON1) THEN
BUTTON_IS_DOWN = 1
CALL START_SCROLL(DPY, WINDOW, GC, SCROLL_PIXELS,

1 WINDOW_W, WINDOW_H, VY)
END IF
IF (EVENT.EVNT_TYPE .EQ. X$C_BUTTON_PRESS .AND.

1 EVENT.EVNT_BUTTON.X$L_BTEV_BUTTON .EQ. X$C_BUTTON2) THEN
CALL SYS$EXIT(%VAL(1))

END IF
IF (EVENT.EVNT_TYPE .EQ. X$C_GRAPHICS_EXPOSE) THEN

! X = EVENT.EVNT_GRAPHICS_EXPOSE.X$L_GEEV_X
Y = EVENT.EVNT_GRAPHICS_EXPOSE.X$L_GEEV_Y
WIDTH = EVENT.EVNT_GRAPHICS_EXPOSE.X$L_GEEV_WIDTH
HEIGHT = EVENT.EVNT_GRAPHICS_EXPOSE.X$L_GEEV_HEIGHT
DO PY = Y, Y + HEIGHT-1

DO PX = X, X + WIDTH-1
IF (MOD(PX + PY + VY, 10) .EQ. 0) THEN

CALL X$DRAW_POINT (DPY, WINDOW, GC, PX, PY)
END IF

END DO
END DO
IF (BUTTON_IS_DOWN .NE. 0) THEN
CALL START_SCROLL(DPY, WINDOW, GC, SCROLL_PIXELS,

1 WINDOW_W, WINDOW_H, VY)
END IF

END IF
IF (EVENT.EVNT_TYPE .EQ. X$C_BUTTON_RELEASE) THEN

BUTTON_IS_DOWN = 0
END IF

(continued on next page)

9–23

Handling Events
9.6 Exposure Events

Example 9–5 (Cont.) Handling Graphics Exposures

IF (EVENT.EVNT_TYPE .EQ. X$C_NO_EXPOSE) THEN
IF (BUTTON_IS_DOWN .NE. 0) THEN

CALL START_SCROLL(DPY, WINDOW, GC, SCROLL_PIXELS,
1 WINDOW_W, WINDOW_H, VY)

END IF
END IF

END DO
.
.
.

C
C
C START SCROLL SUBPROGRAM
C
" SUBROUTINE START_SCROLL(DISP, WIN, GCONTEXT, SCR_PIX, WIN_W,

1 WIN_H, VEC_Y)

INTEGER*4 DISP, WIN, GCONTEXT, SCR_PIX
INTEGER*4 WIN_W, WIN_H, VEC_Y

CALL X$COPY_AREA(DISP, WIN, WIN, GCONTEXT, 0,
1 SCR_PIX, WIN_W, WIN_H, 0, 0)
VEC_Y = SCR_PIX + VEC_Y

END

! When a graphics exposure occurs, the client calculates where to draw points
into the exposed area by referring to members of the expose event data
structure.

" The user-defined START_SCROLL routine copies the window contents, less
one row of pixels, to the top of the window. The result leaves an exposed area
one pixel high at the bottom of the window.

The COPY AREA routine copies new points into the exposed area.

9–24

Handling Events
9.6 Exposure Events

Figure 9–10 Window Scrolling

Graphics Exposure

ZK−2513A−GE

To scroll, press MB1.

To exit, click MB2.

9.7 Key Events
Xlib reports key press and key release events to interested clients. To receive
event notification of key presses and releases, pass the window identifier and
either the x$m_key_press mask or the x$m_key_release mask when using the
selection method described in Section 9.2.

Xlib uses a key event data structure to report key presses and releases to
interested clients whenever any key changes state, even when the key is mapped
to modifier bits.

9–25

Handling Events
9.8 Window State Notification Events

9.8 Window State Notification Events
Xlib reports events related to the state of a window when a client does one of the
following:

• Circulates a window, changing the order of the window hierarchy

• Configures a window, changing its position, size, or border

• Creates a window

• Destroys a window

• Changes the size of a parent, causing Xlib to move a child window

• Maps a window

• Reparents a window

• Unmaps a window

• Changes the visibility of a window

This section describes handling events that result from these operations. For
more information about these events, see the X Window System.

9.8.1 Handling Window Circulation
To receive notification when a client circulates a window, pass either the window
identifier and the x$m_structure_notify mask or the identifier of the parent
window and the x$m_substructure_notify mask when using a selection method
described in Section 9.2.

Xlib reports to interested clients a change in the hierarchical position of a
window when a client calls the CIRCULATE SUBWINDOWS, CIRCULATE
SUBWINDOWS UP, or CIRCULATE SUBWINDOWS DOWN routines.

Xlib uses the circulate event data structure to report circulate events.

9.8.2 Handling Changes in Window Configuration
To receive notification when window size, position, border, or stacking order
changes, pass either the window identifier and the x$m_structure_notify mask
or the identifier of the parent window and the x$m_substructure_notify mask
when using the selection method described in Section 9.2.

Xlib reports changes in window configuration when any one of the following
occurs:

• Window size, position, border, and stacking order change when a client calls
the CONFIGURE WINDOW routine.

• Window position in the stacking order changes when a client calls the
LOWER WINDOW, RAISE WINDOW, or RESTACK WINDOW routine.

• Window moves when a client calls the MOVE WINDOW routine.

• Window size changes when a client calls the RESIZE WINDOW routine.

• Window size and location change when a client calls the MOVE RESIZE
WINDOW routine.

• Border width changes when a client calls the SET WINDOW BORDER
WIDTH routine.

For more information about these routines, see Chapter 3.

9–26

Handling Events
9.8 Window State Notification Events

Xlib reports changes to interested clients using the configure event data structure.

9.8.3 Handling Window Creations
To receive notification when a client creates a window, pass the identifier of
the parent window and the x$m_substructure_notify mask when using the
selection method described in Section 9.2.

Xlib reports window creations using the create window event data structure.

9.8.4 Handling Window Destructions
To receive notification when a client destroys a window, pass either the window
identifier and the x$m_structure_notify mask or the identifier of the parent
window and the x$m_substructure_notify mask when using the selection
method described in Section 9.2.

Xlib reports window destructions using the destroy window event data structure.

9.8.5 Handling Changes in Window Position
To receive notification when a window is moved because a client has changed
the size of its parent, pass the window identifier and the x$m_structure_notify
mask or the identifier of the parent window and the x$m_substructure_notify
mask when using the selection method described in Section 9.2.

Xlib reports window gravity events using the gravity event data structure.

9.8.6 Handling Window Mappings
To receive notification when a window changes state from unmapped to mapped,
pass either the window identifier and the x$m_structure_notify mask or the
identifier of the parent window and the x$m_substructure_notify mask when
using the selection method described in Section 9.2.

Xlib reports window gravity events using the map event data structure.

9.8.7 Handling Key, Keyboard, and Pointer Mappings
All clients receive notification of changes in key, keyboard, and pointer mapping.
Xlib reports these events when a client has successfully done one of the following:

• Called the SET MODIFIER MAPPING routine to indicate which keycodes are
modifiers

• Changed keyboard mapping using the CHANGE KEYBOARD MAPPING
routine

• Set pointer mapping using the SET POINTER MAPPING routine

Xlib reports key, keyboard, and pointer mapping events using the mapping event
data structure.

9.8.8 Handling Window Reparenting
To receive notification when the parent of a window changes, pass either the
window identifier and the x$m_structure_notify mask or the identifier of
the parent window and the x$m_substructure_notify mask when using the
selection method described in Section 9.2.

Xlib reports window reparenting events using the reparent event data structure.

9–27

Handling Events
9.8 Window State Notification Events

9.8.9 Handling Window Unmappings
To receive notification when a window changes from mapped to unmapped,
pass either the window identifier and the x$m_structure_notify mask or the
identifier of the parent window and the x$m_substructure_notify mask when
using the selection method described in Section 9.2.

Xlib reports window unmapping events using the unmap event data structure.

9.8.10 Handling Changes in Window Visibility
All or part of a window is visible if it is mapped to a screen, if all of its ancestors
are mapped, and if it is at least partially visible on the screen. To receive
notification when the visibility of a window changes, pass the window identifier
and the x$m_structure_notify mask when using the selection method described
in Section 9.2.

Xlib reports changes in visibility to interested clients using the visibility event
data structure.

9.9 Key Map State Events
Xlib reports changes in the state of the key map immediately after every enter
notify and focus in event.

To receive notification of key map state events, pass the window identifier and
the x$m_keymap_state mask when using the selection method described in
Section 9.2.

Xlib uses the keymap event data structure to report changes in the key map
state.

9.10 Color Map State Events
Xlib reports a color map event when the window manager installs, changes, or
removes the color map.

To receive notification of color map events, pass the window identifier and the
x$m_colormap_change mask when using the selection method described in
Section 9.2.

Xlib reports color map events to interested clients when the following occur:

• A client sets the color map member of the set window attributes data
structure by calling CHANGE WINDOW ATTRIBUTES. See Chapter 3 for
more information on the data structure and routine.

• A client calls the FREE COLORMAP routine. See Section 5.5 for more
information about FREE COLORMAP.

• The window manager installs or removes a color map in response to either
a client call of the INSTALL COLORMAP or UNINSTALL COLORMAP
routine.

Xlib reports color map events using the color map event data structure.

9–28

Handling Events
9.11 Client Communication Events

9.11 Client Communication Events
Xlib reports an event when one of the following occurs:

• One client notifies another client that an event has happened.

• A client changes, deletes, rotates, or gets a property.

• A client loses ownership of a window.

• A client requests ownership of a window.

This section describes how to handle communication between clients.

9.11.1 Handling Event Notification from Other Clients
Clients can notify each other of events by calling the SEND EVENT routine.

Xlib sends notification between clients using the client message event data
structure.

9.11.2 Handling Changes in Properties
As Chapter 3 notes, a property associates a constant with data of a particular
type. Xlib reports a property event when a client does one of the following:

• Changes a property

• Rotates a window property

• Gets a property

• Deletes a property

To receive information about property changes, pass the window identifier and
the x$m_property_change mask when using the selection method described in
Section 9.2.

Xlib reports changes in properties to interested clients using the property event
data structure.

9.11.3 Handling Changes in Selection Ownership
Clients receive notification automatically when they are losing ownership of a
window. Xlib reports the event when a client takes ownership of a window by
calling the SET SELECTION OWNER routine.

To report the event, Xlib uses the selection clear event data structure.

9.11.4 Handling Requests to Convert a Selection
The server issues a selection request event to the owner of a selection when
a client calls the CONVERT SELECTION routine. For information about the
CONVERT SELECTION routine, see Section 3.8.

To report the event, Xlib uses the selection request event data structure.

9.11.5 Handling Requests to Notify of a Selection
The server issues a selection notify event to the requestor of a selection after the
selection has been converted and stored as a property.

For information about the CONVERT SELECTION routine, see Section 3.8. To
report the event, Xlib uses the selection event data structure.

9–29

Handling Events
9.12 Event Queue Management

9.12 Event Queue Management
Xlib maintains an input queue known as the event queue. When an event
occurs, the server sends the event to Xlib, which places it at the end of an event
queue. By using routines described in this section, the client can check, remove,
and process the events on the queue. As the client removes an event, remaining
events move up the event queue.

Certain routines may block or prevent other routine calls from accessing the
event queue. If the blocking routine does not find an event that the client is
interested in, Xlib flushes the output buffer and waits until an event is received
from the server.

9.12.1 Checking the Contents of the Event Queue
To check the event queue without preventing other routines from accessing the
queue, use the EVENTS QUEUED routine. Clients can check events already
queued by calling the EVENTS QUEUED routine and specifying one of the
following constants:

x$c_queued_already Returns the number of events already in the event
queue and never performs a system call.

x$c_queued_after_flush Returns the number of events in the event queue if the
value is a nonzero. If there are no events in the queue,
this routine flushes the output buffer, attempts to read
more events out of the client connection, and returns
the number read.

x$c_queued_after_reading Returns the number of events already in the event
queue if the value is a nonzero. If there are no events
in the queue, this routine attempts to read more
events out of the client connection without flushing the
output buffer and returns the number read.

To return the number of events in the event queue, use the PENDING routine. If
there are no events in the queue, PENDING flushes the output buffer, attempts
to read more events out of the client connection, and returns the number read.
The PENDING routine is identical to EVENTS QUEUED with constant
x$c_queued_after_flush specified.

9.12.2 Returning the Next Event on the Queue
To return the first event on the event queue and copy it into the specified event
data structure, use the NEXT EVENT and PEEK EVENT routines. NEXT
EVENT returns the first event, copies it into an EVENT structure, and removes
it from the queue. PEEK EVENT returns the first event, copies it into an event
data structure, but does not remove it from the queue. In both cases, if the event
queue is empty, the routine flushes the output buffer and blocks until an event is
received.

9.12.3 Selecting Events That Match User-Defined Routines
Xlib enables the client to check all the events on the queue for a specific type of
event by specifying a client-defined routine known as a predicate procedure.
The predicate procedure determines if the event on the queue is one that the
client is interested in.

The client calls the predicate procedure from inside the event routine. The
predicate procedure should determine only if the event is useful and must not call
Xlib routines. The predicate procedure is called once for each event in the queue
until it finds a match.

9–30

Handling Events
9.12 Event Queue Management

Table 9–11 lists routines that use a predicate procedure and indicates whether or
not the routine blocks.

Table 9–11 Selecting Events Using a Predicate Procedure

Routine Description
Blocking/
No Blocking

IF EVENT Checks the event queue for the specified event. If the
event matches, removes the event from the queue. This
routine is also called each time an event is added to the
queue.

Blocking

CHECK IF EVENT Checks the event queue for the specified event. If the
event matches, removes the event from the queue. If the
predicate procedure does not find a match, it flushes the
output buffer.

No blocking

PEEK IF EVENT Checks the event queue for the specified event but does
not remove it from the queue. This routine is also called
each time an event is added to the queue.

Blocking

9.12.4 Selecting Events Using an Event Mask
Xlib enables a client to process events out of order by specifying a window
identifier and one of the event masks listed in Table 9–3 when calling routines
listed in Table 9–12.

For example, the following specifies keyboard events on window WINDOW by
using the event mask name constant x$c_keymap_state_mask.

.

.

.
CALL X$WINDOW_EVENT(DPY, WINDOW,
1 X$C_KEYMAP_STATE_MASK, EVENT)

Table 9–12 lists routines that use event or window masks and indicates whether
the routine blocks.

Table 9–12 Routines to Select Events Using a Mask

Routine Description
Blocking/
No Blocking

WINDOW EVENT Searches the event queue and removes the next
event that matches both the specified window and
event mask

Blocking

CHECK WINDOW EVENT Searches the event queue, then the events available
on the server connection, and removes the first event
that matches the specified event and window mask

No blocking

MASK EVENT Searches the event queue and removes the next
event that matches the event mask

Blocking

(continued on next page)

9–31

Handling Events
9.12 Event Queue Management

Table 9–12 (Cont.) Routines to Select Events Using a Mask

Routine Description
Blocking/
No Blocking

CHECK MASK EVENT Searches the event queue, then the events available
on the server connection, and removes the next event
that matches an event mask

No blocking

CHECK TYPED EVENT Returns the next event in the queue that matches an
event type

No blocking

CHECK TYPED WINDOW
EVENT

Searches the event queue, then the events available
on the server connection, and removes the next event
that matches the specified type and window

No blocking

9.12.5 Putting Events Back on Top of the Queue
To push an event back onto the top of the event queue, use the PUT BACK
EVENT routine. PUT BACK EVENT is useful when a client returns an event
from the queue and decides to use it later. There is no limit to how many times
in succession PUT BACK EVENT can be called.

9.12.6 Sending Events to Other Clients
To send an event to a client, use the SEND EVENT routine. For example, owners
of a selection should use this routine to send a SELECTION NOTIFY event to a
requestor when a selection has been converted and stored as a property.

9.13 Error Handling
Xlib has two default error handlers. One manages fatal errors, such as when
the connection to a display is severed due to a system failure. The other handles
error events from the server. The default error handlers print an explanatory
message and text and then exit.

Each of these error handlers can be replaced by client error handling routines. If
a client-supplied routine is passed a null pointer, Xlib reinvokes the default error
handler.

This section describes the Xlib event error handling resources including enabling
synchronous operation, handling server errors, and handling input/output (I/O)
errors.

9.13.1 Enabling Synchronous Operation
When debugging programs, it is convenient to require Xlib to behave
synchronously so that errors are reported at the time they occur.

To enable synchronous operation, use the SYNCHRONIZE routine. The client
passes the display argument and the onoff argument. The onoff argument
passes either a value of zero (disabling synchronization) or a nonzero value
(enabling synchronization).

9.13.2 Using the Default Error Handlers
To handle error events when an error event is received, use the SET ERROR
HANDLER routine.

Xlib provides an error event data structure that passes information to the SET
ERROR HANDLER routine.

9–32

Handling Events
9.13 Error Handling

Figure 9–11 illustrates the error event data structure.

Figure 9–11 Error Event Data Structure

x$l_erev_type 0

x$a_erev_display 4

x$l_erev_resource_id 8

x$l_erev_serial 12

x$b_erev_error_codex$b_erev_request_codex$b_erev_minor_code

The routines described in this section return Xlib error codes. For a description
of the error codes, see the X Window System. The following lists the codes:

X$C_BAD_ACCESS X$C_BAD_IMPLEMENTATION

X$C_BAD_ALLOC X$C_BAD_LENGTH

X$C_BAD_ATOM X$C_BAD_MATCH

X$C_BAD_COLOR X$C_BAD_NAME

X$C_BAD_CURSOR X$C_BAD_PIXMAP

X$C_BAD_DRAWABLE X$C_BAD_REQUEST

X$C_BAD_FONT X$C_BAD_VALUE

X$C_BAD_GC X$C_BAD_WINDOW

X$C_BAD_ID_CHOICE

9.13.3 Confirming X Resource Creation
When creating any X resource, such as a window, pixmap, or gc, it is important to
note that these routines are asynchronous and do not return errors if the create
operation fails. Although Xlib returns a resource ID for these routines, it does not
indicate that a valid resource was created by the server.

Use the following method to check if the client has successfully created a resource:

1. Provide a client-defined error handler and specify it by calling the SET
ERROR HANDLER routine.

2. Call the NEXT REQUEST routine. The NEXT REQUEST routine returns the
serial number that Xlib is to use for the next request.

3. Call the routine to create the resource, such as CREATE PIXMAP.

4. Call the SYNC routine. The SYNC routine forces all requests in the output
buffer to be processed by the server and returns any errors to the error
handler.

5. Use the error handler to compare the x$l_erev_serial member of the
error event data structure with the serial number returned by the NEXT
REQUEST routine. The value of the x$l_erev_serial member in the error
event data structure reflects the number of the request immediately before
the failing call was made. Therefore, if the values are equal, the server has
failed to create the resource.

9–33

A
Compiling Fonts

VMS DECwindows includes a font compiler that enables programmers to convert
an ASCII Bitmap Distribution Format (BDF) font into a binary server natural
font (SNF). For information about the Bitmap Distribution Format, see the
X Window System. The server uses an SNF file to display a font. In addition
to converting the BDF file to binary form, the compiler provides statistical
information about the font and the compilation process.

To invoke the font compiler, use the following DCL format:

FONT filename [
/[NO]OUTPUT[=output_file]
/[NO]MINBBOX
/[NO]REPORT[=report_file]
]

The filename parameter specifies the BDF file to be compiled. A file name is
required. The default file type is DECW$BDF.

The optional /OUTPUT qualifier specifies the file name of the resulting SNF file.
The default output file name is the file name of the BDF file being compiled. The
default output SNF file type is DECW$FONT. The default is /OUTPUT.

Compiler output consists of an SNF file that contains font information, character
metrics, and the image of each character in the font. Font information in the
SNF file is essentially the same as information stored in the font struct data
structure. For a description of the data structure, see Section 8.1.

The optional /MINBBOX qualifier specifies that the compiler produce the
minimum bounding box for each character in the font and adjust values for the
left bearing, right bearing, ascent, and descent of each character accordingly.
Character width is not affected. Specifying the /MINBBOX qualifier is equivalent
to converting a fixed font to a monospaced font. For a description of character
metrics and fonts, see Section 8.1. The default is /NOMINBBOX.

Using the /MINBBOX qualifier has two advantages. Because the font compiler
produces minimum instead of fixed bounding boxes, the resulting SNF file is
significantly smaller than the comparable fixed font SNF file. Consequently,
both disk requirements for storing the font and server memory requirements
when a client loads the font are reduced. In addition, because the resulting font
comprises minimum inkable characters, server performance when writing text is
increased.

The optional /REPORT qualifier directs the compiler to report information about
the font and the compilation process, including BDF information, font properties,
compiler generation information, and metrics. The /REPORT qualifier also causes
the compiler to illustrate each glyph in the font. The default report file name
is the file name of the BDF file being compiled. The default report file type is
DECW$REP. The default is /NOREPORT.

A–1

B
VMS DECwindows Named Colors

VMS DECwindows provides the X Windows Release 4 named colors. For
a list of all VMS DECwindows named colors and their RGB values, see
SYS$MANAGER:DECW$RGB.COM. For a description of using named colors, see
Section 5.3.1.

In addition to common named colors, VMS DECwindows also provides the
following colors that are specific to Digital:

DECWBlue
Screen Background
Border Topshadow
Border Background
Border Bottomshadow
Window Topshadow
Window Background
Window Bottomshadow

Please note that color display is device-dependent. You can use a color mixing
dialog box to see how a particular named color displays on your system. The
following procedure describes one way to display this dialog box:

1. Choose Screen Background... from the Session Manager’s Options Menu.

The Session Manager displays the Screen Background Options dialog box.

2. In this dialog box, click on the Screen Foreground Color or Screen Background
Color buttons.

The Session Manager displays a color mixing dialog box.

3. Choose Browser from the Color Model menu.

For more information about using the Color Mix dialog box, see the Using
DECwindows Motif for OpenVMS.

B–1

C
VMS DECwindows Fonts

Table C–1 lists VMS DECwindows 75 dpi fonts and their file names. Table C–2
lists VMS DECwindows 100 dpi fonts and their file names. Table C–3 lists VMS
DECwindows Common Fonts. These fonts can be used with both 75 dpi and
100 dpi monitors. Table C–3 also lists font aliases for the fixed width fonts. For
information about using fonts, see Chapter 8.

Note that a double dash occurs between the fifth and seventh fields of the font
name. For example, the full XLFD name of a representative font is as follows:

-Adobe-ITC Avant Garde Gothic-Book-R-Normal--11-80-100-100-P-59-ISO8859-1

An example that shows how to use a file name as a font alias is provided in the
following file: DECW$EXAMPLES:DECW$FONT_ALIAS_FILENAMES.DAT.

Table C–1 VMS DECwindows 75 dpi Fonts

File Name Font Name

FIXED fixed

DECW$SESSION DECW$SESSION

VARIABLE variable

Avant Garde

AVANTGARDE_BOOK8 -Adobe-ITC Avant Garde Gothic-Book-R-Normal--8-80-75-75-P-49-ISO8859-1

AVANTGARDE_BOOK10 -Adobe-ITC Avant Garde Gothic-Book-R-Normal--10-100-75-75-P-59-ISO8859-1

AVANTGARDE_BOOK12 -Adobe-ITC Avant Garde Gothic-Book-R-Normal--12-120-75-75-P-70-ISO8859-1

AVANTGARDE_BOOK14 -Adobe-ITC Avant Garde Gothic-Book-R-Normal--14-140-75-75-P-80-ISO8859-1

AVANTGARDE_BOOK18 -Adobe-ITC Avant Garde Gothic-Book-R-Normal--18-180-75-75-P-103-ISO8859-1

AVANTGARDE_BOOK24 -Adobe-ITC Avant Garde Gothic-Book-R-Normal--24-240-75-75-P-138-ISO8859-1

AVANTGARDE_
BOOKOBLIQUE8

-Adobe-ITC Avant Garde Gothic-Book-O-Normal--8-80-75-75-P-49-ISO8859-1

AVANTGARDE_
BOOKOBLIQUE10

-Adobe-ITC Avant Garde Gothic-Book-O-Normal--10-100-75-75-P-59-ISO8859-1

AVANTGARDE_
BOOKOBLIQUE12

-Adobe-ITC Avant Garde Gothic-Book-O-Normal--12-120-75-75-P-69-ISO8859-1

AVANTGARDE_
BOOKOBLIQUE14

-Adobe-ITC Avant Garde Gothic-Book-O-Normal--14-140-75-75-P-81-ISO8859-1

AVANTGARDE_
BOOKOBLIQUE18

-Adobe-ITC Avant Garde Gothic-Book-O-Normal--18-180-75-75-P-103-ISO8859-1

(continued on next page)

C–1

VMS DECwindows Fonts

Table C–1 (Cont.) VMS DECwindows 75 dpi Fonts

File Name Font Name

Avant Garde

AVANTGARDE_
BOOKOBLIQUE24

-Adobe-ITC Avant Garde Gothic-Book-O-Normal--24-240-75-75-P-138-ISO8859-1

AVANTGARDE_DEMI8 -Adobe-ITC Avant Garde Gothic-Demi-R-Normal--8-80-75-75-P-51-ISO8859-1

AVANTGARDE_DEMI10 -Adobe-ITC Avant Garde Gothic-Demi-R-Normal--10-100-75-75-P-61-ISO8859-1

AVANTGARDE_DEMI12 -Adobe-ITC Avant Garde Gothic-Demi-R-Normal--12-120-75-75-P-70-ISO8859-1

AVANTGARDE_DEMI14 -Adobe-ITC Avant Garde Gothic-Demi-R-Normal--14-140-75-75-P-82-ISO8859-1

AVANTGARDE_DEMI18 -Adobe-ITC Avant Garde Gothic-Demi-R-Normal--18-180-75-75-P-105-ISO8859-1

AVANTGARDE_DEMI24 -Adobe-ITC Avant Garde Gothic-Demi-R-Normal--24-240-75-75-P-140-ISO8859-1

AVANTGARDE_
DEMIOBLIQUE8

-Adobe-ITC Avant Garde Gothic-Demi-O-Normal--8-80-75-75-P-51-ISO8859-1

AVANTGARDE_
DEMIOBLIQUE10

-Adobe-ITC Avant Garde Gothic-Demi-O-Normal--10-100-75-75-P-61-ISO8859-1

AVANTGARDE_
DEMIOBLIQUE12

-Adobe-ITC Avant Garde Gothic-Demi-O-Normal--12-120-75-75-P-71-ISO8859-1

AVANTGARDE_
DEMIOBLIQUE14

-Adobe-ITC Avant Garde Gothic-Demi-O-Normal--14-140-75-75-P-82-ISO8859-1

AVANTGARDE_
DEMIOBLIQUE18

-Adobe-ITC Avant Garde Gothic-Demi-O-Normal--18-180-75-75-P-103-ISO8859-1

AVANTGARDE_
DEMIOBLIQUE24

-Adobe-ITC Avant Garde Gothic-Demi-O-Normal--24-240-75-75-P-139-ISO8859-1

Courier

COURIER8 -Adobe-Courier-Medium-R-Normal--8-80-75-75-M-50-ISO8859-1

COURIER10 -Adobe-Courier-Medium-R-Normal--10-100-75-75-M-60-ISO8859-1

COURIER12 -Adobe-Courier-Medium-R-Normal--12-120-75-75-M-70-ISO8859-1

COURIER14 -Adobe-Courier-Medium-R-Normal--14-140-75-75-M-90-ISO8859-1

COURIER18 -Adobe-Courier-Medium-R-Normal--18-180-75-75-M-110-ISO8859-1

COURIER24 -Adobe-Courier-Medium-R-Normal--24-240-75-75-M-150-ISO8859-1

COURIER_BOLD8 -Adobe-Courier-Bold-R-Normal--8-80-75-75-M-50-ISO8859-1

COURIER_BOLD10 -Adobe-Courier-Bold-R-Normal--10-100-75-75-M-60-ISO8859-1

COURIER_BOLD12 -Adobe-Courier-Bold-R-Normal--12-120-75-75-M-70-ISO8859-1

COURIER_BOLD14 -Adobe-Courier-Bold-R-Normal--14-140-75-75-M-90-ISO8859-1

COURIER_BOLD18 -Adobe-Courier-Bold-R-Normal--18-180-75-75-M-110-ISO8859-1

(continued on next page)

C–2

VMS DECwindows Fonts

Table C–1 (Cont.) VMS DECwindows 75 dpi Fonts

File Name Font Name

Courier

COURIER_BOLD24 -Adobe-Courier-Bold-R-Normal--24-240-75-75-M-150-ISO8859-1

COURIER_BOLDOBLIQUE8 -Adobe-Courier-Bold-O-Normal--8-80-75-75-M-50-ISO8859-1

COURIER_BOLDOBLIQUE10 -Adobe-Courier-Bold-O-Normal--10-100-75-75-M-60-ISO8859-1

COURIER_BOLDOBLIQUE12 -Adobe-Courier-Bold-O-Normal--12-120-75-75-M-70-ISO8859-1

COURIER_BOLDOBLIQUE14 -Adobe-Courier-Bold-O-Normal--14-140-75-75-M-90-ISO8859-1

COURIER_BOLDOBLIQUE18 -Adobe-Courier-Bold-O-Normal--18-180-75-75-M-110-ISO8859-1

COURIER_BOLDOBLIQUE24 -Adobe-Courier-Bold-O-Normal--24-240-75-75-M-150-ISO8859-1

COURIER_OBLIQUE8 -Adobe-Courier-Medium-O-Normal--8-80-75-75-M-50-ISO8859-1

COURIER_OBLIQUE10 -Adobe-Courier-Medium-O-Normal--10-100-75-75-M-60-ISO8859-1

COURIER_OBLIQUE12 -Adobe-Courier-Medium-O-Normal--12-120-75-75-M-70-ISO8859-1

COURIER_OBLIQUE14 -Adobe-Courier-Medium-O-Normal--14-140-75-75-M-90-ISO8859-1

COURIER_OBLIQUE18 -Adobe-Courier-Medium-O-Normal--18-180-75-75-M-110-ISO8859-1

COURIER_OBLIQUE24 -Adobe-Courier-Medium-O-Normal--24-240-75-75-M-150-ISO8859-1

DEC Math

DUTCH801_DECMATH_
EXTENSION8

-Bitstream-Dutch 801-Medium-R-Normal--31-80-75-75-P-244-DEC-DECmath_
Extension

DUTCH801_DECMATH_
EXTENSION10

-Bitstream-Dutch 801-Medium-R-Normal--39-100-75-75-P-307-DEC-DECmath_
Extension

DUTCH801_DECMATH_
EXTENSION12

-Bitstream-Dutch 801-Medium-R-Normal--46-120-75-75-P-362-DEC-DECmath_
Extension

DUTCH801_DECMATH_
EXTENSION14

-Bitstream-Dutch 801-Medium-R-Normal--54-140-75-75-P-425-DEC-DECmath_
Extension

DUTCH801_DECMATH_
ITALIC8

-Bitstream-Dutch 801-Medium-I-Normal--8-80-75-75-P-45-DEC-DECmath_Italic

DUTCH801_DECMATH_
ITALIC10

-Bitstream-Dutch 801-Medium-I-Normal--10-100-75-75-P-56-DEC-DECmath_Italic

DUTCH801_DECMATH_
ITALIC12

-Bitstream-Dutch 801-Medium-I-Normal--12-120-75-75-P-67-DEC-DECmath_Italic

DUTCH801_DECMATH_
ITALIC14

-Bitstream-Dutch 801-Medium-I-Normal--15-140-75-75-P-83-DEC-DECmath_Italic

DUTCH801_DECMATH_
SYMBOL8

-Bitstream-Dutch 801-Medium-R-Normal--8-80-75-75-P-62-DEC-DECmath_Symbol

DUTCH801_DECMATH_
SYMBOL10

-Bitstream-Dutch 801-Medium-R-Normal--10-100-75-75-P-77-DEC-DECmath_Symbol

DUTCH801_DECMATH_
SYMBOL12

-Bitstream-Dutch 801-Medium-R-Normal--12-120-75-75-P-92-DEC-DECmath_Symbol

DUTCH801_DECMATH_
SYMBOL14

-Bitstream-Dutch 801-Medium-R-Normal--15-140-75-75-P-115-DEC-DECmath_Symbol

(continued on next page)

C–3

VMS DECwindows Fonts

Table C–1 (Cont.) VMS DECwindows 75 dpi Fonts

File Name Font Name

Helvetica

HELVETICA8 -Adobe-Helvetica-Medium-R-Normal--8-80-75-75-P-46-ISO8859-1

HELVETICA10 -Adobe-Helvetica-Medium-R-Normal--10-100-75-75-P-56-ISO8859-1

HELVETICA12 -Adobe-Helvetica-Medium-R-Normal--12-120-75-75-P-67-ISO8859-1

HELVETICA14 -Adobe-Helvetica-Medium-R-Normal--14-140-75-75-P-77-ISO8859-1

HELVETICA18 -Adobe-Helvetica-Medium-R-Normal--18-180-75-75-P-98-ISO8859-1

HELVETICA24 -Adobe-Helvetica-Medium-R-Normal--24-240-75-75-P-130-ISO8859-1

HELVETICA_BOLD8 -Adobe-Helvetica-Bold-R-Normal--8-80-75-75-P-50-ISO8859-1

HELVETICA_BOLD10 -Adobe-Helvetica-Bold-R-Normal--10-100-75-75-P-60-ISO8859-1

HELVETICA_BOLD12 -Adobe-Helvetica-Bold-R-Normal--12-120-75-75-P-70-ISO8859-1

HELVETICA_BOLD14 -Adobe-Helvetica-Bold-R-Normal--14-140-75-75-P-82-ISO8859-1

HELVETICA_BOLD18 -Adobe-Helvetica-Bold-R-Normal--18-180-75-75-P-103-ISO8859-1

HELVETICA_BOLD24 -Adobe-Helvetica-Bold-R-Normal--24-240-75-75-P-138-ISO8859-1

HELVETICA_
BOLDOBLIQUE8

-Adobe-Helvetica-Bold-O-Normal--8-80-75-75-P-50-ISO8859-1

HELVETICA_
BOLDOBLIQUE10

-Adobe-Helvetica-Bold-O-Normal--10-100-75-75-P-60-ISO8859-1

HELVETICA_
BOLDOBLIQUE12

-Adobe-Helvetica-Bold-O-Normal--12-120-75-75-P-69-ISO8859-1

HELVETICA_
BOLDOBLIQUE14

-Adobe-Helvetica-Bold-O-Normal--14-140-75-75-P-82-ISO8859-1

HELVETICA_
BOLDOBLIQUE18

-Adobe-Helvetica-Bold-O-Normal--18-180-75-75-P-104-ISO8859-1

HELVETICA_
BOLDOBLIQUE24

-Adobe-Helvetica-Bold-O-Normal--24-240-75-75-P-138-ISO8859-1

HELVETICA_OBLIQUE8 -Adobe-Helvetica-Medium-O-Normal--8-80-75-75-P-47-ISO8859-1

HELVETICA_OBLIQUE10 -Adobe-Helvetica-Medium-O-Normal--10-100-75-75-P-57-ISO8859-1

HELVETICA_OBLIQUE12 -Adobe-Helvetica-Medium-O-Normal--12-120-75-75-P-67-ISO8859-1

HELVETICA_OBLIQUE14 -Adobe-Helvetica-Medium-O-Normal--14-140-75-75-P-78-ISO8859-1

HELVETICA_OBLIQUE18 -Adobe-Helvetica-Medium-O-Normal--18-180-75-75-P-98-ISO8859-1

HELVETICA_OBLIQUE24 -Adobe-Helvetica-Medium-O-Normal--24-240-75-75-P-130-ISO8859-1

Interim DEC Math

INTERIM_DM_EXTENSION14 -Adobe-Interim DM-Medium-I-Normal--14-140-75-75-P-140-DEC-DECMATH_
EXTENSION

INTERIM_DM_ITALIC14 -Adobe-Interim DM-Medium-I-Normal--14-140-75-75-P-140-DEC-DECMATH_ITALIC

INTERIM_DM_SYMBOL14 -Adobe-Interim DM-Medium-I-Normal--14-140-75-75-P-140-DEC-DECMATH_
SYMBOL

(continued on next page)

C–4

VMS DECwindows Fonts

Table C–1 (Cont.) VMS DECwindows 75 dpi Fonts

File Name Font Name

Lubalin Graph

LUBALINGRAPH_BOOK8 -Adobe-ITC Lubalin Graph-Book-R-Normal--8-80-75-75-P-50-ISO8859-1

LUBALINGRAPH_BOOK10 -Adobe-ITC Lubalin Graph-Book-R-Normal--10-100-75-75-P-60-ISO8859-1

LUBALINGRAPH_BOOK12 -Adobe-ITC Lubalin Graph-Book-R-Normal--12-120-75-75-P-70-ISO8859-1

LUBALINGRAPH_BOOK14 -Adobe-ITC Lubalin Graph-Book-R-Normal--14-140-75-75-P-81-ISO8859-1

LUBALINGRAPH_BOOK18 -Adobe-ITC Lubalin Graph-Book-R-Normal--18-180-75-75-P-106-ISO8859-1

LUBALINGRAPH_BOOK24 -Adobe-ITC Lubalin Graph-Book-R-Normal--24-240-75-75-P-139-ISO8859-1

LUBALINGRAPH_
BOOKOBLIQUE8

-Adobe-ITC Lubalin Graph-Book-O-Normal--8-80-75-75-P-50-ISO8859-1

LUBALINGRAPH_
BOOKOBLIQUE10

-Adobe-ITC Lubalin Graph-Book-O-Normal--10-100-75-75-P-60-ISO8859-1

LUBALINGRAPH_
BOOKOBLIQUE12

-Adobe-ITC Lubalin Graph-Book-O-Normal--12-120-75-75-P-70-ISO8859-1

LUBALINGRAPH_
BOOKOBLIQUE14

-Adobe-ITC Lubalin Graph-Book-O-Normal--14-140-75-75-P-82-ISO8859-1

LUBALINGRAPH_
BOOKOBLIQUE18

-Adobe-ITC Lubalin Graph-Book-O-Normal--18-180-75-75-P-105-ISO8859-1

LUBALINGRAPH_
BOOKOBLIQUE24

-Adobe-ITC Lubalin Graph-Book-O-Normal--24-240-75-75-P-140-ISO8859-1

LUBALINGRAPH_DEMI8 -Adobe-ITC Lubalin Graph-Demi-R-Normal--8-80-75-75-P-51-ISO8859-1

LUBALINGRAPH_DEMI10 -Adobe-ITC Lubalin Graph-Demi-R-Normal--10-100-75-75-P-61-ISO8859-1

LUBALINGRAPH_DEMI12 -Adobe-ITC Lubalin Graph-Demi-R-Normal--12-120-75-75-P-73-ISO8859-1

LUBALINGRAPH_DEMI14 -Adobe-ITC Lubalin Graph-Demi-R-Normal--14-140-75-75-P-85-ISO8859-1

LUBALINGRAPH_DEMI18 -Adobe-ITC Lubalin Graph-Demi-R-Normal--18-180-75-75-P-109-ISO8859-1

LUBALINGRAPH_DEMI24 -Adobe-ITC Lubalin Graph-Demi-R-Normal--24-240-75-75-P-144-ISO8859-1

LUBALINGRAPH_
DEMIOBLIQUE8

-Adobe-ITC Lubalin Graph-Demi-O-Normal--8-80-75-75-P-52-ISO8859-1

LUBALINGRAPH_
DEMIOBLIQUE10

-Adobe-ITC Lubalin Graph-Demi-O-Normal--10-100-75-75-P-62-ISO8859-1

LUBALINGRAPH_
DEMIOBLIQUE12

-Adobe-ITC Lubalin Graph-Demi-O-Normal--12-120-75-75-P-74-ISO8859-1

LUBALINGRAPH_
DEMIOBLIQUE14

-Adobe-ITC Lubalin Graph-Demi-O-Normal--14-140-75-75-P-85-ISO8859-1

LUBALINGRAPH_
DEMIOBLIQUE18

-Adobe-ITC Lubalin Graph-Demi-O-Normal--18-180-75-75-P-109-ISO8859-1

LUBALINGRAPH_
DEMIOBLIQUE24

-Adobe-ITC Lubalin Graph-Demi-O-Normal--24-240-75-75-P-144-ISO8859-1

Menu

MENU10 -Bigelow & Holmes-Menu-Medium-R-Normal--10-100-75-75-P-56-ISO8859-1

MENU12 -Bigelow & Holmes-Menu-Medium-R-Normal--12-120-75-75-P-70-ISO8859-1

(continued on next page)

C–5

VMS DECwindows Fonts

Table C–1 (Cont.) VMS DECwindows 75 dpi Fonts

File Name Font Name

New Century Schoolbook

NEWCENTURYSCHLBK_
BOLD8

-Adobe-New Century Schoolbook-Bold-R-Normal--8-80-75-75-P-56-ISO8859-1

NEWCENTURYSCHLBK_
BOLD10

-Adobe-New Century Schoolbook-Bold-R-Normal--10-100-75-75-P-66-ISO8859-1

NEWCENTURYSCHLBK_
BOLD12

-Adobe-New Century Schoolbook-Bold-R-Normal--12-120-75-75-P-77-ISO8859-1

NEWCENTURYSCHLBK_
BOLD14

-Adobe-New Century Schoolbook-Bold-R-Normal--14-140-75-75-P-87-ISO8859-1

NEWCENTURYSCHLBK_
BOLD18

-Adobe-New Century Schoolbook-Bold-R-Normal--18-180-75-75-P-113-ISO8859-1

NEWCENTURYSCHLBK_
BOLD24

-Adobe-New Century Schoolbook-Bold-R-Normal--24-240-75-75-P-149-ISO8859-1

NEWCENTURYSCHLBK_
BOLDITALIC8

-Adobe-New Century Schoolbook-Bold-I-Normal--8-80-75-75-P-56-ISO8859-1

NEWCENTURYSCHLBK_
BOLDITALIC10

-Adobe-New Century Schoolbook-Bold-I-Normal--10-100-75-75-P-66-ISO8859-1

NEWCENTURYSCHLBK_
BOLDITALIC12

-Adobe-New Century Schoolbook-Bold-I-Normal--12-120-75-75-P-76-ISO8859-1

NEWCENTURYSCHLBK_
BOLDITALIC14

-Adobe-New Century Schoolbook-Bold-I-Normal--14-140-75-75-P-88-ISO8859-1

NEWCENTURYSCHLBK_
BOLDITALIC18

-Adobe-New Century Schoolbook-Bold-I-Normal--18-180-75-75-P-111-ISO8859-1

NEWCENTURYSCHLBK_
BOLDITALIC24

-Adobe-New Century Schoolbook-Bold-I-Normal--24-240-75-75-P-148-ISO8859-1

NEWCENTURYSCHLBK_
ITALIC8

-Adobe-New Century Schoolbook-Medium-I-Normal--8-80-75-75-P-50-ISO8859-1

NEWCENTURYSCHLBK_
ITALIC10

-Adobe-New Century Schoolbook-Medium-I-Normal--10-100-75-75-P-60-ISO8859-1

NEWCENTURYSCHLBK_
ITALIC12

-Adobe-New Century Schoolbook-Medium-I-Normal--12-120-75-75-P-70-ISO8859-1

NEWCENTURYSCHLBK_
ITALIC14

-Adobe-New Century Schoolbook-Medium-I-Normal--14-140-75-75-P-81-ISO8859-1

NEWCENTURYSCHLBK_
ITALIC18

-Adobe-New Century Schoolbook-Medium-I-Normal--18-180-75-75-P-104-ISO8859-1

NEWCENTURYSCHLBK_
ITALIC24

-Adobe-New Century Schoolbook-Medium-I-Normal--24-240-75-75-P-136-ISO8859-1

NEWCENTURYSCHLBK_
ROMAN8

-Adobe-New Century Schoolbook-Medium-R-Normal--8-80-75-75-P-50-ISO8859-1

(continued on next page)

C–6

VMS DECwindows Fonts

Table C–1 (Cont.) VMS DECwindows 75 dpi Fonts

File Name Font Name

New Century Schoolbook

NEWCENTURYSCHLBK_
ROMAN10

-Adobe-New Century Schoolbook-Medium-R-Normal--10-100-75-75-P-60-ISO8859-1

NEWCENTURYSCHLBK_
ROMAN12

-Adobe-New Century Schoolbook-Medium-R-Normal--12-120-75-75-P-70-ISO8859-1

NEWCENTURYSCHLBK_
ROMAN14

-Adobe-New Century Schoolbook-Medium-R-Normal--14-140-75-75-P-82-ISO8859-1

NEWCENTURYSCHLBK_
ROMAN18

-Adobe-New Century Schoolbook-Medium-R-Normal--18-180-75-75-P-103-ISO8859-1

NEWCENTURYSCHLBK_
ROMAN24

-Adobe-New Century Schoolbook-Medium-R-Normal--24-240-75-75-P-137-ISO8859-1

Souvenir

SOUVENIR_DEMI8 -Adobe-ITC Souvenir-Demi-R-Normal--8-80-75-75-P-52-ISO8859-1

SOUVENIR_DEMI10 -Adobe-ITC Souvenir-Demi-R-Normal--10-100-75-75-P-62-ISO8859-1

SOUVENIR_DEMI12 -Adobe-ITC Souvenir-Demi-R-Normal--12-120-75-75-P-75-ISO8859-1

SOUVENIR_DEMI14 -Adobe-ITC Souvenir-Demi-R-Normal--14-140-75-75-P-90-ISO8859-1

SOUVENIR_DEMI18 -Adobe-ITC Souvenir-Demi-R-Normal--18-180-75-75-P-112-ISO8859-1

SOUVENIR_DEMI24 -Adobe-ITC Souvenir-Demi-R-Normal--24-240-75-75-P-149-ISO8859-1

SOUVENIR_DEMIITALIC8 -Adobe-ITC Souvenir-Demi-I-Normal--8-80-75-75-P-57-ISO8859-1

SOUVENIR_DEMIITALIC10 -Adobe-ITC Souvenir-Demi-I-Normal--10-100-75-75-P-67-ISO8859-1

SOUVENIR_DEMIITALIC12 -Adobe-ITC Souvenir-Demi-I-Normal--12-120-75-75-P-78-ISO8859-1

SOUVENIR_DEMIITALIC14 -Adobe-ITC Souvenir-Demi-I-Normal--14-140-75-75-P-92-ISO8859-1

SOUVENIR_DEMIITALIC18 -Adobe-ITC Souvenir-Demi-I-Normal--18-180-75-75-P-115-ISO8859-1

SOUVENIR_DEMIITALIC24 -Adobe-ITC Souvenir-Demi-I-Normal--24-240-75-75-P-154-ISO8859-1

SOUVENIR_LIGHT8 -Adobe-ITC Souvenir-Light-R-Normal--8-80-75-75-P-46-ISO8859-1

SOUVENIR_LIGHT10 -Adobe-ITC Souvenir-Light-R-Normal--10-100-75-75-P-56-ISO8859-1

SOUVENIR_LIGHT12 -Adobe-ITC Souvenir-Light-R-Normal--12-120-75-75-P-68-ISO8859-1

SOUVENIR_LIGHT14 -Adobe-ITC Souvenir-Light-R-Normal--14-140-75-75-P-79-ISO8859-1

SOUVENIR_LIGHT18 -Adobe-ITC Souvenir-Light-R-Normal--18-180-75-75-P-102-ISO8859-1

SOUVENIR_LIGHT24 -Adobe-ITC Souvenir-Light-R-Normal--24-240-75-75-P-135-ISO8859-1

SOUVENIR_LIGHTITALIC8 -Adobe-ITC Souvenir-Light-I-Normal--8-80-75-75-P-49-ISO8859-1

SOUVENIR_LIGHTITALIC10 -Adobe-ITC Souvenir-Light-I-Normal--10-100-75-75-P-59-ISO8859-1

SOUVENIR_LIGHTITALIC12 -Adobe-ITC Souvenir-Light-I-Normal--12-120-75-75-P-69-ISO8859-1

SOUVENIR_LIGHTITALIC14 -Adobe-ITC Souvenir-Light-I-Normal--14-140-75-75-P-82-ISO8859-1

SOUVENIR_LIGHTITALIC18 -Adobe-ITC Souvenir-Light-I-Normal--18-180-75-75-P-104-ISO8859-1

SOUVENIR_LIGHTITALIC24 -Adobe-ITC Souvenir-Light-I-Normal--24-240-75-75-P-139-ISO8859-1

(continued on next page)

C–7

VMS DECwindows Fonts

Table C–1 (Cont.) VMS DECwindows 75 dpi Fonts

File Name Font Name

Symbol

SYMBOL8 -Adobe-Symbol-Medium-R-Normal--8-80-75-75-P-51-ADOBE-FONTSPECIFIC

SYMBOL10 -Adobe-Symbol-Medium-R-Normal--10-100-75-75-P-61-ADOBE-FONTSPECIFIC

SYMBOL12 -Adobe-Symbol-Medium-R-Normal--12-120-75-75-P-74-ADOBE-FONTSPECIFIC

SYMBOL14 -Adobe-Symbol-Medium-R-Normal--14-140-75-75-P-85-ADOBE-FONTSPECIFIC

SYMBOL18 -Adobe-Symbol-Medium-R-Normal--18-180-75-75-P-107-ADOBE-FONTSPECIFIC

SYMBOL24 -Adobe-Symbol-Medium-R-Normal--24-240-75-75-P-142-ADOBE-FONTSPECIFIC

Terminal

TERMINAL14 -DEC-Terminal-Medium-R-Normal--14-140-75-75-C-80-ISO8859-1

TERMINAL18 -Bitstream-Terminal-Medium-R-Normal--18-180-75-75-C-110-ISO8859-1

TERMINAL28 -DEC-Terminal-Medium-R-Normal--28-280-75-75-C-160-ISO8859-1

TERMINAL36 -Bitstream-Terminal-Medium-R-Normal--36-360-75-75-C-220-ISO8859-1

TERMINAL_BOLD14 -DEC-Terminal-Bold-R-Normal--14-140-75-75-C-80-ISO8859-1

TERMINAL_BOLD18 -Bitstream-Terminal-Bold-R-Normal--18-180-75-75-C-110-ISO8859-1

TERMINAL_BOLD28 -DEC-Terminal-Bold-R-Normal--28-280-75-75-C-160-ISO8859-1

TERMINAL_BOLD36 -Bitstream-Terminal-Bold-R-Normal--36-360-75-75-C-220-ISO8859-1

TERMINAL_BOLD_
DBLWIDE14

-DEC-Terminal-Bold-R-Double Wide--14-140-75-75-C-160-ISO8859-1

TERMINAL_BOLD_
DBLWIDE18

-Bitstream-Terminal-Bold-R-Double Wide--18-180-75-75-C-220-ISO8859-1

TERMINAL_BOLD_
DBLWIDE_DECTECH14

-DEC-Terminal-Bold-R-Double Wide--14-140-75-75-C-160-DEC-DECtech

TERMINAL_BOLD_
DBLWIDE_DECTECH18

-Bitstream-Terminal-Bold-R-Double Wide--18-180-75-75-C-220-DEC-DECtech

TERMINAL_BOLD_
DECTECH14

-DEC-Terminal-Bold-R-Normal--14-140-75-75-C-80-DEC-DECtech

TERMINAL_BOLD_
DECTECH18

-Bitstream-Terminal-Bold-R-Normal--18-180-75-75-C-110-DEC-DECtech

TERMINAL_BOLD_
DECTECH28

-DEC-Terminal-Bold-R-Normal--28-280-75-75-C-160-DEC-DECtech

TERMINAL_BOLD_
DECTECH36

-Bitstream-Terminal-Bold-R-Normal--36-360-75-75-C-220-DEC-DECtech

TERMINAL_BOLD_
NARROW14

-DEC-Terminal-Bold-R-Narrow--14-140-75-75-C-60-ISO8859-1

TERMINAL_BOLD_
NARROW18

-Bitstream-Terminal-Bold-R-Narrow--18-180-75-75-C-70-ISO8859-1

TERMINAL_BOLD_
NARROW28

-DEC-Terminal-Bold-R-Narrow--28-280-75-75-C-120-ISO8859-1

TERMINAL_BOLD_
NARROW36

-Bitstream-Terminal-Bold-R-Narrow--36-360-75-75-C-140-ISO8859-1

TERMINAL_BOLD_
NARROW_DECTECH14

-DEC-Terminal-Bold-R-Narrow--14-140-75-75-C-60-DEC-DECtech

(continued on next page)

C–8

VMS DECwindows Fonts

Table C–1 (Cont.) VMS DECwindows 75 dpi Fonts

File Name Font Name

Terminal

TERMINAL_BOLD_
NARROW_DECTECH18

-Bitstream-Terminal-Bold-R-Narrow--18-180-75-75-C-70-DEC-DECtech

TERMINAL_BOLD_
NARROW_DECTECH28

-DEC-Terminal-Bold-R-Narrow--28-280-75-75-C-120-DEC-DECtech

TERMINAL_BOLD_
NARROW_DECTECH36

-Bitstream-Terminal-Bold-R-Narrow--36-360-75-75-C-140-DEC-DECtech

TERMINAL_BOLD_WIDE14 -DEC-Terminal-Bold-R-Wide--14-140-75-75-C-120-ISO8859-1

TERMINAL_BOLD_WIDE18 -Bitstream-Terminal-Bold-R-Narrow--18-180-75-75-C-140-ISO8859-1

TERMINAL_BOLD_WIDE_
DECTECH14

-DEC-Terminal-Bold-R-Wide--14-140-75-75-C-120-DEC-DECtech

TERMINAL_BOLD_WIDE_
DECTECH18

-Bitstream-Terminal-Bold-R-Narrow--18-180-75-75-C-140-DEC-DECtech

TERMINAL_DBLWIDE14 -DEC-Terminal-Medium-R-Double Wide--14-140-75-75-C-160-ISO8859-1

TERMINAL_DBLWIDE18 -Bitstream-Terminal-Medium-R-Double Wide--18-180-75-75-C-220-ISO8859-1

TERMINAL_DBLWIDE_
DECTECH14

-DEC-Terminal-Medium-R-Double Wide--14-140-75-75-C-160-DEC-DECtech

TERMINAL_DBLWIDE_
DECTECH18

-Bitstream-Terminal-Medium-R-Double Wide--18-180-75-75-C-220-DEC-DECtech

TERMINAL_DECTECH14 -DEC-Terminal-Medium-R-Normal--14-140-75-75-C-80-DEC-DECtech

TERMINAL_DECTECH18 -Bitstream-Terminal-Medium-R-Normal--18-180-75-75-C-110-DEC-DECtech

TERMINAL_DECTECH28 -DEC-Terminal-Medium-R-Normal--28-280-75-75-C-160-DEC-DECtech

TERMINAL_DECTECH36 -Bitstream-Terminal-Medium-R-Normal--36-360-75-75-C-220-DEC-DECtech

TERMINAL_GS14 -DEC-Terminal-Medium-R-Normal-GS-14-140-75-75-C-80-ISO8859-1

TERMINAL_GS18 -Bitstream-Terminal-Medium-R-Normal-GS-18-180-75-75-C-110-ISO8859-1

TERMINAL_NARROW14 -DEC-Terminal-Medium-R-Narrow--14-140-75-75-C-60-ISO8859-1

TERMINAL_NARROW18 -Bitstream-Terminal-Medium-R-Narrow--18-180-75-75-C-70-ISO8859-1

TERMINAL_NARROW28 -DEC-Terminal-Medium-R-Narrow--28-280-75-75-C-120-ISO8859-1

TERMINAL_NARROW36 -Bitstream-Terminal-Medium-R-Narrow--36-360-75-75-C-140-ISO8859-1

TERMINAL_NARROW_
DECTECH14

-DEC-Terminal-Medium-R-Narrow--14-140-75-75-C-60-DEC-DECtech

TERMINAL_NARROW_
DECTECH18

-Bitstream-Terminal-Medium-R-Narrow--18-180-75-75-C-70-DEC-DECtech

TERMINAL_NARROW_
DECTECH28

-DEC-Terminal-Medium-R-Narrow--28-280-75-75-C-120-DEC-DECtech

TERMINAL_NARROW_
DECTECH36

-Bitstream-Terminal-Medium-R-Narrow--36-360-75-75-C-140-DEC-DECtech

TERMINAL_WIDE14 -DEC-Terminal-Medium-R-Wide--14-140-75-75-C-120-ISO8859-1

TERMINAL_WIDE18 -Bitstream-Terminal-Medium-R-Wide--18-180-75-75-C-140-ISO8859-1

TERMINAL_WIDE_
DECTECH14

-DEC-Terminal-Medium-R-Wide--14-140-75-75-C-120-DEC-DECtech

TERMINAL_WIDE_
DECTECH18

-Bitstream-Terminal-Medium-R-Wide--18-180-75-75-C-140-DEC-DECtech

(continued on next page)

C–9

VMS DECwindows Fonts

Table C–1 (Cont.) VMS DECwindows 75 dpi Fonts

File Name Font Name

Times

TIMES_BOLD8 -Adobe-Times-Bold-R-Normal--8-80-75-75-P-47-ISO8859-1

TIMES_BOLD10 -Adobe-Times-Bold-R-Normal--10-100-75-75-P-57-ISO8859-1

TIMES_BOLD12 -Adobe-Times-Bold-R-Normal--12-120-75-75-P-67-ISO8859-1

TIMES_BOLD14 -Adobe-Times-Bold-R-Normal--14-140-75-75-P-77-ISO8859-1

TIMES_BOLD18 -Adobe-Times-Bold-R-Normal--18-180-75-75-P-99-ISO8859-1

TIMES_BOLD24 -Adobe-Times-Bold-R-Normal--24-240-75-75-P-132-ISO8859-1

TIMES_BOLDITALIC8 -Adobe-Times-Bold-I-Normal--8-80-75-75-P-47-ISO8859-1

TIMES_BOLDITALIC10 -Adobe-Times-Bold-I-Normal--10-100-75-75-P-57-ISO8859-1

TIMES_BOLDITALIC12 -Adobe-Times-Bold-I-Normal--12-120-75-75-P-68-ISO8859-1

TIMES_BOLDITALIC14 -Adobe-Times-Bold-I-Normal--14-140-75-75-P-77-ISO8859-1

TIMES_BOLDITALIC18 -Adobe-Times-Bold-I-Normal--18-180-75-75-P-98-ISO8859-1

TIMES_BOLDITALIC24 -Adobe-Times-Bold-I-Normal--24-240-75-75-P-128-ISO8859-1

TIMES_ITALIC8 -Adobe-Times-Medium-I-Normal--8-80-75-75-P-42-ISO8859-1

TIMES_ITALIC10 -Adobe-Times-Medium-I-Normal--10-100-75-75-P-52-ISO8859-1

TIMES_ITALIC12 -Adobe-Times-Medium-I-Normal--12-120-75-75-P-63-ISO8859-1

TIMES_ITALIC14 -Adobe-Times-Medium-I-Normal--14-140-75-75-P-73-ISO8859-1

TIMES_ITALIC18 -Adobe-Times-Medium-I-Normal--18-180-75-75-P-94-ISO8859-1

TIMES_ITALIC24 -Adobe-Times-Medium-I-Normal--24-240-75-75-P-125-ISO8859-1

TIMES_ROMAN8 -Adobe-Times-Medium-R-Normal--8-80-75-75-P-44-ISO8859-1

TIMES_ROMAN10 -Adobe-Times-Medium-R-Normal--10-100-75-75-P-54-ISO8859-1

TIMES_ROMAN12 -Adobe-Times-Medium-R-Normal--12-120-75-75-P-64-ISO8859-1

TIMES_ROMAN14 -Adobe-Times-Medium-R-Normal--14-140-75-75-P-74-ISO8859-1

TIMES_ROMAN18 -Adobe-Times-Medium-R-Normal--18-180-75-75-P-94-ISO8859-1

TIMES_ROMAN24 -Adobe-Times-Medium-R-Normal--24-240-75-75-P-124-ISO8859-1

Table C–2 VMS DECwindows 100 dpi Fonts

File Name Font Name

FIXED_100DPI fixed

DECW$SESSION_100DPI DECW$SESSION

VARIABLE_100DPI variable

(continued on next page)

C–10

VMS DECwindows Fonts

Table C–2 (Cont.) VMS DECwindows 100 dpi Fonts

File Name Font Name

Avant Garde

AVANTGARDE_BOOK8_
100DPI

-Adobe-ITC Avant Garde Gothic-Book-R-Normal--11-80-100-100-P-59-ISO8859-1

AVANTGARDE_BOOK10_
100DPI

-Adobe-ITC Avant Garde Gothic-Book-R-Normal--14-100-100-100-P-80-ISO8859-1

AVANTGARDE_BOOK12_
100DPI

-Adobe-ITC Avant Garde Gothic-Book-R-Normal--17-120-100-100-P-93-ISO8859-1

AVANTGARDE_BOOK14_
100DPI

-Adobe-ITC Avant Garde Gothic-Book-R-Normal--20-140-100-100-P-104-ISO8859-1

AVANTGARDE_BOOK18_
100DPI

-Adobe-ITC Avant Garde Gothic-Book-R-Normal--25-180-100-100-P-138-ISO8859-1

AVANTGARDE_BOOK24_
100DPI

-Adobe-ITC Avant Garde Gothic-Book-R-Normal--34-240-100-100-P-183-ISO8859-1

AVANTGARDE_
BOOKOBLIQUE8_100DPI

-Adobe-ITC Avant Garde Gothic-Book-O-Normal--10-80-100-100-P-59-ISO8859-1

AVANTGARDE_
BOOKOBLIQUE10_100DPI

-Adobe-ITC Avant Garde Gothic-Book-O-Normal--14-100-100-100-P-81-ISO8859-1

AVANTGARDE_
BOOKOBLIQUE12_100DPI

-Adobe-ITC Avant Garde Gothic-Book-O-Normal--17-120-100-100-P-92-ISO8859-1

AVANTGARDE_
BOOKOBLIQUE14_100DPI

-Adobe-ITC Avant Garde Gothic-Book-O-Normal--20-140-100-100-P-103-ISO8859-1

AVANTGARDE_
BOOKOBLIQUE18_100DPI

-Adobe-ITC Avant Garde Gothic-Book-O-Normal--25-180-100-100-P-138-ISO8859-1

AVANTGARDE_
BOOKOBLIQUE24_100DPI

-Adobe-ITC Avant Garde Gothic-Book-O-Normal--34-240-100-100-P-184-ISO8859-1

AVANTGARDE_DEMI8_
100DPI

-Adobe-ITC Avant Garde Gothic-Demi-R-Normal--11-80-100-100-P-61-ISO8859-1

AVANTGARDE_DEMI10_
100DPI

-Adobe-ITC Avant Garde Gothic-Demi-R-Normal--14-100-100-100-P-82-ISO8859-1

AVANTGARDE_DEMI12_
100DPI

-Adobe-ITC Avant Garde Gothic-Demi-R-Normal--17-120-100-100-P-93-ISO8859-1

AVANTGARDE_DEMI14_
100DPI

-Adobe-ITC Avant Garde Gothic-Demi-R-Normal--20-140-100-100-P-105-ISO8859-1

AVANTGARDE_DEMI18_
100DPI

-Adobe-ITC Avant Garde Gothic-Demi-R-Normal--25-180-100-100-P-140-ISO8859-1

AVANTGARDE_DEMI24_
100DPI

-Adobe-ITC Avant Garde Gothic-Demi-R-Normal--34-240-100-100-P-182-ISO8859-1

AVANTGARDE_
DEMIOBLIQUE8_100DPI

-Adobe-ITC Avant Garde Gothic-Demi-O-Normal--11-80-100-100-P-61-ISO8859-1

AVANTGARDE_
DEMIOBLIQUE10_100DPI

-Adobe-ITC Avant Garde Gothic-Demi-O-Normal--14-100-100-100-P-82-ISO8859-1

AVANTGARDE_
DEMIOBLIQUE12_100DPI

-Adobe-ITC Avant Garde Gothic-Demi-O-Normal--17-120-100-100-P-93-ISO8859-1

AVANTGARDE_
DEMIOBLIQUE14_100DPI

-Adobe-ITC Avant Garde Gothic-Demi-O-Normal--20-140-100-100-P-103-ISO8859-1

AVANTGARDE_
DEMIOBLIQUE18_100DPI

-Adobe-ITC Avant Garde Gothic-Demi-O-Normal--25-180-100-100-P-139-ISO8859-1

(continued on next page)

C–11

VMS DECwindows Fonts

Table C–2 (Cont.) VMS DECwindows 100 dpi Fonts

File Name Font Name

Avant Garde

AVANTGARDE_
DEMIOBLIQUE24_100DPI

-Adobe-ITC Avant Garde Gothic-Demi-O-Normal--34-240-100-100-P-183-ISO8859-1

Courier

COURIER8_100DPI -Adobe-Courier-Medium-R-Normal--11-80-100-100-M-60-ISO8859-1

COURIER10_100DPI -Adobe-Courier-Medium-R-Normal--14-100-100-100-M-90-ISO8859-1

COURIER12_100DPI -Adobe-Courier-Medium-R-Normal--17-120-100-100-M-100-ISO8859-1

COURIER14_100DPI -Adobe-Courier-Medium-R-Normal--20-140-100-100-M-110-ISO8859-1

COURIER18_100DPI -Adobe-Courier-Medium-R-Normal--25-180-100-100-M-150-ISO8859-1

COURIER24_100DPI -Adobe-Courier-Medium-R-Normal--34-240-100-100-M-200-ISO8859-1

COURIER_BOLD8_100DPI -Adobe-Courier-Bold-R-Normal--11-80-100-100-M-60-ISO8859-1

COURIER_BOLD10_100DPI -Adobe-Courier-Bold-R-Normal--14-100-100-100-M-90-ISO8859-1

COURIER_BOLD12_100DPI -Adobe-Courier-Bold-R-Normal--17-120-100-100-M-100-ISO8859-1

COURIER_BOLD14_100DPI -Adobe-Courier-Bold-R-Normal--20-140-100-100-M-110-ISO8859-1

COURIER_BOLD18_100DPI -Adobe-Courier-Bold-R-Normal--25-180-100-100-M-150-ISO8859-1

COURIER_BOLD24_100DPI -Adobe-Courier-Bold-R-Normal--34-240-100-100-M-200-ISO8859-1

COURIER_BOLDOBLIQUE8_
100DPI

-Adobe-Courier-Bold-O-Normal--11-80-100-100-M-60-ISO8859-1

COURIER_
BOLDOBLIQUE10_100DPI

-Adobe-Courier-Bold-O-Normal--14-100-100-100-M-90-ISO8859-1

COURIER_
BOLDOBLIQUE12_100DPI

-Adobe-Courier-Bold-O-Normal--17-120-100-100-M-100-ISO8859-1

COURIER_
BOLDOBLIQUE14_100DPI

-Adobe-Courier-Bold-O-Normal--20-140-100-100-M-110-ISO8859-1

COURIER_
BOLDOBLIQUE18_100DPI

-Adobe-Courier-Bold-O-Normal--25-180-100-100-M-150-ISO8859-1

COURIER_
BOLDOBLIQUE24_100DPI

-Adobe-Courier-Bold-O-Normal--34-240-100-100-M-200-ISO8859-1

COURIER_OBLIQUE8_
100DPI

-Adobe-Courier-Medium-O-Normal--11-80-100-100-M-60-ISO8859-1

(continued on next page)

C–12

VMS DECwindows Fonts

Table C–2 (Cont.) VMS DECwindows 100 dpi Fonts

File Name Font Name

COURIER_OBLIQUE10_
100DPI

-Adobe-Courier-Medium-O-Normal--14-100-100-100-M-90-ISO8859-1

COURIER_OBLIQUE12_
100DPI

-Adobe-Courier-Medium-O-Normal--17-120-100-100-M-100-ISO8859-1

COURIER_OBLIQUE14_
100DPI

-Adobe-Courier-Medium-O-Normal--20-140-100-100-M-110-ISO8859-1

COURIER_OBLIQUE18_
100DPI

-Adobe-Courier-Medium-O-Normal--25-180-100-100-M-150-ISO8859-1

COURIER_OBLIQUE24_
100DPI

-Adobe-Courier-Medium-O-Normal--34-240-100-100-M-200-ISO8859-1

DEC Math

DUTCH801_DECMATH_
EXTENSION8_100DPI

-Bitstream-Dutch 801-Medium-R-Normal--42-80-100-100-P-331-DEC-DECmath_
Extension

DUTCH801_DECMATH_
EXTENSION10_100DPI

-Bitstream-Dutch 801-Medium-R-Normal--52-100-100-100-P-409-DEC-DECmath_
Extension

DUTCH801_DECMATH_
EXTENSION12_100DPI

-Bitstream-Dutch 801-Medium-R-Normal--62-120-100-100-P-488-DEC-DECmath_
Extension

DUTCH801_DECMATH_
EXTENSION14_100DPI

-Bitstream-Dutch 801-Medium-R-Normal--71-140-100-100-P-559-DEC-DECmath_
Extension

DUTCH801_DECMATH_
ITALIC8_100DPI

-Bitstream-Dutch 801-Medium-I-Normal--11-80-100-100-P-61-DEC-DECmath_Italic

DUTCH801_DECMATH_
ITALIC10_100DPI

-Bitstream-Dutch 801-Medium-I-Normal--14-100-100-100-P-78-DEC-DECmath_Italic

DUTCH801_DECMATH_
ITALIC12_100DPI

-Bitstream-Dutch 801-Medium-I-Normal--17-120-100-100-P-94-DEC-DECmath_Italic

DUTCH801_DECMATH_
ITALIC14_100DPI

-Bitstream-Dutch 801-Medium-I-Normal--19-140-100-100-P-105-DEC-DECmath_Italic

DUTCH801_DECMATH_
SYMBOL8_100DPI

-Bitstream-Dutch 801-Medium-R-Normal--11-80-100-100-P-85-DEC-DECmath_Symbol

DUTCH801_DECMATH_
SYMBOL10_100DPI

-Bitstream-Dutch 801-Medium-R-Normal--14-100-100-100-P-107-DEC-DECmath_
Symbol

DUTCH801_DECMATH_
SYMBOL12_100DPI

-Bitstream-Dutch 801-Medium-R-Normal--17-120-100-100-P-130-DEC-DECmath_
Symbol

DUTCH801_DECMATH_
SYMBOL14_100DPI

-Bitstream-Dutch 801-Medium-R-Normal--19-140-100-100-P-146-DEC-DECmath_
Symbol

Helvetica

HELVETICA8_100DPI -Adobe-Helvetica-Medium-R-Normal--11-80-100-100-P-56-ISO8859-1

HELVETICA10_100DPI -Adobe-Helvetica-Medium-R-Normal--14-100-100-100-P-76-ISO8859-1

HELVETICA12_100DPI -Adobe-Helvetica-Medium-R-Normal--17-120-100-100-P-88-ISO8859-1

HELVETICA14_100DPI -Adobe-Helvetica-Medium-R-Normal--20-140-100-100-P-100-ISO8859-1

HELVETICA18_100DPI -Adobe-Helvetica-Medium-R-Normal--25-180-100-100-P-130-ISO8859-1

HELVETICA24_100DPI -Adobe-Helvetica-Medium-R-Normal--34-240-100-100-P-176-ISO8859-1

HELVETICA_BOLD8_100DPI -Adobe-Helvetica-Bold-R-Normal--11-80-100-100-P-60-ISO8859-1

(continued on next page)

C–13

VMS DECwindows Fonts

Table C–2 (Cont.) VMS DECwindows 100 dpi Fonts

File Name Font Name

Helvetica

HELVETICA_BOLD10_100DPI -Adobe-Helvetica-Bold-R-Normal--14-100-100-100-P-82-ISO8859-1

HELVETICA_BOLD12_100DPI -Adobe-Helvetica-Bold-R-Normal--17-120-100-100-P-92-ISO8859-1

HELVETICA_BOLD14_100DPI -Adobe-Helvetica-Bold-R-Normal--20-140-100-100-P-105-ISO8859-1

HELVETICA_BOLD18_100DPI -Adobe-Helvetica-Bold-R-Normal--25-180-100-100-P-138-ISO8859-1

HELVETICA_BOLD24_100DPI -Adobe-Helvetica-Bold-R-Normal--34-240-100-100-P-182-ISO8859-1

HELVETICA_
BOLDOBLIQUE8_100DPI

-Adobe-Helvetica-Bold-O-Normal--11-80-100-100-P-60-ISO8859-1

HELVETICA_
BOLDOBLIQUE10_100DPI

-Adobe-Helvetica-Bold-O-Normal--14-100-100-100-P-82-ISO8859-1

HELVETICA_
BOLDOBLIQUE12_100DPI

-Adobe-Helvetica-Bold-O-Normal--17-120-100-100-P-92-ISO8859-1

HELVETICA_
BOLDOBLIQUE14_100DPI

-Adobe-Helvetica-Bold-O-Normal--20-140-100-100-P-103-ISO8859-1

HELVETICA_
BOLDOBLIQUE18_100DPI

-Adobe-Helvetica-Bold-O-Normal--25-180-100-100-P-138-ISO8859-1

HELVETICA_
BOLDOBLIQUE24_100DPI

-Adobe-Helvetica-Bold-O-Normal--34-240-100-100-P-182-ISO8859-1

HELVETICA_OBLIQUE8_
100DPI

-Adobe-Helvetica-Medium-O-Normal--11-80-100-100-P-57-ISO8859-1

HELVETICA_OBLIQUE10_
100DPI

-Adobe-Helvetica-Medium-O-Normal--14-100-100-100-P-78-ISO8859-1

HELVETICA_OBLIQUE12_
100DPI

-Adobe-Helvetica-Medium-O-Normal--17-120-100-100-P-88-ISO8859-1

HELVETICA_OBLIQUE14_
100DPI

-Adobe-Helvetica-Medium-O-Normal--20-140-100-100-P-98-ISO8859-1

HELVETICA_OBLIQUE18_
100DPI

-Adobe-Helvetica-Medium-O-Normal--25-180-100-100-P-130-ISO8859-1

HELVETICA_OBLIQUE24_
100DPI

-Adobe-Helvetica-Medium-O-Normal--34-240-100-100-P-176-ISO8859-1

Interim DEC Math

INTERIM_DM_
EXTENSION14_100DPI

-Adobe-Interim DM-Medium-I-Normal--20-140-100-100-P-180-DEC-DECMATH_
EXTENSION

INTERIM_DM_ITALIC14_
100DPI

-Adobe-Interim DM-Medium-I-Normal--20-140-100-100-P-180-DEC-DECMATH_
ITALIC

INTERIM_DM_SYMBOL14_
100DPI

-Adobe-Interim DM-Medium-I-Normal--20-140-100-100-P-180-DEC-DECMATH_
SYMBOL

(continued on next page)

C–14

VMS DECwindows Fonts

Table C–2 (Cont.) VMS DECwindows 100 dpi Fonts

File Name Font Name

Lubalin Graph

LUBALINGRAPH_BOOK8_
100DPI

-Adobe-ITC Lubalin Graph-Book-R-Normal--11-80-100-100-P-60-ISO8859-1

LUBALINGRAPH_BOOK10_
100DPI

-Adobe-ITC Lubalin Graph-Book-R-Normal--14-100-100-100-P-81-ISO8859-1

LUBALINGRAPH_BOOK12_
100DPI

-Adobe-ITC Lubalin Graph-Book-R-Normal--17-120-100-100-P-89-ISO8859-1

LUBALINGRAPH_BOOK14_
100DPI

-Adobe-ITC Lubalin Graph-Book-R-Normal--19-140-100-100-P-106-ISO8859-1

LUBALINGRAPH_BOOK18_
100DPI

-Adobe-ITC Lubalin Graph-Book-R-Normal--24-180-100-100-P-139-ISO8859-1

LUBALINGRAPH_BOOK24_
100DPI

-Adobe-ITC Lubalin Graph-Book-R-Normal--33-240-100-100-P-180-ISO8859-1

LUBALINGRAPH_
BOOKOBLIQUE8_100DPI

-Adobe-ITC Lubalin Graph-Book-O-Normal--11-80-100-100-P-60-ISO8859-1

LUBALINGRAPH_
BOOKOBLIQUE10_100DPI

-Adobe-ITC Lubalin Graph-Book-O-Normal--14-100-100-100-P-82-ISO8859-1

LUBALINGRAPH_
BOOKOBLIQUE12_100DPI

-Adobe-ITC Lubalin Graph-Book-O-Normal--19-120-100-100-P-89-ISO8859-1

LUBALINGRAPH_
BOOKOBLIQUE14_100DPI

-Adobe-ITC Lubalin Graph-Book-O-Normal--20-140-100-100-P-105-ISO8859-1

LUBALINGRAPH_
BOOKOBLIQUE18_100DPI

-Adobe-ITC Lubalin Graph-Book-O-Normal--24-180-100-100-P-140-ISO8859-1

LUBALINGRAPH_
BOOKOBLIQUE24_100DPI

-Adobe-ITC Lubalin Graph-Book-O-Normal--33-240-100-100-P-181-ISO8859-1

LUBALINGRAPH_DEMI8_
100DPI

-Adobe-ITC Lubalin Graph-Demi-R-Normal--11-80-100-100-P-61-ISO8859-1

LUBALINGRAPH_DEMI10_
100DPI

-Adobe-ITC Lubalin Graph-Demi-R-Normal--14-100-100-100-P-85-ISO8859-1

LUBALINGRAPH_DEMI12_
100DPI

-Adobe-ITC Lubalin Graph-Demi-R-Normal--17-120-100-100-P-92-ISO8859-1

LUBALINGRAPH_DEMI14_
100DPI

-Adobe-ITC Lubalin Graph-Demi-R-Normal--19-140-100-100-P-109-ISO8859-1

(continued on next page)

C–15

VMS DECwindows Fonts

Table C–2 (Cont.) VMS DECwindows 100 dpi Fonts

File Name Font Name

Lubalin Graph

LUBALINGRAPH_DEMI18_
100DPI

-Adobe-ITC Lubalin Graph-Demi-R-Normal--24-180-100-100-P-144-ISO8859-1

LUBALINGRAPH_DEMI24_
100DPI

-Adobe-ITC Lubalin Graph-Demi-R-Normal--33-240-100-100-P-184-ISO8859-1

LUBALINGRAPH_
DEMIOBLIQUE8_100DPI

-Adobe-ITC Lubalin Graph-Demi-O-Normal--11-80-100-100-P-62-ISO8859-1

LUBALINGRAPH_
DEMIOBLIQUE10_100DPI

-Adobe-ITC Lubalin Graph-Demi-O-Normal--14-100-100-100-P-85-ISO8859-1

LUBALINGRAPH_
DEMIOBLIQUE12_100DPI

-Adobe-ITC Lubalin Graph-Demi-O-Normal--17-120-100-100-P-92-ISO8859-1

LUBALINGRAPH_
DEMIOBLIQUE14_100DPI

-Adobe-ITC Lubalin Graph-Demi-O-Normal--19-140-100-100-P-109-ISO8859-1

LUBALINGRAPH_
DEMIOBLIQUE18_100DPI

-Adobe-ITC Lubalin Graph-Demi-O-Normal--24-180-100-100-P-144-ISO8859-1

LUBALINGRAPH_
DEMIOBLIQUE24_100DPI

-Adobe-ITC Lubalin Graph-Demi-O-Normal--33-240-100-100-P-184-ISO8859-1

Menu

MENU10_100DPI -Bigelow & Holmes-Menu-Medium-R-Normal--13-100-100-100-P-77-ISO8859-1

MENU12_100DPI -Bigelow & Holmes-Menu-Medium-R-Normal--16-120-100-100-P-92-ISO8859-1

New Century Schoolbook

NEWCENTURYSCHLBK_
BOLD8_100DPI

-Adobe-New Century Schoolbook-Bold-R-Normal--11-80-100-100-P-66-ISO8859-1

NEWCENTURYSCHLBK_
BOLD10_100DPI

-Adobe-New Century Schoolbook-Bold-R-Normal--14-100-100-100-P-87-ISO8859-1

NEWCENTURYSCHLBK_
BOLD12_100DPI

-Adobe-New Century Schoolbook-Bold-R-Normal--17-120-100-100-P-99-ISO8859-1

NEWCENTURYSCHLBK_
BOLD14_100DPI

-Adobe-New Century Schoolbook-Bold-R-Normal--20-140-100-100-P-113-ISO8859-1

NEWCENTURYSCHLBK_
BOLD18_100DPI

-Adobe-New Century Schoolbook-Bold-R-Normal--25-180-100-100-P-149-ISO8859-1

NEWCENTURYSCHLBK_
BOLD24_100DPI

-Adobe-New Century Schoolbook-Bold-R-Normal--34-240-100-100-P-193-ISO8859-1

NEWCENTURYSCHLBK_
BOLDITALIC8_100DPI

-Adobe-New Century Schoolbook-Bold-I-Normal--11-80-100-100-P-66-ISO8859-1

NEWCENTURYSCHLBK_
BOLDITALIC10_100DPI

-Adobe-New Century Schoolbook-Bold-I-Normal--14-100-100-100-P-88-ISO8859-1

NEWCENTURYSCHLBK_
BOLDITALIC12_100DPI

-Adobe-New Century Schoolbook-Bold-I-Normal--17-120-100-100-P-99-ISO8859-1

NEWCENTURYSCHLBK_
BOLDITALIC14_100DPI

-Adobe-New Century Schoolbook-Bold-I-Normal--20-140-100-100-P-111-ISO8859-1

NEWCENTURYSCHLBK_
BOLDITALIC18_100DPI

-Adobe-New Century Schoolbook-Bold-I-Normal--25-180-100-100-P-148-ISO8859-1

(continued on next page)

C–16

VMS DECwindows Fonts

Table C–2 (Cont.) VMS DECwindows 100 dpi Fonts

File Name Font Name

New Century Schoolbook

NEWCENTURYSCHLBK_
BOLDITALIC24_100DPI

-Adobe-New Century Schoolbook-Bold-I-Normal--34-240-100-100-P-193-ISO8859-1

NEWCENTURYSCHLBK_
ITALIC8_100DPI

-Adobe-New Century Schoolbook-Medium-I-Normal--11-80-100-100-P-60-ISO8859-1

NEWCENTURYSCHLBK_
ITALIC10_100DPI

-Adobe-New Century Schoolbook-Medium-I-Normal--14-100-100-100-P-81-ISO8859-1

NEWCENTURYSCHLBK_
ITALIC12_100DPI

-Adobe-New Century Schoolbook-Medium-I-Normal--17-120-100-100-P-92-ISO8859-1

NEWCENTURYSCHLBK_
ITALIC14_100DPI

-Adobe-New Century Schoolbook-Medium-I-Normal--20-140-100-100-P-104-ISO8859-1

NEWCENTURYSCHLBK_
ITALIC18_100DPI

-Adobe-New Century Schoolbook-Medium-I-Normal--25-180-100-100-P-136-ISO8859-1

NEWCENTURYSCHLBK_
ITALIC24_100DPI

-Adobe-New Century Schoolbook-Medium-I-Normal--34-240-100-100-P-182-ISO8859-1

NEWCENTURYSCHLBK_
ROMAN8_100DPI

-Adobe-New Century Schoolbook-Medium-R-Normal--11-80-100-100-P-60-ISO8859-1

NEWCENTURYSCHLBK_
ROMAN10_100DPI

-Adobe-New Century Schoolbook-Medium-R-Normal--14-100-100-100-P-82-ISO8859-1

NEWCENTURYSCHLBK_
ROMAN12_100DPI

-Adobe-New Century Schoolbook-Medium-R-Normal--17-120-100-100-P-91-ISO8859-1

NEWCENTURYSCHLBK_
ROMAN14_100DPI

-Adobe-New Century Schoolbook-Medium-R-Normal--20-140-100-100-P-103-ISO8859-1

NEWCENTURYSCHLBK_
ROMAN18_100DPI

-Adobe-New Century Schoolbook-Medium-R-Normal--25-180-100-100-P-136-ISO8859-1

NEWCENTURYSCHLBK_
ROMAN24_100DPI

-Adobe-New Century Schoolbook-Medium-R-Normal--34-240-100-100-P-181-ISO8859-1

Souvenir

SOUVENIR_DEMI8_100DPI -Adobe-ITC Souvenir-Demi-R-Normal--11-80-100-100-P-62-ISO8859-1

SOUVENIR_DEMI10_100DPI -Adobe-ITC Souvenir-Demi-R-Normal--14-100-100-100-P-90-ISO8859-1

SOUVENIR_DEMI12_100DPI -Adobe-ITC Souvenir-Demi-R-Normal--17-120-100-100-P-94-ISO8859-1

SOUVENIR_DEMI14_100DPI -Adobe-ITC Souvenir-Demi-R-Normal--20-140-100-100-P-112-ISO8859-1

SOUVENIR_DEMI18_100DPI -Adobe-ITC Souvenir-Demi-R-Normal--25-180-100-100-P-149-ISO8859-1

SOUVENIR_DEMI24_100DPI -Adobe-ITC Souvenir-Demi-R-Normal--34-240-100-100-P-191-ISO8859-1

SOUVENIR_DEMIITALIC8_
100DPI

-Adobe-ITC Souvenir-Demi-I-Normal--11-80-100-100-P-67-ISO8859-1

(continued on next page)

C–17

VMS DECwindows Fonts

Table C–2 (Cont.) VMS DECwindows 100 dpi Fonts

File Name Font Name

Souvenir

SOUVENIR_DEMIITALIC10_
100DPI

-Adobe-ITC Souvenir-Demi-I-Normal--14-100-100-100-P-92-ISO8859-1

SOUVENIR_DEMIITALIC12_
100DPI

-Adobe-ITC Souvenir-Demi-I-Normal--17-120-100-100-P-98-ISO8859-1

SOUVENIR_DEMIITALIC14_
100DPI

-Adobe-ITC Souvenir-Demi-I-Normal--20-140-100-100-P-115-ISO8859-1

SOUVENIR_DEMIITALIC18_
100DPI

-Adobe-ITC Souvenir-Demi-I-Normal--25-180-100-100-P-154-ISO8859-1

SOUVENIR_DEMIITALIC24_
100DPI

-Adobe-ITC Souvenir-Demi-I-Normal--34-240-100-100-P-197-ISO8859-1

SOUVENIR_LIGHT8_100DPI -Adobe-ITC Souvenir-Light-R-Normal--11-80-100-100-P-56-ISO8859-1

SOUVENIR_LIGHT10_100DPI -Adobe-ITC Souvenir-Light-R-Normal--14-100-100-100-P-79-ISO8859-1

SOUVENIR_LIGHT12_100DPI -Adobe-ITC Souvenir-Light-R-Normal--17-120-100-100-P-85-ISO8859-1

SOUVENIR_LIGHT14_100DPI -Adobe-ITC Souvenir-Light-R-Normal--20-140-100-100-P-102-ISO8859-1

SOUVENIR_LIGHT18_100DPI -Adobe-ITC Souvenir-Light-R-Normal--25-180-100-100-P-135-ISO8859-1

SOUVENIR_LIGHT24_100DPI -Adobe-ITC Souvenir-Light-R-Normal--34-240-100-100-P-174-ISO8859-1

SOUVENIR_LIGHTITALIC8_
100DPI

-Adobe-ITC Souvenir-Light-I-Normal--11-80-100-100-P-59-ISO8859-1

SOUVENIR_LIGHTITALIC10_
100DPI

-Adobe-ITC Souvenir-Light-I-Normal--14-100-100-100-P-82-ISO8859-1

SOUVENIR_LIGHTITALIC12_
100DPI

-Adobe-ITC Souvenir-Light-I-Normal--17-120-100-100-P-88-ISO8859-1

SOUVENIR_LIGHTITALIC14_
100DPI

-Adobe-ITC Souvenir-Light-I-Normal--20-140-100-100-P-104-ISO8859-1

SOUVENIR_LIGHTITALIC18_
100DPI

-Adobe-ITC Souvenir-Light-I-Normal--25-180-100-100-P-139-ISO8859-1

SOUVENIR_LIGHTITALIC24_
100DPI

-Adobe-ITC Souvenir-Light-I-Normal--34-240-100-100-P-177-ISO8859-1

Symbol

SYMBOL8_100DPI -Adobe-Symbol-Medium-R-Normal--11-80-100-100-P-61-ADOBE-FONTSPECIFIC

SYMBOL10_100DPI -Adobe-Symbol-Medium-R-Normal--14-100-100-100-P-85-ADOBE-FONTSPECIFIC

SYMBOL12_100DPI -Adobe-Symbol-Medium-R-Normal--17-120-100-100-P-95-ADOBE-FONTSPECIFIC

SYMBOL14_100DPI -Adobe-Symbol-Medium-R-Normal--20-140-100-100-P-107-ADOBE-FONTSPECIFIC

SYMBOL18_100DPI -Adobe-Symbol-Medium-R-Normal--25-180-100-100-P-142-ADOBE-FONTSPECIFIC

SYMBOL24_100DPI -Adobe-Symbol-Medium-R-Normal--34-240-100-100-P-191-ADOBE-FONTSPECIFIC

(continued on next page)

C–18

VMS DECwindows Fonts

Table C–2 (Cont.) VMS DECwindows 100 dpi Fonts

File Name Font Name

Terminal

TERMINAL10_100DPI -DEC-Terminal-Medium-R-Normal--14-100-100-100-C-80-ISO8859-1

TERMINAL14_100DPI -Bitstream-Terminal-Medium-R-Normal--18-140-100-100-C-110-ISO8859-1

TERMINAL18_100DPI -Bitstream-Terminal-Medium-R-Normal--25-180-100-100-C-150-ISO8859-1

TERMINAL20_100DPI -DEC-Terminal-Medium-R-Normal--28-200-100-100-C-160-ISO8859-1

TERMINAL28_100DPI -Bitstream-Terminal-Medium-R-Normal--36-280-100-100-C-220-ISO8859-1

TERMINAL36_100DPI -Bitstream-Terminal-Medium-R-Normal--50-360-100-100-C-300-ISO8859-1

TERMINAL_BOLD10_100DPI -DEC-Terminal-Bold-R-Normal--14-100-100-100-C-80-ISO8859-1

TERMINAL_BOLD14_100DPI -Bitstream-Terminal-Bold-R-Normal--18-140-100-100-C-110-ISO8859-1

TERMINAL_BOLD18_100DPI -Bitstream-Terminal-Bold-R-Normal--25-180-100-100-C-150-ISO8859-1

TERMINAL_BOLD20_100DPI -DEC-Terminal-Bold-R-Normal--28-200-100-100-C-160-ISO8859-1

TERMINAL_BOLD28_100DPI -Bitstream-Terminal-Bold-R-Normal--36-280-100-100-C-220-ISO8859-1

TERMINAL_BOLD36_100DPI -Bitstream-Terminal-Bold-R-Normal--50-360-100-100-C-300-ISO8859-1

TERMINAL_BOLD_
DBLWIDE10_100DPI

-DEC-Terminal-Bold-R-Double Wide--14-100-100-100-C-160-ISO8859-1

TERMINAL_BOLD_
DBLWIDE14_100DPI

-Bitstream-Terminal-Bold-R-Double Wide--18-140-100-100-C-220-ISO8859-1

TERMINAL_BOLD_
DBLWIDE18_100DPI

-Bitstream-Terminal-Bold-R-Double Wide--25-180-100-100-C-300-ISO8859-1

TERMINAL_BOLD_
DBLWIDE_DECTECH10_
100DPI

-DEC-Terminal-Bold-R-Double Wide--14-100-100-100-C-160-DEC-DECtech

TERMINAL_BOLD_
DBLWIDE_DECTECH14_
100DPI

-Bitstream-Terminal-Bold-R-Double Wide--18-140-100-100-C-220-DEC-DECtech

TERMINAL_BOLD_
DBLWIDE_DECTECH18_
100DPI

-Bitstream-Terminal-Bold-R-Double Wide--25-180-100-100-C-300-DEC-DECtech

TERMINAL_BOLD_
DECTECH10_100DPI

-DEC-Terminal-Bold-R-Normal--14-100-100-100-C-80-DEC-DECtech

TERMINAL_BOLD_
DECTECH14_100DPI

-Bitstream-Terminal-Bold-R-Normal--18-140-100-100-C-110-DEC-DECtech

TERMINAL_BOLD_
DECTECH18_100DPI

-Bitstream-Terminal-Bold-R-Normal--25-180-100-100-C-150-DEC-DECtech

TERMINAL_BOLD_
DECTECH20_100DPI

-DEC-Terminal-Bold-R-Normal--28-200-100-100-C-160-DEC-DECtech

TERMINAL_BOLD_
DECTECH28_100DPI

-Bitstream-Terminal-Bold-R-Normal--36-280-100-100-C-220-DEC-DECtech

TERMINAL_BOLD_
DECTECH36_100DPI

-Bitstream-Terminal-Bold-R-Normal--50-360-100-100-C-300-DEC-DECtech

(continued on next page)

C–19

VMS DECwindows Fonts

Table C–2 (Cont.) VMS DECwindows 100 dpi Fonts

File Name Font Name

Terminal

TERMINAL_BOLD_
NARROW10_100DPI

-DEC-Terminal-Bold-R-Narrow--14-100-100-100-C-60-ISO8859-1

TERMINAL_BOLD_
NARROW14_100DPI

-Bitstream-Terminal-Bold-R-Narrow--18-140-100-100-C-70-ISO8859-1

TERMINAL_BOLD_
NARROW18_100DPI

-Bitstream-Terminal-Bold-R-Narrow--25-180-100-100-C-90-ISO8859-1

TERMINAL_BOLD_
NARROW20_100DPI

-DEC-Terminal-Bold-R-Narrow--28-200-100-100-C-120-ISO8859-1

TERMINAL_BOLD_
NARROW28_100DPI

-Bitstream-Terminal-Bold-R-Narrow--36-280-100-100-C-140-ISO8859-1

TERMINAL_BOLD_
NARROW36_100DPI

-Bitstream-Terminal-Bold-R-Narrow--50-360-100-100-C-180-ISO8859-1

TERMINAL_BOLD_
NARROW_DECTECH10_
100DPI

-DEC-Terminal-Bold-R-Narrow--14-100-100-100-C-60-DEC-DECtech

TERMINAL_BOLD_
NARROW_DECTECH14_
100DPI

-Bitstream-Terminal-Bold-R-Narrow--18-140-100-100-C-70-DEC-DECtech

TERMINAL_BOLD_
NARROW_DECTECH18_
100DPI

-Bitstream-Terminal-Bold-R-Narrow--25-180-100-100-C-90-DEC-DECtech

TERMINAL_BOLD_
NARROW_DECTECH20_
100DPI

-DEC-Terminal-Bold-R-Narrow--28-200-100-100-C-120-DEC-DECtech

TERMINAL_BOLD_
NARROW_DECTECH28_
100DPI

-Bitstream-Terminal-Bold-R-Narrow--36-280-100-100-C-140-DEC-DECtech

TERMINAL_BOLD_
NARROW_DECTECH36_
100DPI

-Bitstream-Terminal-Bold-R-Narrow--50-360-100-100-C-180-DEC-DECtech

TERMINAL_BOLD_WIDE10_
100DPI

-DEC-Terminal-Bold-R-Wide--14-100-100-100-C-120-ISO8859-1

TERMINAL_BOLD_WIDE14_
100DPI

-Bitstream-Terminal-Bold-R-Wide--18-140-100-100-C-140-ISO8859-1

TERMINAL_BOLD_WIDE18_
100DPI

-Bitstream-Terminal-Bold-R-Wide--25-180-100-100-C-180-ISO8859-1

TERMINAL_BOLD_WIDE_
DECTECH10_100DPI

-DEC-Terminal-Bold-R-Wide--14-100-100-100-C-120-DEC-DECtech

TERMINAL_BOLD_WIDE_
DECTECH14_100DPI

-Bitstream-Terminal-Bold-R-Wide--18-140-100-100-C-140-DEC-DECtech

TERMINAL_BOLD_WIDE_
DECTECH18_100DPI

-Bitstream-Terminal-Bold-R-Wide--25-180-100-100- C-180-DEC-DECtech

TERMINAL_DBLWIDE10_
100DPI

-DEC-Terminal-Medium-R-Double Wide--14-100-100-100-C-160-ISO8859-1

TERMINAL_DBLWIDE14_
100DPI

-Bitstream-Terminal-Medium-R-Double Wide--18-140-100-100-C-220-ISO8859-1

TERMINAL_DBLWIDE18_
100DPI

-Bitstream-Terminal-Medium-R-Double Wide--25-180-100-100-C-300-ISO8859-1

(continued on next page)

C–20

VMS DECwindows Fonts

Table C–2 (Cont.) VMS DECwindows 100 dpi Fonts

File Name Font Name

Terminal

TERMINAL_DBLWIDE_
DECTECH10_100DPI

-DEC-Terminal-Medium-R-Double Wide--14-100-100-100-C-160-DEC-DECtech

TERMINAL_DBLWIDE_
DECTECH14_100DPI

-Bitstream-Terminal-Medium-R-Double Wide--18-140-100-100-C-220-DEC-DECtech

TERMINAL_DBLWIDE_
DECTECH18_100DPI

-Bitstream-Terminal-Medium-R-Double Wide--25-180-100-100-C-300-DEC-DECtech

TERMINAL_DECTECH10_
100DPI

-DEC-Terminal-Medium-R-Normal--14-100-100-100-C-80-DEC-DECtech

TERMINAL_DECTECH14_
100DPI

-Bitstream-Terminal-Medium-R-Normal--18-140-100-100-C-110-DEC-DECtech

TERMINAL_DECTECH18_
100DPI

-Bitstream-Terminal-Medium-R-Normal--25-180-100-100-C-150-DEC-DECtech

TERMINAL_DECTECH20_
100DPI

-DEC-Terminal-Medium-R-Normal--28-200-100-100-C-160-DEC-DECtech

TERMINAL_DECTECH28_
100DPI

-Bitstream-Terminal-Medium-R-Normal--36-280-100-100-C-220-DEC-DECtech

TERMINAL_DECTECH36_
100DPI

-Bitstream-Terminal-Medium-R-Normal--50-360-100-100-C-300-DEC-DECtech

TERMINAL_GS10_100DPI -DEC-Terminal-Medium-R-Normal-GS-14-100-100-100-C-80-ISO8859-1

TERMINAL_GS14_100DPI -Bitstream-Terminal-Medium-R-Normal-GS-18-140-100-100-C-110-ISO8859-1

TERMINAL_NARROW10_
100DPI

-DEC-Terminal-Medium-R-Narrow--14-100-100-100-C-60-ISO8859-1

TERMINAL_NARROW14_
100DPI

-Bitstream-Terminal-Medium-R-Narrow--18-140-100-100-C-70-ISO8859-1

TERMINAL_NARROW18_
100DPI

-Bitstream-Terminal-Medium-R-Narrow--25-180-100-100- C-90-ISO8859-1

TERMINAL_NARROW20_
100DPI

-DEC-Terminal-Medium-R-Narrow--28-200-100-100-C-120-ISO8859-1

TERMINAL_NARROW28_
100DPI

-Bitstream-Terminal-Medium-R-Narrow--36-280-100-100-C-140-ISO8859-1

TERMINAL_NARROW36_
100DPI

-Bitstream-Terminal-Medium-R-Narrow--50-360-100-100-C-180-ISO8859-1

TERMINAL_NARROW_
DECTECH10_100DPI

-DEC-Terminal-Medium-R-Narrow--14-100-100-100-C-60-DEC-DECtech

TERMINAL_NARROW_
DECTECH14_100DPI

-Bitstream-Terminal-Medium-R-Narrow--18-140-100-100-C-70-DEC-DECtech

(continued on next page)

C–21

VMS DECwindows Fonts

Table C–2 (Cont.) VMS DECwindows 100 dpi Fonts

File Name Font Name

Terminal

TERMINAL_NARROW_
DECTECH18_100DPI

-Bitstream-Terminal-Medium-R-Narrow--25-180-100-100-C-90-DEC-DECtech

TERMINAL_NARROW_
DECTECH20_100DPI

-DEC-Terminal-Medium-R-Narrow--28-200-100-100-C-120-DEC-DECtech

TERMINAL_NARROW_
DECTECH28_100DPI

-Bitstream-Terminal-Medium-R-Narrow--36-280-100-100-C-140-DEC-DECtech

TERMINAL_NARROW_
DECTECH36_100DPI

-Bitstream-Terminal-Medium-R-Narrow--50-360-100-100-C-180-DEC-DECtech

TERMINAL_WIDE10_100DPI -DEC-Terminal-Medium-R-Wide--14-100-100-100-C-120-ISO8859-1

TERMINAL_WIDE14_100DPI -Bitstream-Terminal-Medium-R-Wide--18-140-100-100-C-140-ISO8859-1

TERMINAL_WIDE18_100DPI -Bitstream-Terminal-Medium-R-Wide--25-180-100-100-C-180-ISO8859-1

TERMINAL_WIDE_
DECTECH10_100DPI

-DEC-Terminal-Medium-R-Wide--14-100-100-100-C-120-DEC-DECtech

TERMINAL_WIDE_
DECTECH14_100DPI

-Bitstream-Terminal-Medium-R-Wide--18-140-100-100-C-140-DEC-DECtech

TERMINAL_WIDE_
DECTECH18_100DPI

-Bitstream-Terminal-Medium-R-Wide--25-180-100-100-C-180-DEC-DECtech

Times

TIMES_BOLD8_100DPI -Adobe-Times-Bold-R-Normal- -11-80-100-100-P-57-ISO8859-1

TIMES_BOLD10_100DPI -Adobe-Times-Bold-R-Normal--14-100-100-100-P-76-ISO8859-1

TIMES_BOLD12_100DPI -Adobe-Times-Bold-R-Normal--17-120-100-100-P-88-ISO8859-1

TIMES_BOLD14_100DPI -Adobe-Times-Bold-R-Normal--20-140-100-100-P-100-ISO8859-1

TIMES_BOLD18_100DPI -Adobe-Times-Bold-R-Normal--25-180-100-100-P-132-ISO8859-1

TIMES_BOLD24_100DPI -Adobe-Times-Bold-R-Normal--34-240-100-100-P-177-ISO8859-1

TIMES_BOLDITALIC8_
100DPI

-Adobe-Times-Bold-I-Normal--11-80-100-100-P-57-ISO8859-1

TIMES_BOLDITALIC10_
100DPI

-Adobe-Times-Bold-I-Normal--14-100-100-100-P-77-ISO8859-1

TIMES_BOLDITALIC12_
100DPI

-Adobe-Times-Bold-I-Normal--17-120-100-100-P-86-ISO8859-1

TIMES_BOLDITALIC14_
100DPI

-Adobe-Times-Bold-I-Normal--20-140-100-100-P-98-ISO8859-1

TIMES_BOLDITALIC18_
100DPI

-Adobe-Times-Bold-I-Normal--25-180-100-100-P-128-ISO8859-1

TIMES_BOLDITALIC24_
100DPI

-Adobe-Times-Bold-I-Normal--34-240-100-100-P-170-ISO8859-1

TIMES_ITALIC8_100DPI -Adobe-Times-Medium-I-Normal--11-80-100-100-P-52-ISO8859-1

TIMES_ITALIC10_100DPI -Adobe-Times-Medium-I-Normal--14-100-100-100-P-73-ISO8859-1

TIMES_ITALIC12_100DPI -Adobe-Times-Medium-I-Normal--17-120-100-100-P-84-ISO8859-1

TIMES_ITALIC14_100DPI -Adobe-Times-Medium-I-Normal--20-140-100-100-P-94-ISO8859-1

TIMES_ITALIC18_100DPI -Adobe-Times-Medium-I-Normal--25-180-100-100-P-125-ISO8859-1

(continued on next page)

C–22

VMS DECwindows Fonts

Table C–2 (Cont.) VMS DECwindows 100 dpi Fonts

File Name Font Name

Times

TIMES_ITALIC24_100DPI -Adobe-Times-Medium-I-Normal--34-240-100-100-P-168-ISO8859-1

TIMES_ROMAN8_100DPI -Adobe-Times-Medium-R-Normal--11-80-100-100-P-54-ISO8859-1

TIMES_ROMAN10_100DPI -Adobe-Times-Medium-R-Normal--14-100-100-100-P-74-ISO8859-1

TIMES_ROMAN12_100DPI -Adobe-Times-Medium-R-Normal--17-120-100-100-P-84-ISO8859-1

TIMES_ROMAN14_100DPI -Adobe-Times-Medium-R-Normal--20-140-100-100-P-96-ISO8859-1

TIMES_ROMAN18_100DPI -Adobe-Times-Medium-R-Normal--25-180-100-100-P-125-ISO8859-1

TIMES_ROMAN24_100DPI -Adobe-Times-Medium-R-Normal--34-240-100-100-P-170-ISO8859-1

Table C–3 VMS DECwindows Common Fonts

CURSOR Cursor

DECW$C32X32 DECW$CURSOR

DECW$CURSOR DECW$CURSOR

Fixed Width

File Name Font Name

5X8 -Misc-Fixed-Medium-R-Normal--8-80-75-75-C-50-ISO8859-1

6X10 -Misc-Fixed-Medium-R-Normal--10-100-75-75-C-60-ISO8859-1

6X12 -Misc-Fixed-Medium-R-SemiCondensed--12-110-75-75-C-60-ISO8859-1

6X13 -Misc-Fixed-Medium-R-SemiCondensed--13-120-75-75-C-60-ISO8859-1

6X13B -Misc-Fixed-Bold-R-SemiCondensed--13-120-75-75-C-60-ISO8859-1

6X9 -Misc-Fixed-Medium-R-Normal--9-90-75-75-C-60-ISO8859-1

7X13 -Misc-Fixed-Medium-R-Normal--13-120-75-75-C-70-ISO8859-1

7X13B -Misc-Fixed-Bold-R-Normal--13-120-75-75-C-70-ISO8859-1

7X14 -Misc-Fixed-Medium-R-Normal--14-130-75-75-C-70-ISO8859-1

8X13 -Misc-Fixed-Medium-R-Normal--13-120-75-75-C-80-ISO8859-1

8X13B -Misc-Fixed-Bold-R-Normal--13-120-75-75-C-80-ISO8859-1

8X16 -Sony-Fixed-Medium-R-Normal--16-120-100-100-C-80-ISO8859-1

9X15 -Misc-Fixed-Medium-R-Normal--15-140-75-75-C-90-ISO8859-1

9X15B -Misc-Fixed-Bold-R-Normal--15-140-75-75-C-90-ISO8859-1

10X20 -Misc-Fixed-Medium-R-Normal--20-200-75-75-C-100-ISO8859-1

12X24 -Sony-Fixed-Medium-R-Normal--24-170-100-100-C-120-ISO8859-1

(continued on next page)

C–23

VMS DECwindows Fonts

Table C–3 (Cont.) VMS DECwindows Common Fonts

Fixed Width

File Name Alias Font Name Alias

5X8 -Misc-Fixed-Medium-R-Normal--8-60-100-100-C-50-ISO8859-1

6X10 -Misc-Fixed-Medium-R-Normal--9-80-100-100-C-60-ISO8859-1

6X12 -Misc-Fixed-Medium-R-Normal--10-70-100-100-C-60-ISO8859-1

6X13 -Misc-Fixed-Medium-R-SemiCondensed--12-90-100-100-C-60-ISO8859-1

6X13B -Misc-Fixed-Medium-R-SemiCondensed--13-100-100-100-C-60-ISO8859-1

6X9 -Misc-Fixed-Bold-R-SemiCondensed--13-100-100-100-C-60-ISO8859-1

7X13 -Misc-Fixed-Medium-R-Normal--13-100-100-100-C-70-ISO8859-1

7X13B -Misc-Fixed-Bold-R-Normal--13-100-100-100-C-70-ISO8859-1

7X14 -Misc-Fixed-Medium-R-Normal--14-110-100-100-C-70-ISO8859-1

8X13 -Misc-Fixed-Medium-R-Normal--13-100-100-100-C-80-ISO8859-1

8X13B -Misc-Fixed-Bold-R-Normal--13-100-100-100-C-80-ISO8859-1

8X16 -Sony-Fixed-Medium-R-Normal--16-150-75-75-C-80-ISO8859-1

9X15 -Misc-Fixed-Medium-R-Normal--15-120-100-100-C-90-ISO8859-1

9X15B -Misc-Fixed-Bold-R-Normal--15-120-100-100-C-90-ISO8859-1

10X20 -Misc-Fixed-Medium-R-Normal--20-140-100-100-C-100-ISO8859-1

12X24 -Sony-Fixed-Medium-R-Normal--24-230-75-75-C-120-ISO8859-1

C–24

Index

A
Allocating

color, 5–3
color cells, 5–15
color map entries, 5–15
colors for exclusive use, 5–14

ALLOC COLOR CELLS routine, 5–15
ALLOC COLOR routine, 5–12
ALLOC NAMED COLOR routine, 5–10
Any event data structure, 9–3
Arc

drawing, 6–13
drawing more than one, 6–14
filling, 6–17
GC members used to draw, 6–15
GC members used to fill, 6–18
styles of filling, 4–6

illustrated, 4–12
Arc data structure, 6–14
Area

clearing, 6–21
copying, 6–21
filling, 6–17
GC members used to copy, 6–23

Associating
fonts with graphics context, 8–13

Atom
associated with font properties, 8–9
associated with window properties, 3–16
definition, 3–15

Attribute
changing window, 3–36
defining window, 3–7
definition, 3–6
getting information about window, 3–38

B
Background color, 4–4
Backing pixel, 3–9
Backing plane, 3–9
Backing store, 3–9
BDF (Bitmap Distribution Format), A–1
Bit gravity

definition, 3–9
illustration of, 3–34

Bit gravity (cont’d)
specifying how window moved with, 3–9
using when reconfiguring windows, 3–33

Bitmap
creating data file for, 7–3

Bitmap Distribution Format
See BDF

Blocking
definition, 9–30
how Xlib reacts to, 9–30
routines that cause, 9–31

Bounding box
text character, 8–1

Button
handling presses and releases, 9–8 to 9–11

Button event data structure, 9–8

C
CHANGE WINDOW ATTRIBUTES routine, 3–36
Changing

colors, 5–14
images, 7–10
stacking order, 3–35

Char 2B data structure, 8–5
Character set considerations, 8–23
CHECK IF EVENT routine, 9–31
Checking contents of the event queue, 9–30
CHECK MASK EVENT routine, 9–32
CHECK TYPED EVENT routine, 9–32
CHECK TYPED WINDOW EVENT routine, 9–32
CHECK WINDOW EVENT routine, 9–31
Child window

See also Window hierarchy
definition, 1–3
getting information about, 3–37

Circulate event data structure, 9–26
CIRCULATE SUBWINDOWS DOWN routine,

3–36
CIRCULATE SUBWINDOWS UP routine, 3–36
CLEAR AREA routine, 6–21
Clearing

areas, 6–21
areas efficiently, 6–1
window areas, 6–21

Index–1

CLEAR WINDOW routine, 6–21
Client

communication with, 9–29
connecting with server, 2–3
definition, 1–1
request

controlling, 2–5
handling by Xlib

See also Server
sending message to, 9–29

Client message event data structure, 9–29
Client-server connection

breaking, 2–4
establishing, 2–3
getting information about, 2–4

Clipping
specifying pixmap for, 4–6

Clipping graphics
negative affects of, 6–1

CLOSE DISPLAY routine, 2–4
Color

allocating for exclusive use, 5–14
cell

allocating for exclusive use, 5–15
definition, 5–2

determining how displayed, B–1
direct color, 5–5
displaying, 5–3
freeing storage assigned for, 5–23
gray scale, 5–5
index, 5–2
named colors, B–1
pseudocolor, 5–5
range of, 5–2
RGB

components, 5–2
values, 5–5, B–1

RGB values, B–1
screen configuration and, 5–5
sharing, 5–10 to 5–14

named, 5–10 to 5–11
specifying exact value, 5–12

static color, 5–6
static gray, 5–6
true color, 5–6
type of

See Visual type
using named, 5–10

Color data structure, 5–12
Color map, 5–1

allocating entries, 5–15
creating, 5–15
creating from default, 5–22
default

allocating for exclusive use, 5–14
definition, 5–2
focus, 5–4

Color map (cont’d)
hardware, 5–4
installing, 5–4
receiving notification of change in, 9–28
sharing the default, 5–4
specifying, 5–14 to 5–15
specifying for a window, 3–9
storing colors, 5–23
using the default, 5–4
virtual, 5–4
window manager installing, 5–4

Color map event data structure, 9–28
Color mix widget, B–1
Color resources

allocating, 5–1, 5–15, 5–22
contending for, 5–3
freeing, 5–1, 5–23
querying, 5–1
sharing, 5–1, 5–10

Color values
specifying exact, 5–12

Common fonts
list of, C–1

Computing
bounding box, 8–17
size of text, 8–17

Configure event data structure, 9–27
Configure request

overriding, 3–9
CONFIGURE WINDOW routine, 3–29
Confirming resource creation, 9–33
Conventions

font naming, 8–12
CONVERT SELECTION routine, 3–28
COPY AREA routine, 6–22
COPY COLORMAP AND FREE routine, 5–23
Copying

areas, 6–21
pixmap areas, 6–22
window areas, 6–22

COPY PLANE routine, 6–22
CREATE COLORMAP routine, 5–15
CREATE FONT CURSOR routine, 6–32
CREATE GLYPH CURSOR routine, 6–33
CREATE IMAGE routine, 7–8
CREATE PIXMAP CURSOR routine, 6–34
CREATE PIXMAP routine, 7–1
CREATE REGION routine, 6–23
CREATE SIMPLE WINDOW routine, 3–6
Create window event data structure, 9–27
CREATE WINDOW routine, 3–7
Creating

bitmap, 7–3
color map, 5–15
color map from default, 5–22
cursors, 6–32
image, 7–8
image from pixmap, 7–8

Index–2

Creating (cont’d)
pixmap, 7–1
regions, 6–23

Crossing event data structure, 9–13
Cursor

creating, 6–32 to 6–36
using a client cursor font, 6–33
using pixmaps, 6–34
using VMS DECwindows cursor font, 6–32
using Xlib cursor font, 6–32

definition, 6–31
destroying, 6–36
determining size of, 6–35
elements of, 6–33
illustration of shape and mask, 6–33
making visible on screen, 6–32
mask, 6–33
shape, 6–33
specifying for a window, 3–9

D
Debugging programs, 1–9
DECwindows

list of fonts, C–1
list of named colors, B–1

Default color map, 5–4
DEFAULT COLORMAP routine, 5–14
DEFAULT VISUAL OF SCREEN routine, 5–7
Default window characteristics

See Window
DEFINE CURSOR routine, 6–32
Defining

cursor, 6–31
graphics position, 6–1
intersection of regions, 6–26
regions, 6–23

Depth
definition, 5–2

Destroying
cursors, 6–36
image, 7–5, 7–10
windows, 3–12

DESTROY SUBWINDOWS routine, 3–12
Destroy window event data structure, 9–27
DESTROY WINDOWS routine, 3–12
Determining multiple visual types, 5–8
Determining visual types, 5–7
Device type

See Visual type
Direct color, 5–5
Display

closing, 2–4
compared to hardware, 2–1
information routines, 2–4
opening, 2–3
server response to closing, 2–4

Display information routines, 2–4
Displaying color, 5–3
Display type

See Visual type
DRAW ARC routine, 6–13
DRAW ARCS routine, 6–15
DRAW IMAGE STRING 16 routine, 8–21
DRAW IMAGE STRING routine, 8–21
Drawing

arcs, 6–9, 6–13
graphics, 6–1
lines, 6–2, 6–5
multiple arcs, 6–14
multiple lines, 6–6
multiple points, 6–3
multiple rectangles, 6–10
points, 6–2
rectangles, 6–9
text, 8–17

DRAW LINE routine, 6–5
DRAW LINES routine, 6–6
DRAW POINT routine, 6–2
DRAW RECTANGLE routine, 6–9
DRAW SEGMENTS routine, 6–9
DRAW STRING 16 routine, 8–20
DRAW STRING routine, 8–20
DRAW TEXT 16 routine, 8–19
DRAW TEXT routine, 8–19

E
Error

codes, 9–33
handling event, 9–32

using default, 9–32
Error event data structure, 9–33
Error handling conditions, 1–8
Error reporting

delays caused by Xlib buffering, 1–9
Event

blocking, 9–30
button press and release, 9–8 to 9–11
client communication, 9–29
client message, 9–29
color map, 9–28
convert selection, 9–29
data structure used to report all types of, 9–3
data structure used to report multiple types of,

9–4
default error handlers, 9–32
definition, 9–1
error codes, 9–33
error handling, 9–32
graphics exposure, 9–20 to 9–24
handling queue, 9–30 to 9–32
key, 9–25
keyboard mapping, 9–27

Index–3

Event (cont’d)
key mapping, 9–27
masks used to specify, 9–5
notifying ancestors of, 3–9
pointer, 9–8
pointer grab, 9–18
pointer mapping, 9–27
pointer motion, 9–11
predicate procedure

definition, 9–30
processing, 9–1 to 9–4
property change, 9–29
reported as result of window entry or exit,

9–16
selecting

using a mask, 9–31
using predicate procedure, 9–30
using the SELECT INPUT routine, 9–5
when changing window attributes, 9–7
when creating a window, 9–6

selecting types of, 9–4 to 9–7
selection

notification, 9–29
ownership, 9–29

sending to other applications, 9–32
specifying type associated with a window, 3–9
types, 9–2
types always reported, 9–4
window

circulation, 9–26
creation, 9–27
destruction, 9–27
entry or exit

caused by a grab, 9–15
caused by pointer movement, 9–15

exposure, 9–19
gravity, 9–27
mapping, 9–27
reparenting, 9–27
unmapping, 9–28
visibility, 9–28

Event data structure, 9–4
Event mask

selecting events out of order using, 9–31
Event queue

checking, 9–30
putting event back on, 9–32
returning next event, 9–30

Event queue management, 9–30
EVENTS QUEUED routine, 9–30
Event window, 9–1
Exposure

notification of window region, 4–6

F
Filling

arcs, 6–17
areas, 6–17
polygon, 6–18
rectangles, 6–17

FILL POLYGON routine, 6–19
Fill style, 4–5

illustration of, 4–10
Flags

for defining color values, 5–12
for referring to window attributes, 3–10
for referring to window change values, 3–30

Font name
speeding up search of, 8–23

Font prop data structure, 8–12
Font properties, 8–14
Fonts

advantages of minimum bounding box, A–1
associating with graphics context, 8–13
character set considerations, 8–23
common, 8–22
compiling, A–1
complimentary routines for, 8–16
converting from BDF to SNF, A–1
definition, 8–4
fallback strategy for, 8–22
fixed, 8–4
freeing resources for, 8–16
getting illustration of when compiling, A–1
getting information about, 8–14
list of 100 dpi, C–1
list of 75 dpi, C–1
list of common, C–1
list of VMS DECwindows, C–1
loading, 8–13
monitor density independence, 8–23
monospaced, 8–4
multiple-row, 8–5
naming

conventions when, 8–12
wildcards used when, 8–13

pixel size of, 8–13
point size of, 8–13
properties

associating with atoms, 8–9
single-row, 8–4
specifying, 4–6, 8–12
specifying output file for, A–1

Font struc data structure, 8–6
Foreground color, 4–4
FREE COLORMAP routine, 5–24
FREE COLORS routine, 5–23
FREE CURSOR routine, 6–36

Index–4

Freeing
color resources, 5–23
default color map, 5–22
pixmap, 7–1, 7–3

FREE PIXMAP routine, 7–3

G
GC

See Graphics context (GC)
GC data structure

default values of, 4–2
GC values data structure, 4–4

flags for referring to members of, 4–12
illustrated, 4–3

GET GEOMETRY routine, 3–37
GET IMAGE routine, 7–8
GET SELECTION OWNER routine, 3–28
GET VISUAL INFO routine, 5–9
GET WINDOW ATTRIBUTES routine, 3–38
Grab

active, 9–8
handling pointer, 9–18
passive, 9–8

Graphics
clearing areas, 6–21
copying areas, 6–22
defining individual characteristics, 4–15
defining multiple characteristics, 4–2
defining the position of, 6–1
defining using CREATE GC routine, 4–2
defining with GC data structure, 4–2
drawing

arcs, 6–13
lines, 6–5 to 6–9
points, 6–2 to 6–5
rectangles, 6–9

filling areas, 6–17 to 6–21
introduction to, 6–1
position relative to drawable, 6–1
styles of filling, 4–5

Graphics characteristics
See Graphics context (GC)

Graphics context (GC)
changing, 4–19
copying, 4–18
default values of, 4–2
defining in one call, 4–2
definition, 4–1
effect of window changes on, 4–19
maximum number of, 4–19
overview of, 4–1
specifying individual components of, 4–15
using efficiently, 4–19

Graphics expose event data structure, 9–20

Graphics exposure, 9–20 to 9–24
definition, 9–20
example of handling, 9–23

Graphics routines, 6–1
using efficiently, 6–1

Gravity event data structure, 9–27
Gray scale, 5–5

H
Handling

changes
in properties, 9–29
in selection ownership, 9–29
in window configuration, 9–26
in window position, 9–27
in window visibilty, 9–28

client notify events, 9–29
convert selection requests, 9–29
errors, 9–32
events, 9–1
keyboard mappings, 9–27
key mappings, 9–27
key map state events, 9–28
pointer mappings, 9–27
window

circulation, 9–26
creation, 9–27
destruction, 9–27
mappings, 9–27
reparenting, 9–27
unmappings, 9–28

Hash table
font name search use of, 8–23

Heuristic
used for font name searching, 8–23

Host machine
specifying, 2–3

I
IF EVENT routine, 9–31
Image

changing, 7–10
creating, 7–8

from pixmap, 7–8
creating data file of, 7–3
destroying, 7–10
format of, 7–9
storing, 7–9
transferring to drawable, 7–9

Image data structure, 7–5
Index

color, 5–2
Inferior window

definition, 1–3

Index–5

Information routines
as arguments to routines, 2–4

Input focus
definition, 9–18

INSTALL COLORMAP routine, 5–4
Installing color map, 5–4

K
Key

mapping events, 9–27
presses, 9–25
releases, 9–25

Keyboard input
providing window manager hints about, 3–22

Key event, 9–25
Key event data structure, 9–25
Key map

changes in state of, 9–28

L
Line

dash offset illustrated, 4–12
double dash, 4–4
drawing more than one, 6–5
endpoints of, 4–5
how server draws, 4–4
on off dash, 4–4
solid, 4–4
specifying

beginning of dashed, 4–7
length of dash in dashed, 4–7
style of, 4–4

styles of, 4–7
endpoints, 4–8
joining another line, 4–5, 4–9

treatment of coincident endpoints of, 4–5
LIST FONTS routine, 8–14
LIST FONTS WITH INFO routine, 8–14
LOAD FONT routine, 8–13
Loading

fonts, 8–13
LOAD QUERY FONT routine, 8–13
LOOKUP COLOR routine, 5–24
LOWER WINDOW routine, 3–35

M
Managing

bitmaps, 7–3
cursors, 6–36
regions, 6–26

Map event data structure, 9–27
Mapping and unmapping windows, 3–13
Mapping event data structure, 9–27

MAP RAISED routine, 3–13
Map request

overriding, 3–9
MAP SUBWINDOWS routine, 3–13
MAP WINDOW routine, 3–13
MASK EVENT routine, 9–31
Matching color requirements, 5–4
Matching the visual, 5–9
MATCH VISUAL INFO routine, 5–9
Monitor density independence, 8–23
Motion event data structure, 9–11
MOVE RESIZE WINDOW routine, 3–32
MOVE WINDOW routine, 3–32

N
Named colors, B–1

using, 5–10
Named VMS DECwindows colors

using, 5–10
NEXT EVENT routine, 9–30
NEXT REQUEST routine, 9–33
No expose event data structure, 9–22

O
Obscure

definition, 3–5
Occlude

definition, 3–5
OPEN DISPLAY routine, 2–3
Origin of window

definition, 3–4
Ownership

See Window selection

P
Parent window

See also Window hierarchy
definition, 3–2
getting information about, 3–37
receiving notification of change of, 9–27
using attributes of, 3–6

PEEK EVENT routine, 9–30
PEEK IF EVENT routine, 9–31
PENDING routine, 9–30
Pixel

and color values, 5–1
definition, 3–4
determining if inside a filled polygon, 4–6

illustrated, 4–11
relationship to planes, 5–2

Pixmap
checking the creation of, 7–3
clearing areas of, 6–21
copying areas of, 6–22
creating, 7–1

Index–6

Pixmap (cont’d)
creating from bitmap data file, 7–4
example of creating, 7–1
freeing storage for, 7–3

Plane
definition, 5–1

Point
determining location of, 6–2
drawing more than one, 6–2
GC members used to draw, 6–3

Point data structure, 6–2
Pointer

button event handling, 9–8 to 9–11
event, 9–8
mapping events, 9–27
motion event handling, 9–11 to 9–13

Polygon
filling, 6–18 to 6–21
GC members used to fill, 6–19
specifying polygon shape, 6–18

POLYGON REGION routine, 6–23
Positioning

text characters, 8–1
Predicate procedure, 9–31
Processing events, 9–1
Property

communicating with window manager using,
3–21

defining for window manager, 3–22
definition, 3–15
example of

using, 3–17
exchanging between clients, 3–28
font, 8–14
getting information about font, 8–14
receiving notification of change in, 9–29
used by window manager, 3–21

Property event data structure, 9–29
Pseudocolor, 5–5
Pseudomotion

definition, 9–13
window entry or exit, 9–17

PUT BACK EVENT routine, 9–32
PUT IMAGE routine, 7–9
Putting events on top of queue, 9–32

Q
QUERY BEST CURSOR routine, 6–35
QUERY COLOR routine, 5–24
Querying color map entries, 5–24
QUERY POINTER routine, 3–37
QUERY TEXT EXTENTS 16 routine, 8–17
QUERY TEXT EXTENTS routine, 8–17
QUERY TREE routine, 3–37

R
RAISE WINDOW routine, 3–35
Rectangle

drawing more than one, 6–10
filling, 6–17
GC members used to draw, 6–11
GC members used to fill, 6–18

Rectangle data structure, 6–10
Region

creating, 6–23 to 6–25
definition, 6–23
example of intersecting, 6–26
managing, 6–26 to 6–31

Reparent event data structure, 9–27
Request

buffering, 1–9
client, 1–9
how Xlib handles client, 1–9

RESIZE WINDOW routine, 3–32
RESTACK WINDOW routine, 3–36
Returning

next event on queue, 9–30
RGB values, 5–24

Returning visual data structure, 5–9
RGB values, B–1
Root window, 3–2

definition, 1–3
Routines

ALLOC COLOR, 5–12
ALLOC COLOR CELLS, 5–15
ALLOC NAMED COLOR, 5–10
blocking, 9–31
CHANGE WINDOW ATTRIBUTES, 3–36
CHECK IF EVENT, 9–31
CHECK MASK EVENT, 9–32
CHECK TYPED EVENT, 9–32
CHECK TYPED WINDOW EVENT, 9–32
CHECK WINDOW EVENT, 9–31
CIRCULATE SUBWINDOWS DOWN, 3–36
CIRCULATE SUBWINDOWS UP, 3–36
CLEAR AREA, 6–21
CLEAR WINDOW, 6–21
CLOSE DISPLAY, 2–4
CONFIGURE WINDOW, 3–29
CONVERT SELECTION, 3–28
COPY AREA, 6–22
COPY COLORMAP AND FREE, 5–23
COPY PLANE, 6–22
CREATE COLORMAP, 5–15
CREATE FONT CURSOR, 6–32
CREATE GLYPH CURSOR, 6–33
CREATE IMAGE, 7–8
CREATE PIXMAP, 7–1
CREATE PIXMAP CURSOR, 6–34
CREATE REGION, 6–23
CREATE SIMPLE WINDOW, 3–6

Index–7

Routines (cont’d)
CREATE WINDOW, 3–7
DEFAULT COLORMAP, 5–14
DEFAULT VISUAL OF SCREEN, 5–7
DEFINE CURSOR, 6–32
DESTROY SUBWINDOWS, 3–12
DRAW ARC, 6–13
DRAW ARCS, 6–15
DRAW IMAGE STRING, 8–21
DRAW IMAGE STRING 16, 8–21
DRAW LINE, 6–5
DRAW LINES, 6–6
DRAW POINT, 6–2
DRAW RECTANGLE, 6–9
DRAW SEGMENTS, 6–9
DRAW STRING, 8–20
DRAW STRING 16, 8–20
DRAW TEXT, 8–19
DRAW TEXT 16, 8–19
EVENTS QUEUED, 9–30
FILL POLYGON, 6–19
FREE COLORMAP, 5–24
FREE COLORS, 5–23
FREE CURSOR, 6–36
FREE PIXMAP, 7–3
GET GEOMETRY, 3–37
GET IMAGE, 7–8
GET SELECTION OWNER, 3–28
GET VISUAL INFO, 5–9
GET WINDOW ATTRIBUTES, 3–38
IF EVENT, 9–31
INSTALL COLORMAP, 5–4
LIST FONTS, 8–14
LIST FONTS WITH INFO, 8–14
LOAD FONT, 8–13
LOAD QUERY FONT, 8–13
LOOKUP COLOR, 5–24
LOWER WINDOW, 3–35
MAP RAISED, 3–13
MAP SUBWINDOWS, 3–13
MAP WINDOW, 3–13
MASK EVENT, 9–31
MATCH VISUAL INFO, 5–9
MOVE RESIZE WINDOW, 3–32
MOVE WINDOW, 3–32
NEXT EVENT, 9–30
NEXT REQUEST, 9–33
OPEN DISPLAY, 2–3
PEEK EVENT, 9–30
PEEK IF EVENT, 9–31
PENDING, 9–30
POLYGON REGION, 6–23
PUT BACK EVENT, 9–32
PUT IMAGE, 7–9
QUERY BEST CURSOR, 6–35
QUERY COLOR, 5–24
QUERY POINTER, 3–37
QUERY TEXT EXTENTS, 8–17

Routines (cont’d)
QUERY TEXT EXTENTS 16, 8–17
QUERY TREE, 3–37
RAISE WINDOW, 3–35
RESIZE WINDOW, 3–32
RESTACK WINDOW, 3–36
SELECT INPUT, 9–5
SEND EVENT, 9–32
SET ERROR ROUTINE, 9–32
SET FONT, 8–13
SET SELECTION OWNER, 3–28
SET WINDOW BORDER WIDTH, 3–32
SET WM HINTS, 3–22
STORE COLOR, 5–23
STORE COLORS, 5–23
STORE NAMED COLOR, 5–23
SYNC, 9–33
SYNCHRONIZE, 9–32
TEXT EXTENTS, 8–17
TEXT EXTENTS 16, 8–17
TEXT WIDTH, 8–17
TEXT WIDTH 16, 8–17
UNDEFINE CURSOR, 6–36
UNINSTALL COLORMAP, 5–4
UNMAP SUBWINDOWS, 3–14
UNMAP WINDOW, 3–13
WINDOW EVENT, 9–31

S
See also color map
Save under operation, 3–9
Screen

specifying display, 2–3
Screen characteristics, 5–5
Searching for font names, 8–23
Segment data structure, 6–8
Selecting

events, 9–4
on the queue, 9–30
using mask, 9–31

SELECT INPUT routine, 9–5
Selection

See Window selection
Selection clear event data structure, 9–29
Selection event data structure, 9–29
Selection request event data structure, 9–29
SEND EVENT routine, 9–32
Sending

events to other clients, 9–32
Server

client requests to, 1–9
definition, 1–1
managing requests, 2–5
relationship to client, 2–1

Server Natural Form
See SNF

Index–8

SET ERROR HANDLER routine, 9–32
SET FONT routine, 8–13
SET SELECTION OWNER routine, 3–28
Set window attributes data structure, 3–8, 3–9
SET WINDOW BORDER WIDTH routine, 3–32
SET WM HINTS routine, 3–22
Sharing

color resources, 5–4, 5–10
Size hints data structure, 3–26
SNF (Server Natural Form), A–1
Source window, 9–1
Specifying

color, 5–10
color map, 5–14
default color map, 5–14
event types, 9–6, 9–7
exact colors, 5–10
exact color values, 5–12
font names, 8–23
fonts, 8–12
polygon shape, 6–18

Speeding up font name searches, 8–23
Stacking order

changing, 3–35
Static color, 5–6
Static gray, 5–6
Stippling

origin for, 4–6
specifying pixmap for, 4–6

STORE COLOR routine, 5–23
STORE COLORS routine, 5–23
STORE NAMED COLOR routine, 5–23
Storing

color values, 5–14, 5–23
image, 7–9
named colors, 5–23
pixel in an image, 7–5

Subwindow
lowering, 3–36
mapping, 3–13
movement when reconfiguring parent, 3–33
raising, 3–36
reordering in hierarchy, 3–13

SYNCHRONIZE routine, 9–32
Synchronous operation, 9–32
SYNC routine, 9–33

T
Text

character
definition, 8–1
illustrated, 8–1
positioning, 8–1

computing size of, 8–17
drawing, 8–17
example of drawing with DRAW STRING, 8–20
example of drawing with DRAW TEXT, 8–19

Text (cont’d)
styles of filling, 4–5

TEXT EXTENTS 16 routine, 8–17
TEXT EXTENTS routine, 8–17
Text item 16 data structure, 8–18
Text item data structure, 8–17
TEXT WIDTH 16 routine, 8–17
TEXT WIDTH routine, 8–17
Tiling

origin for, 4–6
specifying pixmap for, 4–6

Transferring
image to drawable, 7–9

Transport mechanism, 2–3
True color, 5–6

U
UNDEFINE CURSOR routine, 6–36
UNINSTALL COLORMAP routine, 5–4
Unmap event data structure, 9–28
UNMAP SUBWINDOWS routine, 3–14
UNMAP WINDOW routine, 3–13
Using named colors, 5–10

V
Viewable

definition, 3–5
Visibility event data structure, 9–28
Visible

definition, 3–5
Visual info data structure, 5–8, 5–9
Visual type

definition, 5–5
determining, 5–7
direct color, 5–5
gray scale, 5–5
pseudocolor, 5–5
static color, 5–6
static gray, 5–6
true color, 5–6
using to share color, 5–5

W
Wildcards used in fonts, 8–13
Window, 3–1

associating properties with, 3–15
attributes, 3–6
changing

attributes, 3–36
characteristics of, 3–29
stacking order, 3–35

circulation
receiving notification of, 9–26

clearing
areas of, 6–21, 6–22

Index–9

Window
clearing (cont’d)

areas with FILL RECTANGLES, 6–22
copying areas of, 6–22
creating

receiving notification of, 9–27
specifying attributes for, 3–7, 3–12
using attributes of parent, 3–6

creating simple, 3–6
default characteristics, 3–6
destroying, 3–12

receiving notification of, 9–27
entries and exits, 9–13
example of

configuring, 3–31
creating simple, 3–6
mapping and raising in hierarchy, 3–13

flags for referring to attributes, 3–10
getting information about, 3–37
initial state

providing window manager hints about,
3–22

lowering in the hierarchy, 3–35
mapping, 3–13

receiving notification of, 9–27
obscuring, 3–5

treating, 3–9
occluding, 3–5
parent

definition, 3–2
receiving notification of change of, 9–27

position relative to parent, 3–4
raising in the hierarchy, 3–35
reconfiguration

effects on graphics and text, 3–33
resizing, 3–29
restacking

constants for specifying, 3–30
restoring contents of exposed, 9–19
saving contents of another, 3–9
specifying

background color of, 4–4
color maps for, 3–9
cursor for, 3–9
foreground color of, 4–4

types of, 3–1
unmapping, 3–13

receiving notification of, 9–28
visibility of, 3–5

receiving notification of change in, 9–28
Window attribute

data structure used to define, 3–8
default value of, 3–9
defining, 3–7 to 3–12

Window background
specifying when creating a window, 3–6 to

3–10
using a pixel to define, 3–9

Window background (cont’d)
using a pixmap to define, 3–9

Window border
specifying when creating a window, 3–6 to 3–7

Window changes data structure, 3–29
Window clipping

specifying, 4–6
Window contents

managing when window is resized, 3–9
preserving, 3–9
repainting when obscured, 3–9
saving, 3–9

Window coordinate system, 3–4
Window entry or exit

caused by a grab, 9–15
caused by pointer movement, 9–15
events reported as result of, 9–16
example of handling, 9–16
pseudomotion, 9–17

Window event
See Event

WINDOW EVENT routine, 9–31
Window exposure, 9–19

definition, 9–19
example of handling, 9–20

Window gravity
definition, 3–9

Window hierarchy, 3–2 to 3–4
Window icon

providing window manager hints about, 3–22
Window manager

installing color maps, 5–4
providing hints to, 3–21
working with, 3–21

Window movement
managing when parent is resized, 3–9

Window occlusion, 3–5
Window position

specifying when creating a window, 3–6
Window restacking, 3–36
Window selection

definition, 3–28
receiving notification of, 9–29
receiving request to convert, 9–29

Window size
specifying when creating a window, 3–6

Window visibility, 3–5
See also Mapping and unmapping
receiving notification of changes in, 9–28

WM hints data structure, 3–23
Writing text, 8–1

Index–10

X
Xlib program

sample of, 1–2
XY bitmap format, 7–9
XY pixmap format, 7–9

Z
Z pixmap format, 7–9

Index–11

