Compag Enterprise Directory for
eBusiness

Management

Revision/Update Information: Version 5.0

February 2001
© 2000 Compaq Computer Corporation.

Compagq, the Compag logo, DIGITAL and the Digital logo Registered in US Patent and Trademark
Office. Tru64 is a trademark of Compaq Information Technologies Group, L.P. in the United States
and other countries. Other trademarks of Compaq are: ALL-IN-1, DEC, DECnet, DECwindows,
MAILbus 400, OpenVMS, OSAK, VAX, VAXcluster, VAX DOCUMENT, VMS.

Microsoft, Windows and Windows NT are trademarks of Microsoft Corporation in the United States
and other countries. Intel is a registered trademark of Intel Corporation. UNIX is a trademark of
The Open Group in the United States and other countries.

Internet is a registered trademark of Internet, Inc. OSF and OSF/1 are trademarks of Open
Software Foundation, Inc. OSI is a registered trademark of CA Management, Inc. X/Open is a
trademark of the X/Open Company Ltd.

All other product names mentioned herein may be trademarks of their respective companies.

Confidential computer software. Valid license from Compaq required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the US. Government
under vendor’s standard commercial license.

Compag shall not be liable for technical or editorial errors or omissions contained herein. The
information in this document is provided "as is" without warranty of any kind and is subject

to change without notice. The warranties for Compaqg products are set forth in the express
limited warranty statements accompanying such products. Nothing herein should be construed as
constituting an additional warranty.

Compagq believes the information in this publication is accurate as of its publication date; such
information is subject to change without notice. Compagq is not responsible for any inadvertent
errors. Compagq conducts its business in a manner that conserves the environment and protects the
safety and health of its employees, customers and the community.

Contents

Preface

Part | Introduction

1 Directory Information and Enterprise Directories

11
111
1.111
1.1.2
1.1.21
1.1.2.2
1.13
1.1.31
1.1.3.2
1.1.33
1.1.34
1.2
1.2.1
1.2.2
1.2.3
1.2.4
1.25
1.2.6
1.3
131
1.3.2

Directory Information
Entries.
Attributes.

Entry Names
Distinguished Names

Alias Names.
Classes
Mandatory Attributes
Optional Attributes

Name Forms
Structure Rules
Enterprise Directories
The Schema
Distributing Directory Information . ..
Replicating Directory Information
Distributing Requests for Information .

Controlling Access to Directory Entries

Accounting for Enterprise Directory Use
Managing the Compaq Enterprise Directory for eBusiness Product.

Managing Directory Information
Managing the Enterprise Directory . . .

2 Single Node X.500 Implementation Tutorial

2.1
2.2
2.3
2.4
2.5
2.6

Install the Product
Configurethe DSA
Configure Application Defaults
Create Some Directory Entries

Experiment with the Example Enterprise Directory

Destroy the Example Enterprise Directory

XVii

il il ol il il il
COONODODOOUAWWN R

[y
|

1-10
1-11
1-12
1-12
1-12
1-12
1-13

|
A WWWNN

3 Multi-Node X.500 Implementation Tutorial

Part Il

3.1 The Characteristics of the Example Enterprise Directory
3.2 Install the Product e
3.3 Run the DSA Configuration Utility on Both Systems.
3.4 Complete the Configuration for CN=DSA1...........
3.4.1 Notes About the Configuration of CN=DSALl
3.5 Complete the Configuration for CN=DSA2.........................
351 Notes About the Configuration of CN=DSA2
3.6 Configure Application Defaults on Both Systems
3.6.1 Configure Lookup Client Defaults on Both Systems.
3.7 Create Some ENLries
3.8 Summary of the Tasks Completed SoFar
3.9 Setting Up Access Controls
3.10 Replicating Information Between the TwWwo DSAS
3.11 Experimenting with the Example Enterprise Directory
3.12 Using the Lookup Client e
3.13 Deleting the Example Enterprise Directory
Planning

4 Planning Your Directory Information Tree

4.1
41.1
4.2
4.3
4.4
44.1
4.5
45.1

DIT Planning Considerations
Representing Hierarchy as Attributes of an Entry.
Choosing Classes to Represent Objects
Positioning Your Directory Information Tree into a Global Context
Naming Your ENtries e
Resolving Naming Clashes
Planning Entries to Represent DSAS i i
Recommended Position of DSA Entries in Your DIT

5 Planning DSAs to Hold Your Directory Information Tree

vi

5.1
5.11
5.1.2
5.1.3
5.14
5.1.5
5.2
5.21
5.2.2
5.2.3
524
5.25
5.25.1
5.2.6
5.2.6.1

5.2.7
5.2.8
5.2.9
5.29.1

Dividing Your Directory Information Tree into Naming Contexts
Implementing Your DIT as One Naming Context
Implementing Your DIT as Several Naming Contexts
Assigning Names to Naming Contexts
Distributing Naming Contexts
Replicating Naming Contexts.

Planning DSA Configuration Information
DSA AE Titles
DSA PassWordst
DSA Presentation ADAressest
DSA LDAP POrto
Naming Context Entities i

Planning Primary and Secondary Consumer Information
Subordinate Reference Entities
Identifying Which DSAs Require Manually Created Subordinate
References
Superior Reference Entities
Using the Worksheets i
Attributes of DSA Entries
Planning the DXIM Command to Create DSA Entries

| ICAJ(IJOCDCAJCIAJ(AJ(A)(A)U)
NPFPOOUOWNOOOONOOREANDN

oooooo%ooooooo
NNER R R R R

4-5

4-9
4-10
4-13
4-15
4-16
4-18
4-19

(.ﬂ(.ﬂ(ﬂ(.lﬂ(.ﬂ(.ﬂ(.ﬂ

AR
P PRPrPRrEE]
ANPRPPRPPRPOODOOUDA WWW

T
e

6 Customizing the Schema

6.1 Schema Text Files e
6.2 Compiling the Schema
6.3 Assigning Object Identifiers to New Definitions.
6.4 Planning to Customize the Schema
6.5 Planning an Auxiliary Class i

6.5.1 Defining an Auxiliary Class
6.5.2 DXIM Restrictions on the Use of Auxiliary Classes
6.5.3 Defining Attributes e
6.5.3.1 Defining Primary and Secondary Attributes
6.5.4 Planning to Index Attribute Values
6.5.4.1 The Purpose of Indexes
6.5.4.2 Making a DSA Index a Given Attribute's Values
6.5.4.3 Notes About Indexing Attribute Values
6.6 Defininga Label......... e
6.7 Planning a Structural Class. i i e
6.7.1 Defining a Structural Class
6.7.2 Defining Name Forms
6.7.3 Defining Structure Rules
6.7.3.1 Structure Rules for Entries Immediately Beneath the Root.
6.7.3.2 Structure Rules for Entries Beneath Other Entries
6.7.3.3 Assigning Structure Rule Identifiers
6.7.3.4 Structure Rule Definitions: An Example
6.7.4 Defining Window Definitions
6.8 Planning Alias Classes.o it i e
6.9 Defining Search Filters and Filter Fields for the Windows Utility
6.9.1 Search Filter Definitions
6.9.1.1 Customizing Search Filter Definitions
6.9.2 Filter Field Definitions.
6.9.2.1 Customizing Filter Field Definitions

7 Controlling Access to Your Directory Information and Services

7.1 The Default Access Control i,
7.2 The Access Control Template File
7.3 Planning the Name of the Access Control Subentry.
7.4 What the Access Control Template FileDoes
7.5 Customizing Access Controls

7.5.1 Access Controls Required for Normal Operation of the Enterprise

DIreCtory
7.5.2 Access Controls Required by Directory Information Managers
7.5.3 The Composition of Access Control Definitions
7531 Specifying What Users an AClitem AppliesTo
7.5.3.2 Specifying What Information an AClitem Applies To...........
7.5.3.3 Specifying What Types of Request an AClitem Applies To..
754 How AClitems are Ranked According to Precedence and

Specificity

7.6 Access Control Scope and Inheritance
7.7 Alternative Method of Controlling Access to DSAS
7.7.1 Alternative Method of Configuring DSA Trust
7.7.2 Alternative Method of Configuring User Security

Vii

Part Il

Set Up

8 Configuring DSAs

8.1
8.11
8.1.2
8.1.3
8.14
8.1.5
8.1.6
8.2

8.3
8.3.1
8.3.2
8.3.3
8.34
8.3.5
8.4
8.4.1
8.5

8.6

8.7

8.8

8.9
8.9.1
8.10
8.10.1
8.10.1.1
8.10.1.2
8.10.1.3
8.10.1.4
8.10.1.5
8.10.1.6

8.10.1.7
8.10.2
8.11
8.12
8.13
8.14

Notes on Configuringa DSA e
Management Entities Must Be Created in Order of Superiority
Configuring Entities of Different Types with the Same Name
Configuring a DSA that Already Holds Information
Configuringa DSA Remotely
DSA Configuration Details are Permanent
NCL Command Line Help is Available Online

Running the DSA Configuration Utility

Creating DSASo
Setting DSA AE Titles
Setting DSA Passwords
Setting DSA Volatile Modifications
Setting DSA Presentation Addresses,
Setting DSA LDAP Port.

Creating a Naming Context Entity
Configuring Consumer Access Points on Naming Contexts

Creating a Subordinate Reference Entity.

Creating a Superior Reference Entity

Enabling DSAS

Creating Directory Entries to Represent Your DSAS

Summary of Configuration
Examples of Configuring DSAS i

Implementing Replication,
Managing Shadowing Agreement Subentries

Notes About Modifying Shadowing Agreement Subentries
Identifying the Subentries for a Given Shadowing Agreement. . . .
Identifying the Initiatior of Replication
Configuring the Replication Schedule
Forcing Replication to Happen Immediately
Configuring Replication to Occur Only When Information
Changes
Configuring Replication Back to the Default Behaviour....... ..
Terminating Replication Agreements

Disabling DSAS

Deleting DSAS . . .ot

Starting the DSA as Part of OpenVMS System Startup

Defragmenting the Memory Image File (Tru64 UNIX).

ooooooooooooooooooclaooooooooooooooooo

TePPPEE
[= [
QOWAONNNOWPRPPOOOOWMONNOOOOUTOPRARWWWNDNDNDN

ooooooclzooooooo
NP R R R R R

oooooo?ooooooo
NNDNNDNNDN
WNNRFPPFPOO

9 Configuring and Running Directory Applications

viii

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8

Using the DUA Configuration Utility
System-wide DUA Defaults
DUA Defaults for SpecificUsers
Configuring DXIM to Use Another Vendor's DSA
DXIM Command Line Initialization Files
Running DXIM
Using the Lookup Client Configuration Utility
Running the Lookup Client 9

kOQO@(lO@@QO
O© O 00O ~NWN

|
[EY
[N

10 Creating Directory Entries

10.1 Using a Script File to Populate a Naming Context 10-2
10.2 Creating Entries Interactively 10-4
10.3 Managing Multiple Entries e 10-5

11 Using the Access Control Template File

A Default Schema Definitions

Al ODbJect ClassSesot A-1
Al1l accessControlSubentry A-1
A.l.2 alias A-2
A.l1.3 applicationEntity A-2
Al4 applicationEntityAlias A-3
A.l5 applicationProcess o e A-4
A.1.6 applicationProcessAlias A-4
Al.7 COUNTIY . . . A-5
A.1.8 countryAlias A-5
A.1.9 JECD S A A-6
A.1.10 AeCDSAALIAS . .. A-7
Al1l decALL-IN-LUA A7
A.1.12 decMailUA A-7
A.1.13 decMailUser A-7
A.l1.14 decX400GatewWayo vt A-8
A.1.15 JEVICE . . A-8
A.1.16 deviceAlias A-8
Al1.17 AS A e A-9
A.1.18 ASAALIS . .. A-10
A.1.19 groupOfNames A-10
A.1.20 groupOfNamesAlias e A-11
A.1.21 locality A-12
A.1.22 localityAlias A-12
A.1.23 MNS-USEE . . . A-13
A.1.24 organization A-13
A.1.25 organizationAlias e A-14
A.1.26 organizationalPerson e A-15
A.1.27 organizationalPersonAlias A-16
A.1.28 organizationalRole A-16
A.1.29 organizationalRoleAlias A-17
A.1.30 organizationalUnit A-18
A.1.31 organizationalUnitAlias A-19
A.1.32 PEESON . e A-19
A.1.33 residentialPerson A-20
A.1.34 residentialPersonAlias A-21
A.1.35 shadowingAgreement A-21
A.1.36 SUDENEIY . . . o A-22
A.1.37 TOD o A-23
A.2 Structure Rules Quick Reference i A-23
A3 Atributes A-25
A31 administrativeRole L A-26
A.3.2 aliasedObjectName A-26
A.3.3 businessCategoryt e A-27
A3.4 COMMONNGAME A-27

A.3.5

A.3.6

A.3.7

A.3.8

A.3.9

A.3.10
A3.11
A.3.12
A.3.13
A.3.14
A.3.15
A.3.16
A.3.17
A.3.18
A.3.19
A.3.20
A.3.21
A.3.22
A.3.23
A.3.24
A.3.25
A.3.26
A.3.27
A.3.28
A.3.29
A.3.30
A.3.31
A.3.32
A.3.33
A.3.34
A.3.35
A.3.36
A.3.37
A.3.38
A.3.39
A.3.40
A.3.41
A.3.42
A.3.43
A.3.44
A.3.45
A.3.46
A.3.47
A.3.48
A.3.49
A.3.50
A.3.51
A.3.52
A.3.53
A.3.54
A.3.55
A.3.56
A.3.57
A.3.58

consumerKnowledge.
countryName
createTimeStamp
decALL-IN-IUAName
decALL-IN-1UserName . ..
decAltMRAddress.
decAltRFC822Mailbox
decDDSID

decDDSModificationTimestamp

decDDSNetworkID
decDECnetNodeName
decGlobalSearchBase
decLocalSearchBase
decMailDestination
decMailNonDeliver.
decMailworksUserName . .
decMRAddress

decMTSAItForeignAddressAttr

decMTSDDAType
decMTSForeignAddressAttr
dec-mts-admd-name
dec-mts-prmd-name

dec-mts-talk-other-CCITT-domain

decNumericUserld
decOVVMAddress
decPMAddress
decPreferredMailAddress . .
decSNADSAddress
decX400DDA
decX400MRGatewayName .

decX400SMTPGatewayName e

decX400Redirect.
description
destinationindicator
dseType
dxduid
facsimileTelephoneNumber

generationQualifier
givenName
governingStructureRule . . .
initials
internationalISDNNumber .
knowledgelnformation
lastUpdateReceived
localityName
member
mhs-or-addresses
modifyTimeStamp
myAccessPoint
objectClass
organizationName
organizationalUnitName . .
OWNEF .« . vt e e ie e
physicalDeliveryOfficeName

A-28
A-28
A-29
A-29
A-29
A-29
A-30
A-30
A-30
A-30
A-30
A-30
A-31
A-31
A-31
A-31
A-32
A-32
A-32
A-32
A-33
A-33
A-33
A-33
A-33
A-33
A-34
A-34
A-34
A-34
A-35
A-35
A-35
A-35
A-36
A-36
A-36
A-37
A-37
A-37
A-38
A-38
A-38
A-39
A-39
A-39
A-39
A-40
A-40
A-40
A-41
A-41
A-42
A-42

A.3.59 postalAddress A-42

A.3.60 postalCode A-43
A.3.61 POSLOFfICEBOX . . . o ot A-43
A.3.62 preferredDeliveryMethod A-44
A.3.63 prescriptive ACIH A-44
A.3.64 presentationAddress. e A-44
A.3.64.1 Further Syntax Details A-45
A.3.64.1.1 Examples A-47
A.3.65 protocolinformation A-47
A.3.66 registeredAddress A-48
A.3.67 rfc822Mailbox A-48
A.3.68 roleOccupant e A-48
A.3.69 searchGuide A-49
A.3.70 SERAISO . . . A-49
A.3.71 serialNumber A-49
A.3.72 shadowingBeginTime A-49
A.3.73 shadowingEndTime i A-50
A.3.74 shadowinglID A-50
A.3.75 shadowingLastUpdate A-50
A.3.76 shadowingNextUpdate A-50
A.3.77 shadowingState A-50
A.3.78 shadowingMaster A-50
A.3.79 shadowingPeer A-50
A.3.80 shadowingKnowledgeType i A-50
A.3.81 shadowingUPDFile A-51
A.3.82 shadowingUPDOffset A-51
A.3.83 shadowingVersion e A-51
A.3.84 shadowingFlags i e A-51
A.3.85 specificKnowledge A-51
A.3.86 stateOrProvinceName A-52
A.3.87 StreetAddress A-52
A.3.88 subordinateDeletedTimeStamp A-52
A.3.89 subtreeSpecification A-52
A.3.90 superiorKnowledge A-53
A.3.91 supplierKnowledge A-53
A.3.92 supportedApplicationContext A-53
A.3.93 SUMNAIME .« . . ottt e e e e e e A-53
A.3.94 trustedDSANAME A-54
A.3.95 telephoneNumber. A-54
A.3.96 teletexTerminalldentifier A-54
A.3.97 telexNumber A-55
A.3.98 title .. A-55
A.3.99 USErPasswordo A-56
A.3.100 XLI21AAAreSS . . . A-56
A4 SYNEAXES . . A-56
A4l ACISYNTAX . . . A-56
A.4.2 bitStringSyntax A-57
A4.3 booleanSyntax A-57
Ad4 countryNameSyNntaX oot A-57
A.45 deltaTimeSyntax A-58
A.4.6 directoryStringSyntax A-58
A.4.7 distinguishedNameSyntax A-58
A.4.8 facsimileTelephoneNumberSyntax A-58
A.4.9 generalizedTimeSyntax iy A-58

xi

Xii

A.4.10 IASSEIINGSYNtaX oo

A.4.11 integerListSyntax.
A.4.12 INTEOErSYNTAaX o
A.4.13 Mhs-or-address-syntax
A.4.14 MNS-0r-NamMe-SYNtaXo e e e
A.4.15 NUMErICSEriNgSYNtaX e e
A.4.16 objectldentifierSyntax
A.4.17 OCLetStringSyntax
A.4.18 postalAddressSyntax
A.4.19 presentationAddressSyntax
A.4.20 printableStringSyntax
A.4.21 protocolinformationSyntax
A.4.22 StringListSyntax
A.4.23 SELriNGSYNtaXxX
A.4.24 telephoneNumberSyntax
A.4.25 teletexTerminalldentifierSyntax.
A.4.26 telexNumberSyntax e
A.4.27 undefinedSyntax
A.4.28 userPasswordSyntaxt
A.4.29 UTCTIMESYNTAX oot e e e
A5 Matching Rules
Ab5.1 Equality MatchingRules
A5.1.1 aciltemMatch
A5.1.2 booleanMatch
A5.1.3 caseExactlA5StringMatch
Ab5.1.4 caseExactStringMatch
A5.15 caselgnoreListMatch
A.5.1.6 caselgnorelA5StringMatch
A5.1.7 caselgnoreStringMatch L,
A5.1.8 dec-mts-or-name-match
A5.1.9 deltaTimeMatch
A.5.1.10 distinguishedNameMatch.,
A5.1.11 exactEncodingMatch
A.5.1.12 generalizedTimeEqualityMatch
A.5.1.13 integerMatch
A5.1.14 mhs-or-address-match
A.5.1.15 numericStringMatch
A.5.1.16 objectldentifierMatch
A.5.1.17 octetStringMatch
A5.1.18 presentationAddressMatch.,
A.5.1.19 telephoneNumberMatch,
A.5.1.20 uTCTimeMatch
A.5.2 Ordering MatchingRules
Ab5.2.1 caseExactlA5StringMatch
A5.2.2 caseExactStringMatch
A5.2.3 caselgnorelASStringMatch o
Ab5.2.4 caselgnoreListMatch
A5.25 caselgnoreStringMatch o
A.5.2.6 distinguishedNameMatch.
A5.2.7 generalizedTimeOrderingMatch
A5.2.8 integerMatch
A5.2.9 numericStringMatch
A.5.2.10 objectldentifierMatch
A5.2.11 octetStringMatch

A-59
A-59
A-59
A-59
A-60
A-60
A-60
A-60
A-60
A-61
A-61
A-61
A-61
A-62
A-62
A-62
A-62
A-63
A-63
A-63
A-63
A-64
A-64
A-65
A-65
A-65
A-65
A—65
A-66
A-66
A-66
A-66
A—66
A-67
A-67
A-67
A-67
A-67
A-67
A-68
A-68
A-68
A-68
A—68
A-68
A-68
A-69
A-69
A-69
A-69
A-69
A-69
A-69
A-70

A5.2.12 telephoneNumberMatch

A5.2.13 uTCTimeMatch
A5.3 Substring Matching Rules
Ab5.31 caseExactlA5SubstringMatch.
Ab5.3.2 caseExactSubstringMatch
A5.3.3 caselgnoreListSubstringMatch
Ab5.34 caselgnorelA5SubstringMatch
A5.35 caselgnoreSubstringMatch
A5.3.6 numericSubstringMatch
A5.3.7 telephoneNumberSubstringMatch
Ab5.4 Approximate Matching Rules
Ab5.4.1 allWordApproximateMatch.
A5.4.2 initialLetterApproximateMatch
A543 initialWordApproximateMatch
Ab5.4.4 lastWordSoundexMatch

B The PrescriptiveACI Attribute

B.1
B.2
B.3
B.4
B.5
B.6

Glossary

Index

Figures

1-1
1-2
1-3
1-4
1-5
1-6
3-1
3-2
3-3
3-4
4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9

User-First AClitems..
Item-First AClitems..
Item Classes
User Classescin ...
Permissions
Access Control Template File

The Hierarchical or Tree Structure of Directory Information........

A Typical Directory Entry
Distinguished Names
The X.500 Model of Enterprise Directories ..

A DIT Divided and Distributed Amongst Four DSAs
A DIT Distributed and Replicated Amongst Four DSAs.
Structure and Distribution of the Example DIT.
Structure and Distribution of the Example DIT.

DSAL1 After All Tasks Are Completed
DSA2 After All Tasks Are Completed
A DIT Based on Organizational Units
A DIT Based on Geographical Distribution . .

A DIT Based on Geographical and Organizational Elements

Accommodating Resource Mobility

Two Ways to Represent Organizational and Geographical Details
The Most Frequently Used Default Structure Rules

The Abacus DIT with its Global Prefix
The Abacus DIT with its Entries Named
DSA Entries Beneath the Organization Entry

A-70
A-70
A-70
A-70
A-70
A-70
A-T1
A-71
A-71
A-71
A-T72
A-T72
A-T72
A-73
A-73

1-2
1-3
1-5
1-8
1-10
1-11

3-12
3-16
3-17
4-3
4-4
4-5

4-10
4-12
4-14
4-16
4-20

xiii

5-10

Tables

Xiv

4-1

Dividing a DIT into Naming Contexts

Distributing Naming Contexts to Their Master DSAs
Primary and Secondary Shadowing of Naming Contexts
Replicating Naming Contexts to Their Shadow DSAs
Worksheet for CN=DSA1 Listing AE Title and Password
Worksheet for CN=DSA2 Listing Naming Contexts.

Worksheet for CN=DSA2 Listing Consumers . . .
Worksheet for CN=DSA2 Listing Suppliers
A Multi-Layered Divisionof aDIT..........

Worksheet for CN=DSA1 Listing Subordinate Naming Contexts

DXIM Find Window
DXIM Find Window Showing Filter Fields . ..

Recommended Position for Creating an Access Control Subentry

Access Control ina DSA
Contiguous Naming Contexts.
Worksheet for CN=DSAL
Planned Replication of Naming Contexts..
Structure Rules for Classes: Part1
Structure Rules for Classes: Part 1l

Naming Attributes of Commonly Used Classes

5-10
5-12
5-13
5-14
5-15
5-16
6—-29
6-32

7-2

7-9

8-12
8-14
A-24
A-25

4-15

Preface

Purpose of this Guide

This guide introduces the Compaq™ Enterprise Directory for eBusiness product.
It explains how to plan an Enterprise Directory for your organization, and how to
configure and maintain it.

Related Documentation

Enterprise Directory managers also need Compaq Enterprise Directory for
eBusiness Problem Solving.

The DXIM utility help and the Directory module help of the NCL director both
provide useful information about managing directory information and services.

Abbreviations and Acronyms

AClitem Access Control Information Item

ASN.1 Abstract Syntax Notation 1

CCITT International Telegraph and Telephone Consultative Committee
DIB Directory Information Base

DIT Directory Information Tree

DSA Directory System Agent

DUA Directory User Agent

DXIM Compag X.500 Information Management utility
EMA Enterprise Management Architecture

ISO International Organization for Standardization
ITU-T International Telephone Union - Telecommunications
LDAP Lightweight Directory Access Protocol

MTA Message Transfer Agent

NCL Network Control Language

RDN Relative Distinguished Name

Conventions Used in this Guide

monospace t ext Screen displays, command lines, and X.500 schema definitions. For
example, comonNane.

bold italics New terminology. For example, distinguished name.

[1 Indicates an optional clause in a schema definition. Encloses record

datatypes in NCL commands.

<> In DXIM syntax examples, to indicate a variable to be supplied by
the user. For example:
show<nanme> attributes <attr>

In DXIM syntax examples, to indicate that an argument can be
repeated. For example: attributes <attr>[, ...]

OpenVMS

Indicates the start of information that is applicable only to the
OpenVMS operating system.

XVii

XViii

Tru64
UNIX

Indicates the start of information that is applicable only to the Tru64
UNIX operating system.

Indicates the end of information specific to an operating system.

Part |

Introduction

This part provides an overview of Compaq’s Enterprise Directory for eBusiness
product, and a tutorial, to enable you to experiment with the product before
trying to implement an Enterprise Directory.

= Chapter 1 introduces important concepts and features of the product.

This chapter is not essential, but you are strongly recommended to read it
before trying to implement a Enterprise Directory.

= Chapter 2 provides a tutorial in which you are told how to set up a single
node Enterprise Directory.

This chapter is not essential, but it does provide a step-by-step example to get
you started. It enables you to set up a very simple service.

e Chapter 3 provides a tutorial in which you are told how to set up a two node
Enterprise Directory complete with replication, access controls, and directory
applications.

This chapter is not essential, but it does provide a step-by-step example of the

tasks involved in setting up an Enterprise Directory. It enables you to gain
expertise before committing yourself to a real implementation.

1

Directory Information and Enterprise
Directories

Compagq’s Enterprise Directory for eBusiness product is an implementation of
the 1SO and ITU-T! series of standards and recommendations for Enterprise
Directories. I1SO and ITU-T define models and protocols for Enterprise Directories
that enable software vendors to build products that can work together to provide
a single, scalable, networked Enterprise Directory.

The Enterprise Directory for eBusiness product is an Lightweight Directory
Access Protocol (LDAP) enabled directory, and implements the LDAP V2 and V3
protocols.

The purpose of such an Enterprise Directory is to store and provide access to
information about objects such as people, computers, printers, and applications.
Such information could be used, for example, by a messaging application to store
information that enables it to route messages across a network.

This chapter explains the X.500 concepts that will help you plan and configure
Compagq’'s Enterprise Directory for eBusiness product for your organization.

This chapter divides the X.500 concepts into two categories:

= Directory information

You need to understand the way information is represented in an X.500
Enterprise Directory, so that you can plan how best to use the Enterprise
Directory to meet your organization’s information requirements.

= Enterprise Directories

You need to understand the services that the Enterprise Directory product
provides to its users, and how the software components of the product
cooperate to provide answers to requests for information. This will help you
to plan how to configure your Enterprise Directory.

1.1 Directory Information

The Enterprise Directory stores information as directory entries, each entry
representing an object, such as a person, a place, an organization, or a computer.

The entries are organized into a Directory Information Tree (DIT), such that
some entries are subordinate to others. Figure 1-1 illustrates the DIT structure,
showing a number of directory entries forming a hierarchy beneath a root. Note
that, by convention, the root of the DIT is at the top of the picture.

1 The ITU-T was formerly known as the CCITT and some of their publications still have
CCITT identification material.

Directory Information and Enterprise Directories 1-1

Directory Information and Enterprise Directories
1.1 Directory Information

Figure 1-1 The Hierarchical or Tree Structure of Directory Information

MIG0231

The position of entries in the hierarchy should be based on the relationships
between the objects they represent in the real world. For example, an entry
representing a person might be positioned beneath an entry representing the
organization the person works for. The hierarchical structure is the basis of each
entry’s name, as described in Section 1.1.2. The structure also enables the DIT to
be divided into subtrees which can be distributed and replicated amongst multiple
servers, as described in Section 1.2.2. This means that the DIT is scalable to any
size.

1.1.1 Entries

Within the Enterprise Directory, objects are represented as directory entries.
There should be one directory entry for each object that you want to represent.
Each entry is made up of a set of attributes, each of which has one or more
values. Figure 1-2 illustrates how an application might display a typical entry
representing a person.

1-2 Directory Information and Enterprise Directories

Directory Information and Enterprise Directories
1.1 Directory Information

Figure 1-2 A Typical Directory Entry

Common Name |Joan Smith | JP Smith Joan Paulette Smith
Surname | Smith

Telephone Number | +43 734 579887 | +43 734 579864

Postal Address |14l Trent Road, Lower Dingle, Dorset

Postal Code | HA4 8UU

Description | Project Supervisor

Object Class | Organizational Person

MIG0232

1.1.1.1 Attributes

An attribute is information of a particular type about an entry. Every attribute
has an attribute type and at least one attribute value. For example, the entry
in Figure 1-2 includes an attribute of the type comonName!l with three values,
each of which is a variation of the name of the person that the entry represents.

The definition of each attribute type specifies whether the attribute can have
more than one value, and whether there are any constraints on the length or the
range of the value. Section 1.2.1 explains how these definitions are enforced and
managed. Note that the values of a multi-valued attribute are not ordered.

Every attribute type is associated with an attribute syntax which defines the
format of its value. For example, the t el ephoneNunber attribute type uses the
t el ephoneNunber Synt ax.

Each attribute type is also associated with one or more matching rules. A
matching rule specifies how the Enterprise Directory will compare attribute
values with each other for certain user requests. For example, some matching
rules are insensitive to the case of characters, such that a user searching for
comonNane="JOAN SM TH' would find an entry with the value commonName="Joan
Smth".

Each attribute type may be associated with matching rules that support exact
matching, substring matching, approximate (phonetic) matching, and ordering of
values. Later chapters of this guide explain how to define your own attributes as
extensions to the product.

1.1.2 Entry Names

As Figure 1-2 illustrates, a typical entry can have several attribute values that
represent names by which the object is known, such as surnames and common

names. However, so that the Directory Service can unambiguously identify an

individual entry, each entry also has a directory name.

A directory name identifies an individual entry in terms of that entry’s position in
the hierarchy of the DIT (illustrated in Figure 1-1).

1 Throughout this guide, attribute types and other X.500 definitions are referred to using

nonospace typeface.

Directory Information and Enterprise Directories 1-3

Directory Information and Enterprise Directories
1.1 Directory Information

There are two types of directory name:
= Distinguished names
= Alias names

Every directory entry has only one distinguished name, but can also have several
alias names. Section 1.1.2.1 and Section 1.1.2.2 describe distinguished names and
alias names in detail.

1.1.2.1 Distinguished Names

Every entry has one distinguished name. A distinguished name is made up of

a sequence of terms, each of which is called a relative distinguished name
(RDN). Each RDN in an entry’s distinguished name represents one of the entries
that forms the path from the root of the DIT to the entry.

Each RDN is an attribute type and value chosen from the attributes of the entry
that it names. If the attribute type you use for naming has more than one value,
then you must choose which value is to serve as the RDN. For example, for the
typical entry illustrated in Figure 1-2, if the cormonNane attribute type is used
for naming, then you need to choose one of the three values of conmonNanme. Any
other values are still present in the entry, but do not form part of the entry’s
distinguished name.

It is possible for an RDN to contain more than one attribute type and value
from an entry. For example, a typical RDN would be cormonNane="Joan
Smith", but it is also possible to have an RDN such as conmonName="Joan
Smith",locality="Lower Dingle". Typically, using more than one attribute
in an RDN makes directory names less user friendly.

Note

Most directory applications use abbreviations for attribute types. For
example, conmonNare is often abbreviated to CN. Thus,
conmonNane="Joan Snith" is abbreviated to CN="Joan Smi th".

Most examples in this guide use the default abbreviations to shorten
entry names. You can customize Compagq's directory applications to suit
local conventions or language.

No two entries that have the same immediately superior entry can have the same
attribute type and value or combination of attribute types and values chosen to be
the RDN. Thus, each RDN is unique amongst the subordinates of a given entry.

One of your planning tasks will be to decide how to resolve name clashes, for
example, if you have two Joan Smiths in the same part of your organization.
Chapter 4 explains name planning.

Figure 1-3 shows how RDNs are used to form unambiguous distinguished names.

The entry representing Joan Smith (at the bottom left of the illustration) has

a distinguished name made up of four RDNSs. The first three RDNSs represent
the three entries that form a path from the root of the DIT to Joan’s entry. The
fourth RDN is that of Joan’s entry itself. Since each RDN is unique relative to its
superior entry, the distinguished name is also guaranteed to be unique.

1-4 Directory Information and Enterprise Directories

Directory Information and Enterprise Directories
1.1 Directory Information

Figure 1-3 Distinguished Names

Root

Relative Distinguished
Name of Shaded Entry

Distinguished Name
of Shaded Entry

Country
. CountryName=US CountryName=US
Entries
Organization =|
9 . OrganizationName=Abacus CountryNgme us
Entries OrganizationName=Abacus

CountryName=US
OrganizationName=Abacus
OrganizationalUnitName=Sales

Organizational

_) OrganizationalUnitName=Sales
Unit Entries

CountryName=US
OrganizationName=Abacus
OrganizationalUnitName=Sales
CommonName=Joan Smith

Organizational

SRR

X CommonName=Joan Smith
Person Entries

MIG0233

A typical directory application would display Joan’s distinguished name (using
abbreviations) as follows:

| C=US/ O=Abacus/ OU=Sal es/ CN="Joan Smth"

The abbreviation C means count r yName, O means or gani zat i onNanme, QU means
or gani zat i onal Uni t Name, and CN means commonNane. The four RDNs in the
distinguished name are separated by the / character, and are listed in order of
hierarchical superiority, with the RDN of the entry closest to the root of the DIT
listed first.

The exact conventions used to display a distinguished name vary between
applications. The conventions shown are the ones used by the Compag X.500
Information Management (DXIM) utility. The LDAP convention is :

CN="Joan Smith", OU=Sal es, O=Abacus, C=US

1.1.2.2 Alias Names
Although an entry has only one distinguished name, there can be many alias
names for an entry. This means that an entry can be referred to using either its
distinguished name, or any one of its alias names.

An alias name looks just like a distinguished name. However, an alias name does
not represent the direct path from the root of the DIT to the entry. Instead, as the
Enterprise Directory follows the path from the root, it finds that the path leads
to an alias entry. The alias entry has an attribute that contains the directory
name of the entry to which the alias refers.

For example, if Joan Smith (see Figure 1-3) has recently married, and might still
be known by her unmarried name Joan Meredith, then you could create an alias
entry called / C=US/ O=Abacus/ OU=Sal es/ CN="Joan Meredi th". Any user request
that specifies this alias name is automatically redirected.

Directory Information and Enterprise Directories 1-5

Directory Information and Enterprise Directories
1.1 Directory Information

1.1.3 Classes

Every entry is classified according to the characteristics of the object that it
represents. When you create an entry, you have to specify what class of entry it
is. To do this, you use the obj ect d ass attribute.

Compag’'s Enterprise Directory for eBusiness provides several different classes,
such as organi zat i onal Person and resi denti al Person. See Appendix A for
details of the classes provided by the Compaq Enterprise Directory for eBusiness.
Later chapters of this guide also explain how to define classes of your own.

Each class definition specifies mandatory attributes and optional attributes
for entries of that class. Most classes also have name forms and structure rules
defined for them. The following sections explain each of these in more detail.

1.1.3.1 Mandatory Attributes
Most classes of entry have mandatory attributes. When you create an entry, you
must supply values for each of the mandatory attributes, or the creation will
fail. Also, any attempt to modify a mandatory attribute so as to remove all of its
values will fail unless a replacement value is specified.

For example, for the or gani zat i onal Per son class, the mandatory attributes are
obj ect d ass, conmonName, and sur name. So, when you create an entry of this
class, you must supply values for these three attributes.

Appendix A details the mandatory attributes of all classes provided with the
Compaq Enterprise Directory for eBusiness product.

1.1.3.2 Optional Attributes
Most classes of entry have optional attributes. You can add and remove optional
attributes at any time. However, even though an attribute may be optional, some
directory users might be depending on its presence. Therefore, you should be
careful not to remove or modify attributes without making sure that you are not
inconveniencing other directory users.

Appendix A details the optional attributes of all classes provided with the Compaq
Enterprise Directory for eBusiness product.

1.1.3.3 Name Forms
Classes have name forms. A name form states that the attribute value that is
used in the RDN of an entry must be chosen from a particular attribute or set of
attributes.

For example, when you choose the RDN of an or gani zati on entry, you must use
organi zati onName attribute. If you try to use any other attribute in the RDN of
an organi zati on entry, the Enterprise Directory returns an error and does not
create the entry.

These name forms encourage managers of different parts of the DIT to use
consistent styles of naming for their entries. Consistent naming improves the
usability of the directory, especially for non-technical users. Appendix A details
the name forms of all classes provided with the Compag Enterprise Directory for
eBusiness product.

1-6 Directory Information and Enterprise Directories

Directory Information and Enterprise Directories
1.1 Directory Information

1.1.3.4 Structure Rules
Structure rules state that entries of a given class must be subordinate to an entry
of another specified class (or one of a set of classes).

For example, the structure for the or gani zati onal Unit class states that the
immediate superior of an or gani zati onal Unit entry must be an or gani zati on
entry or a |l ocal ity entry, or another organi zati onal Uni t entry. If you try to
create an or gani zati onal Unit entry as a subordinate of any other class of entry,
the Enterprise Directory returns an error and does not create the entry.

These structure rules encourage managers of different parts of the DIT to design
similar naming trees for their entries. Consistent tree structures improve the
usability of the directory, especially for non-technical users. Appendix A details
the structure rules of all classes provided with the Compaq Enterprise Directory
for eBusiness product.

Directory Information and Enterprise Directories 1-7

Directory Information and Enterprise Directories
1.2 Enterprise Directories

1.2 Enterprise Directories

Section 1.1 described the information that is stored in the directory. This section
explains the services that the Compag Enterprise Directory for eBusiness product
provides to its users.

The Enterprise Directory is provided by two types of software component:
« Directory System Agents (DSAS)
= Directory User Agents (DUAS)

A DSA is a server. It is responsible for storing directory entries, and for providing
access to them. A DSA is also responsible for redirecting requests for information
that it does not store. You can install one DSA per node (or one DSA per VMS
cluster).

A DUA forms part of a client application. A DUA enables users to formulate
requests for directory information, such as a request to create or view an entry. A
DUA uses a standard protocol to pass requests to a DSA, and to receive answers
back from the DSA. There might be many different client applications installed
on a single system.

Figure 1-4 The X.500 Model of Enterprise Directories

=) =)) (=)

Application Application

DUA

MIG0234

Figure 1-4 illustrates the X.500 model of directory components, showing how

a number of DSAs serve a number of directory applications. Each directory
application includes a DUA. The directory applications serve a number of users,
which can be human users or other applications.

The Compaq Enterprise Directory for eBusiness product provides a DSA and
and the Compag X.500 Information Management utility (DXIM). DXIM is an
example of an application that includes a DUA. DXIM uses the standard protocol
to communicate with DSAs.

Because Compaq's DSAs and directory applications use standard protocols,

they can interwork with other vendors’ X.500 conformant DSAs and directory
applications. For example, you can use DXIM to manage entries in another
vendor’s DSA, or use another vendor’s application to manage entries in a Compagq
DSA.

1-8 Directory Information and Enterprise Directories

Directory Information and Enterprise Directories
1.2 Enterprise Directories

The DSA and directory applications cooperate to provide two main types of access
to directory information:

= Interrogations of the directory information
= Modifications of the directory information

The interrogation services provide different ways of looking at the information in
the directory, such as inspecting particular attributes of an entry, or searching for
entries that have a specified set of attributes. The modification services allow you
to create new entries, remove entries, and modify the attributes of entries.

To provide an efficient and consistent service to users, DSAs can provide a set of
services that are not necessarily visible to the user. These are:

= Schema enforcement

< Distribution of directory information

= Replication of directory information

= Distribution of user requests to multiple DSAs

« Control of access to directory information

= Accounting for the use of the Enterprise Directory

These services are described in the following sections.

1.2.1 The Schema

Whenever you create or modify a directory entry, the Enterprise Directory ensures
that the entry and its attributes conform to their definitions.

For example, when you create an entry, the Enterprise Directory ensures that you
have supplied all of the mandatory attributes, that all the attribute values are of
the correct syntaxes, and that the entry conforms to the structure rules and name
forms defined for its class.

If an entry you are creating or modifying does not satisfy the rules, then the
Enterprise Directory returns an error and does not create or modify the entry.

The Enterprise Directory can provide this service because each DSA has a set of
rules, called the schema. Each DSA has a copy of the schema that applies to all
entries that it holds. It is possible for different DSAs to apply different sets of
rules.

The Compaq Enterprise Directory for eBusiness product provides a schema
that you can use as it is, or edit to suit your particular needs. For ease of
management, Compaq recommends that all DSAs use the same schema.

Some Compagq applications also use the schema. For example, DXIM uses the
abbreviations and window definitions that are defined in the schema.

1.2.2 Distributing Directory Information

The amount of directory information a DSA can hold depends on the resources
available on the DSA's node. You can install one DSA per node or VMS cluster. A
single DSA can hold tens or even hundreds of thousands of entries, depending on
its resources.

To enable the DIT to exceed the capacity of a single DSA, the Compaq Enterprise
Directory for eBusiness product enables you to distribute directory information so
that each DSA only holds part of the DIT.

Directory Information and Enterprise Directories 1-9

Directory Information and Enterprise Directories
1.2 Enterprise Directories

You can divide your organization’'s DIT into subtrees, each of which is called

a naming context, and each DSA holds one or more naming contexts. Thus,
although you can only have one DSA per node, that DSA can hold more than one
naming context.

Figure 1-5 shows a DIT that is divided into four naming contexts, which are
distributed amongst four DSAs. In this example, each DSA holds only one
naming context.

Figure 1-5 A DIT Divided and Distributed Amongst Four DSAs

DSA1

DSA3
<A -

DSA2

DSA4

MIG0502

Part Il explains how to plan the distribution of directory information so that each
DSA holds the naming contexts that are most useful to the DSA's local users.

The ability to distribute directory information means that there is no limit to the
total amount of information that can be stored. You can always add new DSAs to
increase capacity.

However, the distribution of the DIT does not mean that a user needs to know
which DSA to ask for a particular piece of information. Instead, each DSA keeps
knowledge information that helps it redirect requests (see Section 1.2.4).

Using this knowledge information, DSAs cooperate so that the user receives a
response regardless of which DSA they originally contact. Compaqg’'s DSAs can
have knowledge information about other vendors’ DSAs, as well as about other
Compaq DSAs.

1.2.3 Replicating Directory Information

The Compaq Enterprise Directory for eBusiness product not only enables you
to distribute directory information (see Section 1.2.2), but it also enables you to
copy information amongst your Compaq DSAs. This is known as replicating or
shadowing information®.

! The term shadowing in X.500 means simply "copying information", and must not be

confused with concepts such as "disk shadowing".

1-10 Directory Information and Enterprise Directories

Directory Information and Enterprise Directories
1.2 Enterprise Directories

This means that you can have copies of information in several locations,
improving response times, and increasing the availability of information.
Figure 1-6 shows a DIT that is divided into four nhaming contexts that are
distributed and replicated amongst four DSAs. The arrows show the source and
destination of each replicated naming context.

Figure 1-6 A DIT Distributed and Replicated Amongst Four DSAs

DSA3

@
d

DSA4

S

MIG0503

The ability to replicate information makes the Enterprise Directory suitable for
organizations that want users and applications in many locations to have efficient
access to a large amount of directory information.

Compaq DSAs use standard protocols to ensure that copies of entries are kept up
to date without manual intervention.

1.2.4 Distributing Requests for Information

The distribution and replication of information across many DSAs means that
each DSA needs to know what to do with a request for information that it does
not hold. For this reason, every DSA has some knowledge information which tells
the DSA how to locate entries held by other DSAs.

Some knowledge information has to be set up manually, and the planning
considerations for those setup tasks are discussed in Part Il. Some knowledge
information is set up automatically during replication.

When a DSA cannot satisfy a request itself, it can automatically pass the request
on to one or more other DSAs which, according to its knowledge information, are
likely to hold the requested information. This process is called chaining.

If a DSA finds that it cannot chain a request, for example, because of network
problems or security problems, then it can send information called referrals

or continuation references back to the directory application that made the
request. These references contain the network address of the DSA that could not
be contacted. This enables an application or user to decide whether to attempt a
direct connection to that DSA.

Directory Information and Enterprise Directories 1-11

Directory Information and Enterprise Directories
1.2 Enterprise Directories

1.2.5 Controlling Access to Directory Entries

Compaq’'s Enterprise Directory for eBusiness product provides access controls
which enable you to prevent different groups of users from inspecting or
modifying some of your directory entries, and to require users to specify a
password before gaining certain types of access.

The product allows you to control access to entries, and to particular attributes.

For ease of management, Compaq’'s Enterprise Directory for eBusiness product
provides a template file that you can use to set up access controls for your
directory information. The template file is documented so that you know what
controls it imposes. Your task is simply to edit the template file to fill in the
names of your directory information managers.

If the controls defined by the template file are not suitable, you can customize
the template file, or create one of your own. Chapter 7 provides a full description
of access control, and the defaults supplied by the template file. Chapter 11
describes how to use the template file.

1.2.6 Accounting for Enterprise Directory Use

Compaq DSAs can be configured to provide accounting records. Each accounting
record provides details of one user request. When accounting is enabled, records
for all user requests are written to an accounting log file.

Accounting reduces the performance of a DSA, and the accounting log file can
grow very rapidly, consuming disk space. Therefore, Compaq recommends that
you only enable accounting if you have a requirement to charge for the use of the
Enterprise Directory.

If you enable accounting, you will need to build an application that can process
the accounting records. Details of the accounting records, and how to enable
accounting are provided in Compaq Enterprise Directory for eBusiness Problem
Solving.

1.3 Managing the Compaq Enterprise Directory for eBusiness
Product

There are two types of management task for an X.500 Enterprise Directory, and
Compaq’'s Enterprise Directory for eBusiness product divides the management
functions accordingly. The management tasks reflect the division between the
two sets of concepts:

= Directory information

= Directory services

1.3.1 Managing Directory Information

For the management of information in the DIT, such as entry creation,
modification, removal, and display, Compag’'s Enterprise Directory for eBusiness
product provides DXIM (the Compaqg X.500 Information Management utility).
DXIM has two interfaces; a command line interface and a windows interface.

If you prefer, you can use an X.500 conformant directory application or an LDAP
application from another vendor.

1-12 Directory Information and Enterprise Directories

Directory Information and Enterprise Directories
1.3 Managing the Compaq Enterprise Directory for eBusiness Product

1.3.2 Managing the Enterprise Directory

The software components of Compaq’'s Enterprise Directory for eBusiness product
conform to Compagq’'s Enterprise Management Architecture (EMA).

EMA is based on the director/entity model in which a management system, called
a director, controls one or more objects, called entities. Compaq's NCL is an
example of a director that you can use to manage the entities in your network.

In the case of Compag’'s Enterprise Directory for eBusiness product, there is a
management entity representing the DSA, with subentities representing the
knowledge information of the DSA.

By managing the DSA entity and its subentities, you can control the behaviour of
the DSA, and configure it to carry out its role as part of your Directory Service as
a whole.

You should now have an understanding of the important features of directory
information and the enterprise directories. Chapter 3 provides a simple tutorial
that enables you to experiment with the product. Part Il provides detailed advice
on designing your directory information.

Directory Information and Enterprise Directories 1-13

2

Single Node X.500 Implementation Tutorial

This chapter provides a simple tutorial of how to set up a single DSA. The
tutorial requires one node running one of the supported operating systems: Tru64
UNIX or OpenVMS Alpha.

There are no variables in this tutorial apart from the operating system you use.
Type all commands relevant to your operating system exactly as shown.

Note that setting up a single DSA is much easier than setting up a multi-node
Enterprise Directory. This tutorial does not demonstrate how to distribute or
replicate information across multiple DSAs, and it does not demonstrate how to
set up access controls, or how to set up DSAs to interwork securely.

When you have experimented with this simple tutorial, see Chapter 3 for a more
complex tutorial that sets up a multi-node Enterprise Directory.

Destroy the single node Enterprise Directory before attempting the multi-node
tutorial. The two tutorials are not designed to be compatible.

Single Node X.500 Implementation Tutorial 2-1

Single Node X.500 Implementation Tutorial
2.1 Install the Product

2.1 Install the Product

Install the product, and do the post installation task(s), as documented on the
installation card relevant to your system’s operating system.

2.2 Configure the DSA
Configure the DSA as follows:
1. Run the DSA configuration utility.

Lr;?)? You need superuser privileges to run the configuration utility. To run
the utility, type:
[var/dxd/ scripts/dsa_configure
.
You need SYSPRV and OPER privileges to run the configuration
OpenVMS | tility. To run the utility, type:

$ @YS$STARTUP: DXDSDSA_CONFI GURE
.

2. From a privileged account, type:

Tru64
UNIX # ncl

$ RUN SYS$SYSTEM NCL

OpenVMS .

3. Type the following NCL commands exactly as shown:

ncl > CREATE DSA

ncl > CREATE DSA NAM NG CONTEXT "/ C=US/ O=Abacus"
ncl > ENABLE DSA

ncl> EXIT

2-2 Single Node X.500 Implementation Tutorial

Single Node X.500 Implementation Tutorial
2.3 Configure Application Defaults

2.3 Configure Application Defaults

From a privileged account, type:

Tru64

UNIX # [var/dxd/ scripts/dua_configure

¢

$ @YS$STARTUP: DXD$DUA_CONFI GURE. COM
OpenVMS .

Accept all defaults.
2.4 Create Some Directory Entries

1. Invoke the Compaq X.500 information management utility (DXIM), as follows:

Tru64 ;
UNIX $dxim-c
¢
$ DXI M/ | NTERFACE=CHARACTER CELL
OpenvMS R

2. Type the following DXIM commands exactly as shown:

dxi m> create /C=US/ O=Abacus attributes objectclass=organization
dxi m> create / C=US/ C=Abacus/ OU=Sal es attributes objectclass=organi zational unit

dxi m> create /C=US/ O=Abacus/ OU=Sal es/ CN="Franci s Bl ack" attributes -
_dxi > obj ect cl ass=(organi zat i onal person, person), surnane=bl ack

2.5 Experiment with the Example Enterprise Directory

You now have a single node Enterprise Directory in which one DSA holds
three directory entries. The entries represent Abacus, Sales, and Francis Black
respectively. You can now experiment with these entries. For example:

dxi m> search where surnanme=black all attributes

dxi m> search where surname=b* all attributes

dxi m> set / C=US/ O=Abacus/ QU=Sal es/ CN="Franci s Bl ack" attribute tel ephone=123456
dxi m> search where surnane=bl ack attributes tel ephone, comonName

Refer to the DXIM online help for details of all commands. The help contains
descriptions and examples of all DXIM commands.

Single Node X.500 Implementation Tutorial 2-3

Single Node X.500 Implementation Tutorial
2.6 Destroy the Example Enterprise Directory

2.6 Destroy the Example Enterprise Directory

When you have finished experimenting with the example Enterprise Directory,
you must delete it from your system.

To delete the example Enterprise Directory configuration, log in to a privileged
account, and use the NCL director to disable and delete the DSA on each node, as

follows:

NCL> DI SABLE DSA
NCL> DELETE DSA

Then delete the database files and the defaults files on both systems, as follows:

Tru64
UNIX

OpenVMS

#rm/var/dxd/ DSA-i nf ormati on-tree*
#rm/etc/dua. defaul ts
.

$ DELETE DXD$DI RECTORY: DSA- | NFORVATI ON- TREE. *; *
$ DELETE DXD$DI RECTORY: DXDSDUA_DEFAULTS. DAT; *
14

Deleting the database files means that the DSA is returned to its unconfigured
state, as it was when you first installed the software. The DSA stores its
configuration information and its entries in these files.

2-4 Single Node X.500 Implementation Tutorial

3

Multi-Node X.500 Implementation Tutorial

This chapter provides a simple tutorial for setting up a multi-node Enterprise
Directory. The tutorial demonstrates all of the key features of the product; the
distribution and replication of information, the use of access controls, and setting
up DSAs to interwork securely.

See Chapter 2 for a single-node tutorial. If you have already tried the single node
tutorial, make sure you delete it before trying this tutorial.

This tutorial creates a simple directory information tree containing eight
directory entries. The tree represents a fictional organization called Abacus.

For the purposes of this tutorial, you are advised to use these fictional names
rather than use real names. This enables you to type the commands exactly as
documented, reducing the possibility of confusion.

The aim of this tutorial is for you to experiment with the product, and gain
familiarity with some of the functionality, concepts, and tasks involved. You can
then approach your Enterprise Directory planning tasks with confidence.

This tutorial might contain terms that are not yet familiar to you. However,
understanding all of the terms is not a requirement for being able to complete all
of the tasks described.

Completing this example does not mean that you do not need to read other parts
of this book. You will not succeed in implementing an efficient and appropriate
Enterprise Directory for your organization if you do not plan in some detail. This
tutorial does not aim to provide an ideal Enterprise Directory, only a working
example.

Multi-Node X.500 Implementation Tutorial 3-1

Multi-Node X.500 Implementation Tutorial
3.1 The Characteristics of the Example Enterprise Directory

3.1 The Characteristics of the Example Enterprise Directory

3.2 Install

The tasks described in this chapter provide an Enterprise Directory with two
DSAs on two nodes. The two DSAs hold different parts of the same directory
information tree. Figure 3-1 illustrates the example tree, and its distribution
across the two DSAs.

Figure 3—-1 Structure and Distribution of the Example DIT

CN=DSA1l CN=DSA2

o=A@§)\
@N:DSAD CCNzDSAZJ COU:Sak?SJ CN=Access Contr@ m

(CN=Francis Black CN=Janice White

MIG0543

The two DSAs are installed on nodes referred to as NODE_1 and NODE_2. You
need to decide which of your two nodes is to play the role of NODE_1, and which
is to be NODE_2, and then apply the tutorial commands as appropriate.

The two DSAs are referred to as CN=DSAL1 and CN=DSAZ2 respectively. Use
these exact names for your DSAs. The abbreviation CN means conmonNane,
which is the attribute type used for naming DSAs in the directory.

The tutorial includes two entries representing people: Francis Black and Janice
White. Francis’ entry is held on CN=DSA1 within a Sales organizational unit,
and Janice’s entry is held on CN=DSA2 within an Accounts organizational unit.

Access control for the example tree is provided by the CN="Access Controls" entry
shown in Figure 3—-1. The access control entry states that Francis Black is a
directory information manager, and that Janice White is an ordinary directory
user. The tutorial will show how access rights for these two users differ because
of the access controls.

the Product

Install the product on the two systems, as described in the installation
documentation for the appropriate operating systems. Complete all post
installation tasks.

The two systems need be able to connect to each other using DECnet-Plus
networking or TCP/IP RFC1006 networking.

3—-2 Multi-Node X.500 Implementation Tutorial

Multi-Node X.500 Implementation Tutorial
3.2 Install the Product

This version of the Enterprise Directory provides a new user application; the
Compaq X.500 Lookup Client. The Lookup Client, an optional feature of this
tutorial, makes it possible to complete the tasks in Section 3.12.

Multi-Node X.500 Implementation Tutorial 3-3

Multi-Node X.500 Implementation Tutorial
3.3 Run the DSA Configuration Utility on Both Systems

3.3 Run the DSA Configuration Utility on Both Systems

This section uses the DSA configuration utility to give each DSA a basic
configuration.

1. Run the DSA configuration utility on NODE_1.

Lﬁ?; You nge_d superuser privileges to run the configuration utility. To run
the utility, type:

[var/dxd/scripts/dsa_configure
.

You need SYSPRV and OPER privileges to run the configuration
OpenVMS | utility. To run the utility, type:

$ @YS$STARTUP: DXDSDSA_CONFI GURE
¢

2. Make a note of the presentation address set by the utility. The utility
displays the presentation address before exiting. Presentation addresses are
case sensitive, so make an exact note. Cutting and pasting the address to a
file might be the most convenient solution.

3. Repeat steps 1 and 2 for NODE_2.

3-4 Multi-Node X.500 Implementation Tutorial

Multi-Node X.500 Implementation Tutorial
3.4 Complete the Configuration for CN=DSA1

3.4 Complete the Configuration for CN=DSA1
This section completes the configuration for CN=DSA1 on your NODE_1.

Type all commands exactly as shown, with the exception of the <addr ess>

variable.

1. From a privileged account on your NODE_1, invoke the NCL director:

Tru64 $ nel

UNIX
L4
$ RUN SYS$SYSTEM NCL
OpenVMS R

2. Type the following NCL commands:

NCL> CREATE DSA
NCL> SET DSA AE TITLE
NCL> SET DSA PASSWORD

" | C=US/ O=Abacus/ CN=DSA1"
" MYSTERY"

Use upper case for the password, as shown. The password attribute is case
sensitive.

Type the following NCL command to create a Naming Context entity:
NCL> CREATE DSA NAM NG CONTEXT "/ C=US/ O=Abacus"
Type the following NCL command to create a Subordinate Reference entity:

NCL> CREATE DSA SUBORDI NATE REFERENCE "/ C=US/ O=Abacus/ OU=Accounts" -
_NCL> ACCESS PO NT = {[AE TITLE="/C=US/ O=Abacus/ CN=DSA2", -
_NCL> PRESENTATI ON ADDRESS=' <address>']}

where <addr ess> is the presentation address of NODE_2, which you made
a note of in Section 3.3. Use exactly the same case as was displayed by the
configuration utility.

Note that you must quote the presentation address using ’
shown.

characters, as

You can now enable CN=DSA1, and exit the NCL director:

NCL> ENABLE DSA
NCL> EXIT

Multi-Node X.500 Implementation Tutorial 3-5

Multi-Node X.500 Implementation Tutorial
3.4 Complete the Configuration for CN=DSA1

3.4.1 Notes About the Configuration of CN=DSA1

The password specified in step 2 is required later in this tutorial when you
implement replication between the DSAs. The DSA will use its password when
communicating with CN=DSAZ2.

The Naming Context entity created in step 3 means that CN=DSAL1 is configured
to hold entries representing the fictional Abacus organization. If a DSA has no
Naming Context entities, then you cannot create any entries on it. A DSA can
have more than one Naming Context entity, but this tutorial creates only one for
each DSA.

The Subordinate Reference entity created in step 4 means that entries for the
Accounts division are not part of the Abacus naming context. The Subordinate
Reference entity marks the boundary between the two naming contexts in

this tutorial. The Access Point attribute of the entity identifies the name and
presentation address of CN=DSA2. CN=DSA2 will hold a Naming Context entity
that represents the Accounts division.

The Subordinate Reference entity enables CN=DSA1 to redirect requests for
information in the Accounts division, and informs CN=DSA1 that it is not
responsible for the entries representing the Accounts division of the Abacus
organization.

The ENABLE DSA command enables the DSA to listen for requests from
directory applications or other DSAs. If you do not enable the DSA, applications
and other DSAs will be unable to connect to it.

3-6 Multi-Node X.500 Implementation Tutorial

Multi-Node X.500 Implementation Tutorial
3.5 Complete the Configuration for CN=DSA2

3.5 Complete the Configuration for CN=DSA2
This section completes the configuration of CN=DSA2 on your NODE_2.

Type all commands exactly as shown, with the exception of the <addr ess>

variable.

1. From a privileged account on your NODE_2, invoke the NCL director:

Tru64
UNIX

OpenVMS

ncl
.

$ RUN SYS$SYSTEM NCL
¢

2. Type the following NCL commands:
NCL> CREATE DSA

NCL> SET DSA AE TITLE
NCL> SET DSA PASSWORD

" | C=US/ O=Abacus/ CN=DSA2"
"MYTH CAL"

Use upper case for the password, as shown. The password attribute is case
sensitive.

3. Type the following command to create a Naming Context entity:
NCL> CREATE DSA NAM NG CONTEXT "/ C=US/ O=Abacus/ OU=Account s"

4. Type the following command to create a Superior Reference entity:

NCL> CREATE DSA SUPERI R REFERENCE -
_NCL> ACCESS PO NT = {[AE TITLE="/ C=US/ O=Abacus/ CN=DSA1",

“NoL>

PRESENTATI ON ADDRESS=' <address>']}

where <addr ess> is the presentation address of NODE_1, which you made
a note of in Section 3.3. Use exactly the same case as was displayed by the
configuration utility.

Note that you must quote the presentation address using ’
shown.

characters, as

5. You can now enable CN=DSAZ2, and exit the NCL director:

NCL> ENABLE DSA
NCL> EXIT

Multi-Node X.500 Implementation Tutorial 3-7

Multi-Node X.500 Implementation Tutorial
3.5 Complete the Configuration for CN=DSA2

3.5.1 Notes About the Configuration of CN=DSA2

The password specified in step 2 is required later in this tutorial when you
implement replication between the DSAs. The DSA will use its password when
communicating with CN=DSAL.

The Naming Context entity configured in step 3 means that the DSA is configured
to hold entries representing the Accounts division, and any entries representing
objects within the Accounts division.

The Superior Reference entity configured in step 4 means that any requests that
this DSA cannot satisfy are to be passed to CN=DSA1, which holds hierarchically
superior information. For example, a request for the Abacus entry will be passed
to CN=DSA1 because CN=DSAZ2 does not hold that information. CN=DSA2 will

pass on any requests that do not refer to information within the Accounts subtree.

Note that CN=DSA2 does not have a Subordinate Reference entity, because in
this example there are no naming contexts subordinate to the Accounts naming
context. If there were another naming context subordinate to the Accounts
naming context, a Subordinate Reference entity would be required, specifying
which DSA holds the subordinate naming context.

The ENABLE DSA command enables the DSA to listen for requests from
directory applications or other DSAs. If you do not enable the DSA, applications
and other DSAs will be unable to connect to it.

3-8 Multi-Node X.500 Implementation Tutorial

Multi-Node X.500 Implementation Tutorial
3.6 Configure Application Defaults on Both Systems

3.6 Configure Application Defaults on Both Systems

This section configures application defaults on both systems. The defaults provide
directory applications with information about how to connect to their local DSA.

1. On each system, log in to a privileged account and type:

Tru64 i i
UNIX # /v?r/ dxd/ scripts/dua_configure
$ @YS$STARTUP: DXD$DUA_CONFI GURE. COM
OpenVMS .

2. Accept all defaults suggested by the utility.
Run the utility on both systems.

3.6.1 Configure Lookup Client Defaults on Both Systems

If you installed the Lookup Client (see Section 3.2), you need to configure it. It
cannot use the defaults configured in Section 3.6 because it connects via LDAP to
the DSA.

Run the Lookup Client configuration utility, as follows:

Trus4 . ,
UNIX f*/usr/ shi n/ dxdl u_confi gure
$ @YSSSTARTUP: DXDSLUC_CONFI GURE. COM
OpenVMS .

Specify the name of the system that runs the DSA.
When the utility prompts for a search base, type: O=Abacus, C=US

Note the different conventions for expressing directory names, for example,
/C=US/O=Abacus is expressed as O=Abacus, C=US.

The utility asks whether you want to specify another search base. Type n. The
utility exits.

Multi-Node X.500 Implementation Tutorial 3-9

Multi-Node X.500 Implementation Tutorial
3.7 Create Some Entries

3.7 Create Some Entries

This section describes how to create the entry representing the Abacus
organization and its subordinate entries, as shown in Figure 3-1.

Type all commands exactly as shown with the exception of the <addr ess>
variable.

The Compag X.500 information management (DXIM) utility commands shown are
not case sensitive, with the exception of passwords and presentation addresses.
In this tutorial, passwords are always specified in upper case, and presentation
addresses must be copied exactly from the output of the DSA configuration utility
(see Section 3.3).

1. Log in to an account on either system. No privileges are required.
2. Invoke the DXIM utility, as follows:

Tru64 ;
UNIX $ dxim-c
L4
$ DXI M/ | NTERFACE=CHARACTER CELL
OpenVMS .

3. Create the entry that represents Abacus, as follows:

dxi m> create /C=US/ O=Abacus -

_dxin> attributes objectd ass=organi zation, -

_dxi np description="Blue Chip Corporation”, -
_dxinp t el ephone="+44 0022 77755"

4. Create the entry to represent the Sales division:

dxi m> create /C=US/ O=Abacus/ OU=Sal es -

_dxin> attributes objectC ass=organi zational Unit, -
_dxi np t el ephone="+44 0022 65524", -

_dxinp description="Sal es and Services"

5. Create the entry to represent Francis Black:

dxi m> create /C=US/ O=Abacus/ OU=Sal es/ CN="Franci s Bl ack" -
_dxin> attributes objectC ass=(organi zational Person, person), -
_dxi np surnane=Bl ack, tel ephoneNurber="647 1515", -

_dxi passwor d=TANGERI NE

All of the above entries are created on CN=DSA1, because they are part of the
naming context called / C=US/ O=Abacus. This succeeds even if you are using
DXIM on NODE_2, because CN=DSA2 has a Superior Reference that enables it
to pass the requests on to CN=DSAL.

The next two tasks shown in this section create entries on CN=DSA2. Again,
the commands will succeed even if you are using DXIM on NODE_1, because
CN=DSA1 has a Subordinate Reference that enables it to pass the requests on to
CN=DSA2.

6. Create the entry to represent the Accounts division:

dxi m> create /[C=US/ O=Abacus/ QU=Account s -

_dxin> attributes objectC ass=organi zational Unit, -
_dxi e t el ephone="+44 0022 91182", -

_dxinp description="Financial Services"

3-10 Multi-Node X.500 Implementation Tutorial

7.

Multi-Node X.500 Implementation Tutorial
3.7 Create Some Entries

Create the entry to represent Janice White:

dxi m> create /C=US/ O=Abacus/ OU=Account s/ CN="Jani ce Wite" -
_dxin> attributes objectC ass=(organi zational Person, person), -
_dxinmp surname=Wite, telephone="+44 0022 12299", -

_dxi e passwor d=CLEMENTI NE

The remaining commands create entries to represent the two DSAs themselves.

8.

Create entries to represent CN=DSA1 and CN=DSA2

dxi m> create /C=US/ O=Abacus/ CN=DSAL -
_dxinp attributes objectC ass=(decDSA, DSA applicationEntity), -

_dxi mp trust edDSAname="/ C=US/ O=Abacus/ CN=DSAL", -
_dxi passwor d=MYSTERY, -
_dxim present at i onAddr ess=" <addr ess>’

dxi m> create /C=US/ C=Abacus/ CN=-DSA2 -
_dxin> attributes objectC ass=(decDSA, DSA applicationEntity), -

_dxi e t rust edDSAnane="/ C=US/ O=Abacus/ CN=DSA2", -
_dxi e passwor d=WTH CAL, -
_dxi e present at i onAddr ess=' <addr ess>'

where, in each case, the password matches the password specified in
Section 3.4 or Section 3.5 as appropriate, and the presentation addresses
match the ones you made a note of in Section 3.3 for each DSA.

Multi-Node X.500 Implementation Tutorial 3-11

Multi-Node X.500 Implementation Tutorial
3.8 Summary of the Tasks Completed So Far

3.8 Summary of the Tasks Completed So Far

The steps completed so far create a distributed directory shown in Figure 3-2. If
you compare this picture to Figure 3—1, you can see that the only entry that has
not yet been created is the Access Controls entry (see Section 3.9).

Figure 3-2 Structure and Distribution of the Example DIT

CN=DSA1 CN=DSA2

(cn=psa1) (cn=psaz) (OU=sales) m

(CN=Francis Black CN=Janice White

MIG0546

Note that the DSA entries are both held by CN=DSA1; CN=DSA2 does not
contain its own directory entry. The physical location of a directory entry is
determined by its name, and both of the DSA entries have names that cause
them to be created within the / C=US/ O=Abacus naming context, which is held on
CN=DSAL1. There is no requirement for a DSA to hold its own directory entry.

The remaining tasks in this tutorial implement access controls, replication, and
Lookup Client. There is also a section showing you how to experiment with the
example Enterprise Directory, showing how access controls affect your ability to
see and modify directory information.

3-12 Multi-Node X.500 Implementation Tutorial

Multi-Node X.500 Implementation Tutorial
3.9 Setting Up Access Controls

3.9 Setting Up Access Controls

By default, all users of the Enterprise Directory can modify entries and read
information from entries. Indeed, in Section 3.7 you created several entries. The
only restriction enforced by the two DSASs, by default, is that they do not allow
you to display password attributes.

Typically, you will want to set up some additional access controls. This section
shows how to set up access controls that make Francis Black a directory manager
with the right to modify all entries.

Note that system or superuser privileges do not provide privileged access

to directory information. The Enterprise Directory uses its own mechanism
for determining what access rights a user has, and applies this mechanism
regardless of the account or operating system the user is using, or whether the
user is remote or local to the DSA.

To help you set up some simple access controls, the Directory Service provides the
following access control template file.

Lﬁf’;‘ [var/ dxd/ scripts/dxd_aci _tenplate. dxi m
.
DXD$DI RECTORY: DXD$SACI _ TEMPLATE. DXI M
OpenVMS .

The template file contains two incomplete DXIM commands. Make a copy of the
file so that when you have completed this tutorial, you can return it to its original
state.

In order to set up the access controls, you need to complete the commands in the
template file, and then use DXIM to execute them, as follows:

1. Use the search function of your editor to locate the following string in the
template file:

create entry
2. Edit that line, as follows:
create entry
becomes:
create entry /C=US/ O=Abacus/ CN="Access Control s"

Do not delete the - character from the end of the line; it is a command
continuation character that permits a command to be specified over several
lines.

3. Locate the following string:
set entry
4. Edit that line, as follows:
set entry
becomes:
set entry [/ C=US/ O=Abacus/ CN="Access Control s"

Be careful not to delete the - character from the end of the line.

Multi-Node X.500 Implementation Tutorial 3-13

Multi-Node X.500 Implementation Tutorial
3.9 Setting Up Access Controls

5. Locate the following string:
user nanes
6. Edit that line as follows:
user names
becomes:
user names /C=US/ O=Abacus/ OU=Sal es/ CN="Franci s Bl ack" -

Be careful not to delete the - character from the end of the line.

This is the line that declares Francis Black to be a directory manager. Only
the name specified in this clause will be recognized by the DSAs as being the
name of a directory manager. The absence of Janice White's name from this
clause means that she will not have the same access rights as Francis Black.

7. Execute the template file, as follows:

Unot | $ dxi mdo /var/ dxd/ scri pts/dxd_aci _tenpl ate
¢

$ DXI MDO DXD$DI RECTORY: DXD$SAC!I _TEMPLATE. DXI M

OpenVMS .

Section 3.11 shows how the access controls affect the ability of Francis Black and
Janice White to access information in the DIT.

3-14 Multi-Node X.500 Implementation Tutorial

Multi-Node X.500 Implementation Tutorial
3.10 Replicating Information Between the Two DSAs

3.10 Replicating Information Between the Two DSASs

This section describes how to implement replication, so that both DSAs have
copies of each other’s information.

The NCL commands need to be issued from a privileged account. See previous
sections for details of how to invoke the NCL director.

1. Implement replication of the naming context called / C=US/ O=Abacus from
CN=DSA1 to CN=DSA2.

Configure the / C=US/ O=Abacus naming context so that CN=DSAZ2 is listed
as a consumer, as follows:

NCL> ADD DSA NAM NG CONTEXT "/ C=US/ O=Abacus" -
_NCL> CONSUMER ACCESS PO NT={[AE TITLE="/ C=US/ O=Abacus/ CN=DSA2", -
_NCL> PRESENTATI ON ADDRESS=' <address>']}

where <addr ess> is the presentation address of NODE_2, which you
made a note of in Section 3.3. Note that you must quote the presentation
address using '’ characters, as shown.

Adding the Consumer Access Point attribute causes CN=DSA1 to attempt
to replicate the naming context to CN=DSA2. However, at this point,
CN=DSAZ rejects this attempt because it cannot verify the identity of
CN=DSAL. This rejection not a problem. It would be insecure to accept
replicated information from a DSA whose identity cannot be verified.

Use the following NCL command on NODE_2:
NCL> UPDATE DSA SUPPLI ER ' <addr ess>’

where <addr ess> is the presentation address of CN=DSA1, which you
made a note of in Section 3.3.

This causes CN=DSAZ2 to connect to CN=DSA1 and initiate the

first update. This can succeed because CN=DSA1 can verify the
identity of CN=DSAZ2 because it holds a copy of the directory entry
representing CN=DSA2. CN=DSA1 can compare the password provided
by CN=DSA2 with the password in the directory entry. If you completed
the configuration accurately, the passwords match, and CN=DSA1 is
satisfied that the replication request really does come from CN=DSA2.

Having checked the password, CN=DSAL1 provides CN=DSA2 with a copy
of the /C=US/O=Abacus naming context. This naming context includes
the two entries representing the two DSAs. This means that the two
DSAs can now verify each other’s identities.

2. Implement replication of the / C=US/ O=Abacus/ QU=Account s naming context
from CN=DSA2 to CN=DSA1.

Configure the / C=US/ O=Abacus/ OU=Account s naming context so that
CN=DSAL1 is listed as a consumer, as follows:

NCL> ADD DSA NAM NG CONTEXT "/ C=US/ O=Abacus/ OU=Accounts" -
_NCL> CONSUMER ACCESS PO NT={[AE TITLE="/ C=US/ O=Abacus/ CN=DSA1", -
_NCL> PRESENTATI ON ADDRESS=' <addr ess>']}

where <addr ess> is the presentation address of CN=DSA1, which you
made a note of in Section 3.3. Note that the presentation address must be
guoted using '’ characters, as shown.

Multi-Node X.500 Implementation Tutorial 3-15

Multi-Node X.500 Implementation Tutorial
3.10 Replicating Information Between the Two DSAs

Adding the Consumer Access Point to the Naming Context entity

causes CN=DSAZ2 to attempt to replicate the naming context to
CN=DSAL. This succeeds because CN=DSA1 holds the entry representing
CN=DSA2, and can therefore check CN=DSA2’s password, and verify

its identity. CN=DSAZ2 therefore provides CN=DSA1 with a copy of the
/C=US/O=Abacus/OU=Accounts naming context.

No UPDATE DSA command is required in this case.

Now that replication has been implemented, and the two DSAs are able to
verify each other’s identities, future replications happen without management
intervention. Every twelve hours the two DSAs automatically communicate to
keep the replicated information up to date.

You now have a simple, secure, distributed and replicated Enterprise Directory
provided by two DSAs. Figure 3—3 shows CN=DSA1 after all of the tasks
described above are completed. The shading indicates which information is a copy
of information from CN=DSA2.

Figure 3—-3 DSA1 After All Tasks Are Completed

CN=DSA1

O=Abacus

@N:DSAlj CCNzDSAzj COU=SaIesj @:Access Contr@

OU=Accounts

(CN=Francis Black CN=Janice White

MIG0544

Figure 3—-4 shows CN=DSA2 after all the of tasks described above are
completed. The shading indicates which information is a copy of information
from CN=DSA1.

3-16 Multi-Node X.500 Implementation Tutorial

Multi-Node X.500 Implementation Tutorial
3.10 Replicating Information Between the Two DSAs

Figure 3—-4 DSA2 After All Tasks Are Completed

CN=DSA2

OU=Accounts

CCN:DSAD @N:DSAZJ COU=SaIeS] @=Access Contr@

‘ CN=Francis Black (CN=Janice White

MIG0545

Note that the entry called / C=US is not included in the shaded area. This is
because that entry is not part of the Abacus information tree. An organization
such as Abacus should not claim ownership of entries representing countries.
Such entries form part of the global directory infrastructure, and should be
owned and managed by national authorities. This is explained in more detail in
Chapter 4.

Multi-Node X.500 Implementation Tutorial 3-17

Multi-Node X.500 Implementation Tutorial
3.11 Experimenting with the Example Enterprise Directory

3.11 Experimenting with the Example Enterprise Directory

This section shows how to use DXIM to access information in the example
Enterprise Directory. It demonstrates some of the commands available to the
user, and shows how access is controlled for different users.

1. Invoke DXIM from an account on either system. No privileges are required.

Tru64
UNIX

OpenVMS

$dxim-c
.

$ DXI M/ | NTERFACE=CHARACTER_CELL
¢

2. Type the following commands, and look at their output:

dxi m> show / C=US/ O=Abacus/ OU=Sal es/ CN="Franci s Bl ack"
dxi m> search where surnane=Bl ack all attributes

dxi m> search where surname=Wite all attributes

Note that the password attribute is never displayed. That attribute is
protected by access controls.

3. Type the following command:

dxi > nodi fy /C=US/ O=Abacus/ OU=Sal es/ CN="Franci s Bl ack" -
_dxin> add attribute title=Manager

The access controls set up in Section 3.9 cause this command to return an
error. The entry is not modified.

This is because the access controls state that the ability to modify entries is
restricted to particular users. So far, you have not authenticated, that is, you
have not specified a name and password, so the Enterprise Directory does not
know who you are.

Use the following command to make a new, authenticated connection to the
Enterprise Directory:

dxi > bind Link2 name /C=US/ O=Abacus/ OU=Sal es/ CN="Franci s Bl ack" password
Passwor d> TANGERI NE

Link2 becomes the default binding. Remember to use upper case for the
password.

Now repeat the MODIFY command as follows:

dxi > nodi fy /C=US/ O=Abacus/ QU=Sal es/ CN="Franci s Bl ack" -
_dxin> add attribute title=Manager

This time, the command should succeed, because the DSA recognizes you as
being a directory manager, with permission to modify entries. Similarly, try
the following command:

dxim> nodi fy /C=US/ O=Abacus/ QU=Sal es/ CN="Franci s Bl ack" -
_dxin> add attribute description="Directory Manager"

This succeeds as well, demonstrating that Francis Black can modify both

the description andtitle attributes. In fact, Francis Black can modify all
attributes in all entries. You can even create and delete entries when you are
authenticated as Francis Black.

3-18 Multi-Node X.500 Implementation Tutorial

Multi-Node X.500 Implementation Tutorial
3.11 Experimenting with the Example Enterprise Directory

Use the following command to make another new connection to the Directory
Service:

dxi m> bind Link3 name /C=US/ O=Abacus/ OU=Account s/ CN="Jani ce White" password
Passwor d> CLEMENTI NE

If you specified the name and password correctly, the BIND command
succeeds. If not, try again. Remember to use upper case for the password.

Now that you have authenticated as Janice White, try another modification,
as follows:

dxi m> nodi fy /C=US/ O=Abacus/ OU=Account s/ CN="Jani ce Wite" -
_dxin> add attribute description="Accountant"

This succeeds. However, the following command fails, even though you are
authenticated as Janice.

dxi > nodi fy /C=US/ O=Abacus/ Ou=Account s/ CN="Jani ce Wite" -
_dxin> add attribute title=Accountant

This demonstrates that, even when authenticated, Janice has less access than
Francis. Janice can change her description, but not her title. Furthermore,
Janice’s ability to modify descriptions applies only to her own entry. If she
attempts to change Francis’ description, she would fail. Meanwhile, Francis
can modify descriptions in any entry, not just his own.

So, Janice has limited modification access to her own entry, and no other
entry, whereas Francis has unlimited modification access to all entries.

There are now three connections between DXIM and the Enterprise Directory.

Linkl is an anonymous link; no name or password was specified.
Link1 was created by default when you issued the first DXIM command.

Link2 is an authenticated link; the name and password of Francis Black are
associated with this link.

Link3 is an authenticated link; the name and password of Janice White are
associated with this link.

DXIM maintains all three links, and allows you to switch between them. Each
link has a different level of access to directory information. For example, you can
make Link2 the default link as follows:

dxi m> set default binding Link2

You can display a list of current bindings using the SHOW BINDING command.
The list shows information about each binding, including the address of the DSA,
the name supplied by the user, and whether the user supplied a password.

8.

9.

Use the DXIM help to see what other commands are possible, and experiment
with those. For example, use the CREATE and DELETE commands.

Note

Do not delete the Francis Black entry. It represents the only user who
can manage entries in this example. If you accidentally delete the entry,
recreate it immediately using Link2.

Note how creations and deletions only succeed if you are using Link2.

Use the DXIM windows interface to view the entries.

Multi-Node X.500 Implementation Tutorial 3-19

Multi-Node X.500 Implementation Tutorial
3.11 Experimenting with the Example Enterprise Directory

To invoke the DXIM windows interface, type:
$ dxim

DXIM displays the Find window. A Browse window is also available from the
Directory menu. Use these two windows to display entries in the Abacus DIT.

Note that if you try to modify entries, you are prevented by access controls.

10. Use the Authenticate option of the Directory menu to specify the name and
password of Francis Black.

Now that you are authenticated as Francis Black, modifications are possible.

When you have finished experimenting with the DXIM interfaces, exit from them
and proceed to the next section of this tutorial.

3-20 Multi-Node X.500 Implementation Tutorial

Multi-Node X.500 Implementation Tutorial
3.12 Using the Lookup Client

3.12 Using the Lookup Client

To start the Lookup Client graphical interface, type the following command:

Tru64
UNIX f dxdl u

$ RUN SYS$SYSTEM DXD$SLOOKUP_MOTI F. EXE

OpenVMS .

Type Franci s Bl ack into the input field and press Return to invoke a search. The
Lookup Client displays the entry representing Francis Black. Refer to the Help
menu for further details on how to use the Lookup Client.

Multi-Node X.500 Implementation Tutorial 3-21

Multi-Node X.500 Implementation Tutorial
3.13 Deleting the Example Enterprise Directory

3.13 Deleting the Example Enterprise Directory

Now that you have some experience of the tasks involved in setting up an
Enterprise Directory, delete the example configuration, and read the planning
and implementation chapters of this book.

To delete the example Enterprise Directory configuration, log in to a privileged
account, and use the NCL director to disable and delete the DSA on each node, as
follows:

NCL> DI SABLE DSA
NCL> DELETE DSA

Then delete the database files and the defaults files on both systems, as follows:

U;IG;‘ # rm/ var/ dxd/ DSA-i nf or mat i on-tree*
#rm/etc/dua. defaul ts
#rm/etc/dxdlu.defaults
.

$ DELETE DXD$DI RECTORY: DSA- | NFORVATI ON- TREE. *; *
OpenVMS | $ DELETE DXD$DI RECTORY: DXD$DUA DEFAULTS. DAT; *

$ DELETE SYS$SYSTEM DXDLU. DEFAULTS; *

¢

Deleting the database files means that the DSA is returned to its unconfigured
state, as it was when you first installed the software. The DSA stores its
configuration information and its entries in these files.

You should also delete the access control template file you created in Section 3.9,
and copy back into the correct position the original template file. If you no longer
have an original copy of the template file, you can copy it from another system, or
reinstall the X.500 Base subset, or edit the file back to its original state.

3-22 Multi-Node X.500 Implementation Tutorial

Part |l

Planning

This part explains the planning tasks required to design your directory
information and to establish your Enterprise Directory.

Chapter 4 describes how to plan your directory information tree, and how to
plan entries to represent your Compaq DSAs.

This chapter is essential reading.

Chapter 5 describes how to plan the distribution and replication of directory
information for your DSAs.

This chapter is essential reading, although if you only have one DSA you
might be able to miss some sections.

Chapter 6 describes how to plan customizations for your schema.

This chapter is not required if the default schema meets your requirements.
Some types of schema change can be planned and implemented after you
have created your directory information. However, some cannot, so if you
think that you might ever need to customize the schema, you are advised to
read this chapter before creating directory information.

Chapter 7 describes how to plan access control for your information.

This chapter is not required if you do not need to control access. Access
controls can be implemented at any time, so you might decide not to read
this chapter until some time after planning and implementing the features
described in Chapter 4, Chapter 5, and Chapter 6.

A

Planning Your Directory Information Tree

This chapter explains how to approach the task of designing a Directory
Information Tree (DIT) for your organization. Planning a DIT in advance is
advisable for implementing a usable and efficient Enterprise Directory.

Compaq strongly recommends that your organization sets up a management team
to design your DIT. Over time, your Enterprise Directory will affect more and
more users and applications, and X.500 directory names will become increasingly
common in user interfaces.

When you are planning what information to represent in the directory, remember
to consider any data protection legislation that might influence your choices. This
is especially important if you intend to store information about people. Many
countries have laws that restrict your right to store information about people.

Note

Some Enterprise Directory applications might have very specific
information requirements. For example, some applications require
directory names to conform to certain naming conventions. ldeally,
applications should not impose such requirements on directory
information, they should simply accept whatever names you assign to
entries.

However, if you have such an application, treat it as a special case,
and refer to that application’s documentation for details of how to plan
X.500 information. The MAILbus 400 Message Transfer Agent (MTA)
is an example of an application that requires very specific directory
information, and that product includes documentation explaining what
you need to do. If the only reason you are using X.500 is to support the
MTA, then all the directory information planning tasks are described in
the MTA documentation.

If you build an X.500 application, do not implement dependencies on
specific naming conventions. Refer to the Compaq Enterprise Directory for
Business Programming for advice on implementing X.500 applications.

The advice in this chapter explains how to design information that is of general
use. Most importantly, this guide explains how to design information for use

by your organization’s employees. For this reason, the advice in this guide
encourages you to design a user friendly naming scheme, so that when your users
search the directory for information, they will not need to learn special naming
conventions first.

Planning Your Directory Information Tree 4-1

Planning Your Directory Information Tree

Your goal is to plan a DIT that represents the hierarchy and geography of your
organization, and enables you to name anything within your organization, and
to provide each entry with the range of attributes that it requires. A good DIT
design is one that gives each entry a name that is relatively easy to remember
and use, and that is consistent with other entry names.

Note

The advice in this chapter helps you represent objects within your
organization. You should not attempt to represent objects that are not
within your organization and do not belong to you. Specifically, you
should not try to represent countries using the country class. Such
entries do not belong in your organization’s DIT.

Your task is to design a DIT that has an entry representing your
organization at its root. It may be that your DIT is itself going to be

a subtree of a larger DIT; but if so, any entries that are hierarchically
superior to your organization are not your responsibility. Such superior
entries are the responsibility of a national or regional haming authority
such as ANSI or the British Standards Institute.

The advice in this chapter applies regardless of whether such superior
entries exist. Section 4.3 describes extra tasks that you need to do after
the planning described in this chapter if such entries do exist.

Your first planning task is to design a structure similar to one of Figure 4-1
or Figure 4-2 or Figure 4-3. Figure 4-1 illustrates a structure based on
the organizational hierarchy of a fictional organization. The fictional Abacus
organization is used throughout this guide to illustrate planning tasks.
Figure 4-2 illustrates a structure based on geographical distribution, and
Figure 4-3 illustrates a structure that combines both geographical and
organizational elements.

Which of these structures you use depends on your organization, and you can use
different structures for different parts of your organization if that seems most
appropriate.

4-2 Planning Your Directory Information Tree

Planning Your Directory Information Tree

Figure 4-1 A DIT Based on Organizational Units

Accounts Personnel

Catering

People, etcl People, etcl People, etcl

Wine Cellar | | Graduate Recruitment

People, etc'

MIG0238

Figure 4-1 illustrates a DIT that includes the following entries:
= An entry representing the whole organization (Abacus).

= Many entries representing the groups or divisions within your organization
(Accounts, Oil, Catering, and so on).

In some parts of the DIT there are two or three levels of organizational unit.
A unit that is represented beneath another unit is a subdivision of that unit,
or a dependent group. In this way, the DIT reflects the hierarchical structure
of your organization.

= Many other entries representing employees, computers, and other resources
(shown as "People, etc").

These entries are subordinate to the organizational units that own or control
them.

Planning Your Directory Information Tree 4-3

Planning Your Directory Information Tree

Figure 4-2 A DIT Based on Geographical Distribution

Abacus

New England

West Coast Florida

People, etc ' People, etc ' People, etc '

People, etc

People, etc '

People, etc

San Francisco

People, etc

People, etc

MIG0239

Figure 4-2 illustrates a DIT that includes the following entries:
= An entry representing the whole organization (Abacus).

= Many entries representing the geographical localities in which the
organization is based.

The localities could be cities, states, provinces, or buildings depending on
the size of the organization and the familiarity of those localities to users.
Localities can be subdivided into further localities. For example, New
England is subdivided into Boston and Augusta, the latter being further
subdivided into Abacus Tower and Abacus House, the two major office
developments that the organization has in Augusta.

= Many entries representing employees, computers, and other resources.
These entries are subordinate to the localities that own or control them.

4-4 Planning Your Directory Information Tree

Planning Your Directory Information Tree

Figure 4-3 A DIT Based on Geographical and Organizational Elements

Abacus

Scotland

Mycology

people etc

MIG0240

Figure 4-3 illustrates a DIT that includes the following entries:
= An entry representing the whole organization (Abacus).

= Many entries representing localities in which parts of the organization are
based.

Some localities are subordinate to entries representing groups or divisions
within the organization, indicating that those groups are based in more than
one locality.

= Many entries representing the groups or divisions within the organization.

Some of these groups and divisions are subordinate to locality entries,
representing that they are based in the relevant locality.

= Many entries representing employees, computers, and other resources.

These entries are subordinate to the organizational units or localities that
own or control them.

You need to analyze your organization to decide how best to represent it. Note
that at this stage, you do not need to consider what classes of entry you will
use to represent the various entries; you simply need to sketch a structure that
divides your organization into manageable groupings of resources.

Section 4.1 describes the factors that influence this design task, and helps you
decide what DIT structure to use.

4.1 DIT Planning Considerations

Designing your organization’s DIT is the most important of the planning tasks,
because it is difficult to restructure your DIT once you have implemented it. The
following sections describe several factors that you must consider when planning
the DIT, some of which might tend to conflict with each other. Some sections
indicate that the advice conflicts with the advice in other sections. Your task is to
design a DIT that provides the best compromise, for your organization, of all the
conflicting considerations.

Planning Your Directory Information Tree 4-5

Planning Your Directory Information Tree
4.1 DIT Planning Considerations

Use a Familiar Structure

Try to represent your organization in a way that is familiar to the human users
of the Enterprise Directory (assuming you intend to allow your employees to use
the directory).

By using a familiar hierarchy, you make it easier for users to use the service
efficiently, as they can direct their requests towards particular subtrees. For
example, a user searching for another user’s entry could be aided by the fact that
the directory divides the organization into geographical localities, with which the
user is familiar.

Names based on a familiar hierarchy will also be easier to remember from one
occasion to the next. If your organization already has a naming scheme for
identifying resources and employees, then you can use that scheme as input to
the DIT design, although organizational charts are often far more detailed than
your DIT needs to be.

Existing naming policies or organizational charts might influence whether you
decide to use organizational or geographical elements in your DIT. Also, if you are
considering using a mixture of geographical and organizational elements, then
bear in mind that this tends to conflict with user friendliness, as users have to
guess which type of element is actually being used in the part of the DIT that
they are trying to search. Your users will find names easier to use and remember
if they are constructed of a predictable and consistent set of components.

Use a Stable Structure
Try to represent your organizational structure in a way that is unlikely to change.

Once you have implemented a naming tree, it is difficult to revise it (although you
could delete all entries and start again, or use alias entries to give the appearance
of a different structure). Also, any redesign of the DIT changes the names of
entries, so your users will be less likely to remember them, or to know where in
the tree to look for particular information. Therefore, if your organization often
reorganizes its structure, try to use structural features of your organization that
are least likely to change.

The need for DIT stability might influence whether you use geographical and/or
organizational elements in your DIT. In some organizations it might be common
for employees to change group many times without having to relocate, in which
case it makes sense to name people according to their location rather than

their organizational unit. In other organizations, it might be more common for
organizational units to relocate such that the organizational structure is stable,
but the location of its groups is unstable. In that case, geographical details are of
little lasting use in your DIT.

Use a Structure that Accommodates Resource Mobility

Try to divide your organization into subdivisions in which resources tend to stay
for long periods.

If your employees and other resources move from group to group or location

to location frequently, then there is a danger that you will need to do a lot of
modifications to their entries. If you use units that resources stay in, you can
reduce the amount of management required to keep the information up to date.
One way to achieve this objective is to avoid dividing your organization into too
many subdivisions.

4-6 Planning Your Directory Information Tree

Planning Your Directory Information Tree
4.1 DIT Planning Considerations

For example, an engineer can be expected to remain in the Engineering part of
the business, but to move between different engineering projects. If you use a

structure that includes units for each project, then the engineer’s entry might

need frequent modification. If you simply place all engineers beneath an entry
representing Engineering as a whole, the engineer’s entry need not be modified
after each move.

Figure 4—4 illustrates part of a DIT in which an Engineering unit is subdivided
into a number of smaller units, whereas a Sales unit is not subdivided. There
is an engineer called Jane working for the hardware engineering group, and

a salesman called Bill working for the hardware sales group. If Jane moves
from hardware engineering to software engineering and then to office products
engineering she would require her directory entry to be moved from unit to unit
accordingly. However, if Bill moves from hardware sales to software sales and
then to office products sales he would not require any modification to his entry,
because it simply identifies him as an employee of Sales generally.

Figure 4-4 Accommodating Resource Mobility

Abacus

Engineering

[Hardware] [Software] @fice Produc@ Bill Merry
Jane Freer
MIG0241

The part of the DIT representing Sales therefore minimizes the effect of resource
movement within the organization. Bill’'s entry would only need modification if
Bill left the Sales unit altogether. However, note that this advice tends to conflict
with the advice about avoiding name clashes, as well as the advice about dividing
the DIT into manageable portions (as described in the following subsections).

Note

Limiting the amount of detail in your DIT hierarchy does not prevent
you from representing further organizational and geographical detail in
another way.

Any organizational or geographical details that you exclude from the
DIT hierarchy can be represented as attributes within each entry,

as described in Section 4.1.1. Thus, Bill's entry could include an

or gani zat i onal Uni t Nane attribute that indicates which part of Sales
he works for. Modifying such an attribute within an entry is far easier

Planning Your Directory Information Tree 4-7

Planning Your Directory Information Tree
4.1 DIT Planning Considerations

than amending the structure of the DIT itself, or moving an entry from
one part of the DIT to another.

Use a Structure that Divides the DIT into Manageable Portions

The easiest way to divide the management responsibility for the DIT is to assign
managers to particular subtrees of the DIT. For example, to manage the DIT
shown in (Figure 4-4), you could have two DIT management teams; one for the
Engineering entry and all of its subordinates, and the other for the Sales entry
and all of its subordinates. Alternatively, you could have one management team
for each of the three engineering subdivisions and one for the Sales unit.

Dividing your DIT into manageable portions may conflict with the advice about
using few levels of hierarchy and about coping with resource mobility.

Use a Structure that Minimizes Name Clashes

Try to design a DIT that divides your organization into groupings of entries that
cause as few name clashes as possible.

A name clash occurs when two or more entries require the same directory name.
Every distinguished name must be unique, so, for example, if you have several
John Smiths working for the same organizational unit, you have a name clash

to resolve. Try to divide your organization so that organizational units are small
enough for such clashes to be rare. (You can never completely avoid the possibility
of name clashes, and Section 4.4.1 explains how to resolve them when they occur.)

Dividing your organization into small units to reduce the chance of name clashes
might conflict with the advice about using few levels of hierarchy and trying to
cope with resource mobility.

Use Few Levels of Hierarchy

Try to use as few levels of hierarchy as possible. Each entry’s distinguished name
is made up of the RDNs of all the entries directly above it in the DIT. Therefore,
entries a long way down the hierarchy tend to have very long distinguished
names. The most useful entries tend to be the ones at the lowest levels of the
DIT, and therefore are the ones with the longest names. Long names are hard to
remember and use, so a shallow hierarchy tends to be more usable.

You should avoid representing your organization in too much detail, with many
levels of organizational or geographical unit. A common mistake is to design
DITs which have many levels of organizational entry, so that entries’ names are
useful information in their own right. This approach makes names longer, harder
to memorize, less stable, and requires more processing for each attempt to find
entries. A hierarchy with few levels provides shorter names that are likely to be
more stable and manageable, and easier to remember.

Therefore, when you are analyzing your organizational structure and distribution,
avoid including every tiny detail. Only subdivide a given unit if it will make the
DIT more manageable or help minimize the probability of name clashes.

Note

Limiting the amount of detail in your DIT structure does not prevent
you from representing further organizational or geographical details
in another way. Section 4.1.1 explains how to represent details of a
resource’s organizational and geographical position without creating
several levels of entry.

4-8 Planning Your Directory Information Tree

Planning Your Directory Information Tree
4.1 DIT Planning Considerations

When deciding how many levels of entry to implement, there is no requirement
for your DIT to be symmetrical: one part of your DIT can have more levels of
entry than another.

Avoid Using a Confidential Structure

Remember that if you connect your organization’s X.500 Enterprise Directory to
other X.500 Directory Services, the names of your entries will be visible to people
outside of your organization.

Therefore, use an organizational structure that you do not mind being exposed
to external organizations. For example, if you have a design department that
includes groups working on sensitive projects, you might prefer not to subdivide
your DIT beyond the level of the design department.

4.1.1 Representing Hierarchy as Attributes of an Entry

When you design your DIT, you might want to include several levels of
organizational unit or geographical division so that an entry’s position in the
DIT is fully representative of a resource’s position in your organization. However,
as Section 4.1 explains, there are several reasons why you should not represent
your organizational hierarchy in too much detail. Instead, you can use attributes
of a given entry to represent organizational or geographical details.

For example, instead of creating a detailed hierarchy of entries representing
organizational units or geographical areas as superiors of an entry representing
an employee, you could use the optional or gani zat i onal Uni t Name and

| ocal i t yName attributes within the employee’s entry itself. The effect of this
would be to reduce the depth of your DIT, as illustrated in Figure 4-5.

Planning Your Directory Information Tree 4-9

Planning Your Directory Information Tree
4.1 DIT Planning Considerations

Figure 4-5 Two Ways to Represent Organizational and Geographical Details

Abacus Abacus
Munich
Settlements
Pay DEk]

Commonname = Alfred Shaw
Surname = Shaw

Telephone = 888543

Title = Junior Clerk

Commonname = Alfred Shaw

Surname = Shaw

Telephone = 888543

Title = Junior Clerk

Organizationalunitname = Settlements, Pay Desk
Localityname = Munich

MIG0242

The example on the left represents all organizational units and localities as
entries in their own right, and the entry representing Alfred Shaw includes
attributes for his surname, title, and telephone number. The example on the
right places Alfred’'s entry beneath only one organizational unit entry, and all the
other details are represented as attributes of his entry, along with his surname,
telephone number, and title. In the example on the left, Alfred’s entry has five
superior entries, whereas on the right, Alfred’s entry has only two superior
entries. Therefore, the distinguished name of the entry on the left would be
longer than that of the entry on the right.

Compag recommends that you follow the example on the right, so that you

can implement a DIT with as few levels of hierarchy as possible. When you have
made a rough plan of how to represent your organization, review it to see whether
all of the levels of hierarchy and geography are really necessary. Remember that
not all users are equally familiar with the hierarchical structure of different parts
of your organization. Avoid using levels of hierarchy that are unfamiliar to users,
since this does not help them to find information.

4.2 Choosing Classes to Represent Objects

Having decided how to represent your organizational hierarchy, you need to plan
exactly how to represent the organizational divisions and resources as X.500
directory entries. When you create an entry, you must specify what class of entry
it is. The class of an entry determines what attributes it can have.

4-10 Planning Your Directory Information Tree

Planning Your Directory Information Tree
4.2 Choosing Classes to Represent Objects

You need to choose a structural class that provides the attributes appropriate
to each type of object. A structural class is a class that provides the basis of an
entry. All entries must belong to a structural class, and once created cannot be
modified to belong to any other structural class.

Your planning task is to decide which of the structural class definitions in the
schema best represents each of your objects. If there is no structural class
suitable for a given type of object, then you need to define a new structural
class. However, for several types of object, the international standards bodies
have provided useful definitions. By using these predefined structural classes,
you improve your ability to interwork with other organizations’ Enterprise
Directories.

The predefined structural classes are probably not perfect matches for the
information that you require, but they provide a good foundation. You can then
define auxiliary classes which enable you to use extra attributes that are not
defined for the structural classes. An entry can belong to more than one auxiliary
class, in addition to its structural class.

For example, the predefined structural class or gani zat i onal Per son permits you
to use several attributes that the standards bodies considered would be useful.
However, it is likely that your organization has some information that it would
like to store about people, for which this structural class does not allow. You can
therefore define an auxiliary class that permits the use of those extra items, and
use the auxiliary class with the structural class. Chapter 6 explains this option
in more detail.

The following list explains which structural class from the default schema is most
suitable for a given type of object:

= Your organization as a whole can be based on the or gani zati on class.
= Geographical areas can be based on the | ocal ity class.

= Groups and divisions within your organization can be based on the
organi zational Unit class.

= Your employees can be based on the or gani zati onal Per son class.
= Computer hardware can be based on the devi ce class.

= Open system application processes and entities can be based on the
applicationProcess and applicationEntity classes.

= Compaq strongly recommends that you represent your DSAs using entries of
the decDSA class.

You need to represent all of your Compaq DSAs as directory entries. Entries
representing DSAs are used for Enterprise Directory security, and for
distributed directory operations.

= Some organizations might find that the resi denti al Person class is useful
for representing employees who work from home, or perhaps for representing
customers. For example, a telephone company might represent subscribers
using this class.

If you have objects that do not fall into any of the above categories of object,
then you will need to define some completely new structural classes. Defining
structural classes is a complex task, so use standard definitions if at all possible.
Chapter 6 describes how to define a structural class.

Planning Your Directory Information Tree 4-11

Planning Your Directory Information Tree
4.2 Choosing Classes to Represent Objects

When you choose classes to represent your objects, refer to the schema definitions
for details of permitted structural rules between classes of entry. For example,
there is a structure rule that states that an or gani zat i onal Person entry is only
permitted beneath entries of the or gani zati onal Uni t, | ocal ity, or organi zati on
classes.

If you have planned your DIT according to the advice at the beginning of this
chapter, then you should find that the definitions do permit the hierarchy

that you want. If not, you need to reassess your DIT hierarchy so that it does
not conflict with the structure rules, or else to redefine the schema so that a
different set of structural rules is allowed. For ease of implementation, Compaq
recommends that you use the structural rules permitted by the default schema,
because redefining structure rules is complicated.

Figure 4-6 illustrates the structure rules that Compag recommends you to use
within your organization’s DIT. There are further possible relationships between
these classes, which are illustrated in Appendix A. However, you should find that
the relationships illustrated in Figure 4-6 are sufficient.

Figure 4-6 The Most Frequently Used Default Structure Rules

decDSA
» organizationalUnit

applicationProcess

\
applicationEntity
MIG0496

Each arrow in Figure 4-6 represents a permitted relationship between entries,
such that the arrow points from a class of entry to a permitted subordinate of
that class of entry. For example, an or gani zat i onal Per son entry is permitted
as a subordinate of an organi zati on entry, or an organi zati onal Uni t

entry, or alocal ity entry. There are no permitted subordinates of an

organi zati onal Person entry. Note that or gani zational Unit and local ity
have arrows that loop back to themselves. This represents the ability of entries
of those classes to be superior to further entries of the same classes, permitting
distinguished names such as / C=US/ O=Abacus/ OU=Sal es/ OU=Met al s/ CN="Jo
Brownl y".

organizational
Person

4-12 Planning Your Directory Information Tree

Planning Your Directory Information Tree
4.3 Positioning Your Directory Information Tree into a Global Context

4.3 Positioning Your Directory Information Tree into a Global
Context

The DIT that you plan for objects within your organization is (or will become)
part of a larger, global DIT.

By contacting a national or regional authority that is responsible for assigning
names within the region in which your organization is based, you can make
your DIT part of a global DIT. The role of the authority is to ensure that no two
organizations have the same name. All entry names within your organization’s
DIT can then be guaranteed to be globally unique, and it becomes possible for
different organizations to refer to each other’s entries without ambiguity.

Note

Many countries do not have national or regional authorities. If your
organization is based in an area that has no such authority, then all you
can do is make a simple guess as to where your DIT will eventually fit
into the global context. It is possible, although inconvenient, to set up
your DIT without positioning it in a global DIT, and then amend your
DIT. However, if an authority is available, you should refer to it.

If your organization is international, you should refer to the authority
that is responsible for the naming in the area in which your organization
has its headquarters. You do not need to refer to the authority of every
region in which your organization has any interest, although you can do
so if you prefer.

When you refer to such an authority, they will tell you how your DIT should fit
into the global DIT. It is likely that the position of your DIT within the global DIT
will mean that your directory entries are all subordinate to an entry representing
your country, and perhaps an entry representing a region or state within your
country. This means that the distinguished names of all of your organization’s
entries will include relative distinguished names that are not planned by you.

The names of these superior entries form a global prefix to the names of your
entries, and you need to know this prefix before you configure your Enterprise
Directory.

For example, the highest entry in the Abacus DIT is called

or gani zat i onNanme=Abacus. The Abacus organization is based in the United
States. The Abacus organization contacts the authority responsible for
assigning names in the United States, and are told that the Abacus DIT

must be subordinate to an entry called count r yName=US. Thus, the distinguished
name of every entry in the Abacus DIT includes the relative distinguished name
count ryName=US. Figure 4-7 shows the relationship between that country entry
and the DIT planned by the Abacus organization.

Planning Your Directory Information Tree 4-13

Planning Your Directory Information Tree
4.3 Positioning Your Directory Information Tree into a Global Context

Figure 4—7 The Abacus DIT with its Global Prefix
(us)

Abacus

Research

People, etc'

Personnel

People, etcl

Payroll

People, etc'

MIG0325

It is important to understand that the country entry is not part of the Abacus
DIT, it is only a prefix. When the Abacus organization creates entries, it does not
create any entries that are part of the prefix.

In this example, there is only one superior entry to the Abacus DIT, but there
could be more. Some authorities will subdivide their country into regions, in
the same way as Abacus divided its organization into organizational units

and localities. For example, Abacus might have discovered that its DIT was
subordinate to an entry called / C=US/ | ocal i t y=Fl ori da. Thus, the names of all
Abacus entries would include those two relative distinguished names.

When you refer to an authority, you also need confirmation that no other
organization in your region has already registered the same organization name.

Note

Becoming part of a global DIT is, of course, optional. You could decide
that your organization does not need any connection to other directories.
Even so, Compaq recommends that you refer to a naming authority
anyway.

By registering with a naming authority, you make it much easier to
become part of a larger DIT later. If you create your DIT without
reference to a naming authority, and later decide to join a larger DIT,
then it is likely that your entire DIT will have to be renamed.

4-14 Planning Your Directory Information Tree

Planning Your Directory Information Tree
4.3 Positioning Your Directory Information Tree into a Global Context

Planning how your DIT fits into a larger DIT does not force you to become
part of the larger DIT immediately.

Once you have planned how your organization’s DIT fits into the global DIT, and
what your DIT'’s prefix is, you are ready to proceed to Section 4.4, which explains
how to name the entries in your DIT.

4.4 Naming Your Entries

Having defined a policy for the representation of all types of entry, and planned
any new class and attribute definitions that you need, the final task is to define a
policy for naming entries as you create them.

When you create an entry, you must specify at least one attribute value to form
the entry’s RDNZL. The chosen attribute becomes the RDN of the entry. When you
choose the RDN for an entry, there are several things to consider.

Firstly, the definition of the entry’s object class states that the RDN must be
chosen from particular attributes. For example, the schema’s naming rule for the
| ocal i ty object class states that the RDN must be a value of the | ocal i t yName
attribute. If you try to use any other attribute of the entry, the attempt to create
the entry fails.

For most standard classes of entry, the attribute that you use for naming is the
comonNane attribute. Table 4-1 lists the most frequently used exceptions.

Table 4-1 Naming Attributes of Commonly Used Classes

Class Naming Attribute
countryJ aj count ryName
organi zation organi zat i onNanme
organi zational Uni t organi zat i onal Uni t Nane
locality | ocal i t yNane
organi zati onal Person[b] conmmonNane and optionally
organi zat i onal Uni t Nane
resi dential Person[b] commonNane and optionally St r eet Addr ess

[a] The class is included for completeness. You should not use this class in your
organization’s DIT; only as part of your DIT's global prefix (see Section 4.3).

[b] This class enables the use of two naming attributes in the RDN. See
Section 4.4.1.

Secondly, because the value that you choose is used as part of the distinguished
name of the entry, and appears as part of the distinguished name of any
entry subordinate to it, you should choose a value that is short and familiar

to users. For example, if you want to create an entry to represent the locality
Massachusetts, you need to decide whether to use the value Massachusetts, or
the accepted abbreviation MA as the RDN.

1 It is possible to use more than one attribute value in an entry’s RDN, depending on

the naming rules of the entry’s class. However, multipart RDNs are less user friendly.
In the default schema, only the resi denti al Per son and or gani zat i onal Per son
classes permit multipart RDNs, so examples of multipart RDNs should be rare.

Planning Your Directory Information Tree 4-15

Planning Your Directory Information Tree
4.4 Naming Your Entries

Similarly, if your organization is international, you need to decide which language
to use for the naming of some entries. For example, if you have an office in
Munich, you need to decide whether to use the value Munich or Munchen. The

| ocal i t yName attribute can be multivalued, and therefore can have both of the
values, but only one of them can be used as the RDN. You should try to choose
the value that you think users are most likely to use, recognize, and remember.

Figure 4-8 shows the Abacus DIT plan after names have been chosen for
entries.

Figure 4-8 The Abacus DIT with its Entries Named

O=Abacus

OU=Research

CN=Val Boyle l

OU=Personnel

|

CN=Bud Hart

CN=Dan Pugh '

OU=Drugg (OU=Cells| | OU=Metals @U:PhysiCQCOU:BiologQ @:Payroll
@N:AI How@ @N:Dr Eri@ @:Jane L@ CN=Jon Biggs)

Gv-onarar)

@:May Li@ @:Per Jons@
MIG0501

4.4.1 Resolving Naming Clashes
No two entries can have the same distinguished name. Thus, if the Accounts
division of the Abacus organization has two people called Alfred Shaw, then there
is a naming collision that must be resolved before you create the two Alfreds’
entries.

If a naming collision occurs, then there are three possible solutions, as
demonstrated by a clash between two people called Alfred Shaw who work in
Accounts.

1. You could use some other value for each entry’s name.

For example, you could use each man’s middle initial to differentiate between
their names, giving "Alfred J. Shaw" and "Alfred P. Shaw", for example.

4-16 Planning Your Directory Information Tree

Planning Your Directory Information Tree
4.4 Naming Your Entries

The disadvantages of this solution are that users may not know the middle
initials of the two Alfreds, so the names resolve the clash, but fail to make the
names any more informative. Users would have to look at other attributes

of the two Alfreds’ entries to try to determine which one they are actually
interested in.

However, this solution is probably the most user friendly of the three.

2. You could use a second naming attribute in the entries’ RDNs.
For example, you could call one of the entries#
comonName="Al fred Shaw', or gani zati onal Uni t Name=Set t | enent s
and the other
commonNane="Al f red Shaw', or gani zat i onal Uni t Nane=Expenses.

Users searching for Alfred Shaw's entry will find both entries, and can decide
which one they actually want by noting what organizational unit they are
attached to. For example, in a DXIM window, these two entries would be
displayed as Al fred Shaw, Settlenments and Al fred Shaw, Expenses.

The disadvantages of this solution are that it only applies to classes of
entry that permit multipart RDNs, and that the entries’ distinguished
names become longer and more complicated. Users might have difficulty
specifying the distinguished name correctly. End users might not have to use
distinguished names often, but if they do, having some names inconsistent
with the style of others might be confusing.

3. You could add an extra level of organizational hierarchy to separate the
clashing entries from each other.

For example, if one of the Alfreds works in Munich and the other in Madrid,
then you could divide the Accounts division into two geographical subdivisions
by creating two locality entries beneath the Accounts entry. The entries
representing the two Alfreds can then both have the RDN conmonNane=Al f r ed
Shaw because that value is unique relative to their respective localities.

However, the disadvantages of this solution are that it interferes with your
hierarchy planning (which you may already have completed and agreed), and
might actually make the entries harder to find. It also makes the entries’
distinguished names longer and more complicated.

You need to decide which solution to apply to any name clashes that arise in
your directory. Compaq recommends that when you design your DIT, you try to
divide your organization into small enough divisions to minimize naming clashes,
and then for the few clashes that still occur, use the first of the three proposed
solutions.

Note

Because most naming attributes are multivalued, entries can still have
their most obvious value as well as having a value that is unique for
naming purposes. Thus, the two Alfred Shaws entries can both have the
value comonNanme="Al fred Shaw', but they cannot both have that value
as their relative distinguished name.

Most end user requests for information will be in the form of directory
searches. Directory searches for commonNane="Al f red Shaw" will succeed
regardless of whether that value is the distinguished value. Thus the
three methods of resolving naming clashes described in this section do
not necessarily decrease the usability of the directory for end users.

Planning Your Directory Information Tree 4-17

Planning Your Directory Information Tree
4.4 Naming Your Entries

Only services that require the specification of an entry’s distinguished or
relative distinguished name are likely to be made less usable.

The first of the three proposed solutions is probably the most user friendly
method of resolving naming clashes, because it does not lengthen an
entry’s distinguished name as much as the other two methods.

4.5 Planning Entries to Represent DSASs

Compaq recommends that you represent your Compag DSAs as directory entries
of the decDSA class. This is recommended for four main reasons:

When chaining user requests to another DSA, a Compag DSA often needs to
check the security details of that DSA.

If a DSA is acting for a user who has specified a name and password
(authenticated), then chaining might require the DSA to specify its password
to the other DSA. However, a Compag DSA will only specify its password

to a DSA that it trusts. If there is no trust, a Compag DSA might return
partial results or a continuation reference to the user instead of chaining

a request. Chaining of requests for authenticated users can therefore be
severely restricted if there is no trust between DSAs.

The decDSA entries enable you to establish this trust. A DSA that is
represented by a decDSA entry with certain attributes is said to be a trusted
DSA.

Similarly, when receiving a chained request from another DSA, a Compaq
DSA often needs to check the security details of the other DSA.

If the other DSA claims to be acting on behalf of an authenticated user, a
Compaq DSA must decide whether it trusts the other DSA. If the Compaq
DSA trusts the other DSA, then it assumes that the user has authenticated
adequately, and honours that user’s access rights. If the Compaqg DSA does
not trust a DSA that passes such a request, then it rejects the request
because it would be a security risk to assume that the user really has
authenticated adequately.

If a Compag DSA is asked to receive replicated information from another
DSA, it always checks the security details of that other DSA.

A Compag DSA will only receive replicated information from a trusted DSA.
An untrusted DSA might try to send replicated information that compromises
security. A Compaq DSA rejects such information.

Compaq DSAs can use the directory to find network addressing information
and protocol information about other Compaq DSAs.

For these reasons, it is strongly recommended that you create decDSA entries, so
that your DSAs cooperate openly with each other, yet provide a service that is
adequately protected against certain types of request from unknown or untrusted
DSAs and their users.

The decDSA class can also be used to represent other vendors’ DSAs. If you follow
the same guidelines when creating entries to represent other vendors’ DSAs, then
it becomes possible for your Compaq DSAs to consider other vendors’ DSAs to be
trusted.

4-18 Planning Your Directory Information Tree

Planning Your Directory Information Tree
4.5 Planning Entries to Represent DSAs

There is an alternative method for implementing security for your Directory
Service. You can use NCL commands to configure trust. However, that method
has some disadvantages. See Section 7.7 for details of the alternative method of
configuring trust, and its disadvantages.

Even if you decide to use the alternative method, you should still plan DSA
entries, because they also contain protocol and addressing information. The
following sections describe how to plan these decDSA entries.

45.1 Recommended Position of DSA Entries in Your DIT

For ease of management, Compaq recommends that you represent your DSAs as
subordinates of the highest entry in your organization's DIT. For example, the
Abacus organization would create its DSA entries as subordinates of the directory
entry called / C=US/ O=Abacus.

The reason for this recommendation is that it simplifies the task of making the
entries easily accessible to all DSAs. It is not essential that you name your
DSA entries as immediate subordinates of your highest entry, but it greatly
simplifies configuration, and improves the performance of security checking
during normal DSA operation. This documentation set assumes that you accept
this recommendation.

The class of the DSA entries is decDSA. The naming attribute of decDSA entries is
the conmonNane attribute. You can use any policy for choosing common names for
DSAs, but Compagq suggests that you incorporate the DSA's node name, so that
managers can easily see which DSA is installed on which node.

For example, the Abacus organization might have six DSAs, called:

| C=US/ O=Abacus/ CN=" NodeA DSA"
| C=US/ O=Abacus/ CN=" NodeB DSA"
/ C=US/ O=Abacus/ CN=" NodeC DSA"
| C=US/ O=Abacus/ CN=" NodeD DSA"
| C=US/ O=Abacus/ CN=" NodeE DSA"
| C=US/ O=Abacus/ CN=" NodeF DSA"

For the purposes of the examples used in this manual, the naming convention for
DSAs is simplified, as follows:

| C=US/ O=Abacus/ CN=DSA1
| C=US/ O=Abacus/ CN=DSA2
| C=US/ O=Abacus/ CN=DSA3
| C=US/ O=Abacus/ CN=DSA4
| C=US/ O=Abacus/ CN=DSA5
| C=US/ O=Abacus/ CN=DSA6

These DSA distinguished names are also known as application entity titles
(AE titles). When you configure each DSA using NCL commands, the DSA's
distinguished name is specified using the AE Title attribute of the DSA entity.

Figure 4-9 shows the position of DSA entries in the Abacus DIT, as subordinates
of the organization entry. The DSA entry called / C=US/ O=Abacus/ CN=DSA1 is
shown, and the other five DSA entries are created in the same position relative to
the organization entry.

Planning Your Directory Information Tree 4-19

Planning Your Directory Information Tree
4.5 Planning Entries to Represent DSASs

Figure 4-9 DSA Entries Beneath the Organization Entry

O=Abacus

CN=DSAl '

OU=Research

People, etc'

OU=Personnel

People, etc' People, etc'

OU=Physics || OU=Biology OU=Payroll

OU=Drugs||OU=Cells | | OU=Metals

People, etc'

People, etc People, etc

Chapter 5 includes an explanation of how to plan the DXIM commands that will
create entries to represent your DSAs, and Chapter 8 explains when to use the
commands. As with all directory entries, the ability to create the DSA entries
depends on other configuration tasks described in Chapter 8.

MIG0486

If you implement replication as recommended in Chapter 5 and Chapter 8, all
DSAs will receive copies of the entries that represent DSAs. This enables all
DSAs to interwork securely, because they use the attributes in the DSA entries to
verify each other’s identities.

4-20 Planning Your Directory Information Tree

5

Planning DSAs to Hold Your Directory
Information Tree

After planning a Directory Information Tree (DIT) for your organization, and
positioning it in a global context if possible (Chapter 4), you need to consider
how to distribute and replicate it across your network. This requires you to plan
DSAs to hold all or part of your DIT.

You have to choose between placing your entire DIT on a single DSA, or dividing
your DIT into subtrees and spreading the information across several DSAs. Each
subtree of your DIT that you make for distribution (or your entire DIT if you do
not divide it into subtrees) is called a naming context.

If your entire DIT is quite small, then you might decide to put it on one DSA as
one naming context. If you have a large DIT, then for performance reasons you
need to divide your DIT into several naming contexts, and distribute them so that
no single DSA holds the entire DIT.

Dividing a DIT also means that particular parts of the DIT can be located for
the convenience of different directory managers. All modifications of directory
information rely on access to the particular DSA where the information was
created. You can access DSAs remotely, but depending on your network, remote
access can be less efficient than local access. Being able to distribute your
directory information therefore also enables you to place particular information
close to its manager.

Figure 5-1 illustrates a DIT that has been divided into four naming contexts,
and shows that each naming context is a subtree of the DIT as a whole. There is
no limit to the size of a naming context, apart from the practical limit imposed
by the capacity of your DSAs. (Note that a naming context can be as small as

a single entry.) The DSA on which you create a naming context is called the
master DSA for that naming context and for all entries within it.

Planning DSAs to Hold Your Directory Information Tree 5-1

Planning DSAs to Hold Your Directory Information Tree

Figure 5-1 Dividing a DIT into Naming Contexts

Naming O=Abacus

Context
A CN=DSAL)

OU=Research
People, etcl

OU=Personnel

(Beopte, g

(Reople, e

OU=Physics ||OU=Biology

(beopte. g

Naming
Context
D

Naming
Context
C

Naming
Context

B MIG0243

Note

The Abacus organization excludes the country entry from its naming
contexts. The Abacus organization does not own the country entry, and
does not include that entry in its plans for distribution and replication.
The division of a DIT into naming contexts starts with the organization
entry, that is, the first entry that belongs to the organization, and the first
entry that is not part of the organization’s global prefix (see Section 4.3).

You also need to decide whether to replicate the DIT. However you divide your
DIT for distribution, you can create copies of each naming context so that it is not
always necessary to contact the master DSA for a given entry. Copies of entries
within a replicated naming context are called shadow copies, and a DSA that
holds shadow copies is called a shadow DSA for that naming context. A given
DSA can be a shadow DSA for one or more naming contexts at the same time as
being the master DSA for one or more other naming contexts. A DSA can hold
any number of naming contexts.

This chapter recommends two models of distribution of entries across master
DSAs, and then recommends a model of replication that provides good
performance for directory users.

5-2 Planning DSAs to Hold Your Directory Information Tree

Planning DSAs to Hold Your Directory Information Tree
5.1 Dividing Your Directory Information Tree into Naming Contexts

5.1 Dividing Your Directory Information Tree into Naming Contexts

Compaq recommends two ways of dividing your DIT into haming contexts, which
are described in the following sections.

5.1.1 Implementing Your DIT as One Naming Context

You can decide not to divide your DIT at all. Your entire DIT can be managed as
just one naming context.

This is suitable for organizations whose entire DIT is small enough to be
supported by a single DSA. You would implement one DSA to hold the naming
context, and a number of other DSAs to hold shadow copies of the entire naming
context. If you have systems available that are large enough to hold your entire
DIT, then you might consider this option.

If your organization is geographically distributed, then each part of the
organization can have a DSA that holds a shadow copy of the entire DIT.
Users in each part of the organization can contact the most convenient DSA for
all requests, giving greater availability of directory information. This means that
your organization may have more than one DSA, but the configuration of each
DSA is relatively simple.

Note

The unit of replication is the naming context. You should only implement
your entire DIT as one naming context if all of your DSAs are to be
installed on systems that are large enough to hold the entire DIT.

5.1.2 Implementing Your DIT as Several Naming Contexts

You can decide to divide your DIT into several naming contexts so that you can
distribute those naming contexts such that no single DSA holds the entire DIT.

The advantages of having several naming contexts and distributing them to
several DSAs is that each part of your organization can be given good access to
the information that is most useful to it, and the processing cost of responding
to user requests for directory information is shared by all of the DSAs. However,
this solution requires considerable planning and configuration, because each DSA
needs to be configured to know what information it is responsible for, how that
information fits into the DIT as a whole, and which DSAs to refer to for other
parts of the DIT.

Despite the greater complexity of the configuration tasks required to implement
a distributed and replicated DIT, Compag recommends that you do implement
your DIT as several naming contexts. To minimize the complexity of configuring
a distributed DIT, Compag recommends that you divide your DIT as shown in
Figure 5-1. The entry representing your organization as a whole is the top of a
small naming context: Naming Context A.

This small naming context contains the entries representing your Compag DSAs
and any other resources that need to be represented as immediate subordinates
of the organization as a whole. For example, an entry representing the chairman
of the organization might be created as a subordinate of the organization entry,
and be included in the same naming context.

Planning DSAs to Hold Your Directory Information Tree 5-3

Planning DSAs to Hold Your Directory Information Tree
5.1 Dividing Your Directory Information Tree into Naming Contexts

Beneath the organization, each immediate subordinate entry that represents a

geographical or organizational subdivision of the organization becomes the top of
another naming context. Thus, for the Abacus organization, there are three other
naming contexts: Naming Context B, Naming Context C, and Naming Context D.

These three other naming contexts are much larger than Naming Context A, and
between them comprise most of the Abacus DIT. If any of these naming contexts
contains too many entries to be maintained on a single system, then further
subdivisions are possible. However, further subdivisions make configuration of
the DSAs increasingly complicated, and can reduce the efficiency of the Enterprise
Directory. Compagq therefore recommends that you keep the subdivision of the
DIT as simple as possible.

5.1.3 Assigning Names to Naming Contexts

Whether you decide to have one or several naming contexts, every haming context
has a name.

The name of a naming context is the same as the distinguished name of the entry
at its root. For example, in Figure 5-1 the naming contexts have the following
names:

= Naming context A is called / C=US/ O=Abacus

< Naming context B is called / C=US/ O=Abacus/ OU=Sal es

= Naming context C is called / C=US/ O=Abacus/ OU=Resear ch
= Naming context D is called / C=US/ O=Abacus/ OU=Per sonnel

Make a note of the name of each of the naming contexts that form your
organization’s DIT. When you set up your DSAs, you will need to specify the
names of the naming contexts they are to hold.

Note

Particular applications, such as Compaqg’s MAILbus 400 MTA, might
require you to design dedicated subtrees in addition to the organizational
DIT described in this book. If so, you can consider each such dedicated
subtree to be a naming context. Such a naming context should be "built
in" to your main DIT beneath the organization entry.

In the illustrated example, you might have a fifth naming context called
| C=US/ O=Abacus/ nt s="abacus domai n"

which is the name of the naming context that contains all routing
information used by a messaging application. The RDN nt s="abacus
domai n" is the RDN of the highest entry designed according to the
requirements of the messaging application, and fits immediately beneath
the organization entry.

All information within that naming context is then replicated in exactly
the same way as any other naming context. You should consult with the
managers of the application to find out whether and where they want
their naming context to be replicated.

5-4 Planning DSAs to Hold Your Directory Information Tree

Planning DSAs to Hold Your Directory Information Tree
5.1 Dividing Your Directory Information Tree into Naming Contexts

5.1.4 Distributing Naming Contexts

When you have divided your DIT, choose a master DSA for each naming context.
A DSA can hold more than one naming context, but the total size of all naming
contexts held on a DSA must not exceed its disk or memory capacity. Each DSA
is responsible for responding to all requests to change any information for which
it is the master DSA. Therefore, by assigning naming contexts to different master
DSAs, you share the processing cost of keeping naming contexts up to date. On
the other hand, by making one DSA the master DSA for all naming contexts,
you centralize the management of the information. You need to decide where you
want the master copy of each naming context to be.

Figure 5-2 shows how the four naming contexts from Figure 5-1 are distributed
to four DSAs. This leaves some DSAs without a naming context. Those empty
DSAs are to hold shadow copies of naming contexts only (see Section 5.1.5).

When you are distributing naming contexts to DSAs, consider the following
factors:

= Try to put each naming context on a DSA that is easily accessible to the
managers responsible for the directory entries they contain.

Although the Enterprise Directory supports remote management of directory
information, response times are best if the manager can connect directly to
the master DSA that holds the relevant entries.

= Try to choose DSAs that are hosted by reliable systems.

All modifications to directory entries require access to the master DSA that
holds them. If the master DSA for a given entry is temporarily unavailable,
attempts to modify the entry fail.

< The master DSA for your organization’s highest naming context (such as
Naming Context A) needs to be installed on a node with good network
accessibility.

If you follow Compag's recommendations, then that naming context contains
the entries representing your DSAs. Those entries need to be accessible
because Compaq's DSAs refer to them and modify them automatically as part
of normal operation. The efficiency of your Enterprise Directory depends on
the accuracy of the information in your DSA entries.

Planning DSAs to Hold Your Directory Information Tree 5-5

Planning DSAs to Hold Your Directory Information Tree
5.1 Dividing Your Directory Information Tree into Naming Contexts

Figure 5—2 Distributing Naming Contexts to Their Master DSAs

A CN=DSA1l

CN=DSA2 CN=DSA3

CN=DSA4

@ CN=DSA5

CN=DSA6

MIG0244

For clarity, in Figure 5-2 and in all examples in this chapter, DSAs are identified
by their last RDN, for example CN=DSA1. Real DSAs would have distinguished
names such as / C=US/ O=Abacus/ CN=DSA1, but such names would make the
following examples difficult to read and understand.

5.1.5 Replicating Naming Contexts

Having chosen master DSAs to hold each of your naming contexts (or your single
naming context if your DIT is small enough), you can then choose any number of
other DSAs to hold shadow copies of one or more of those haming contexts.

The purpose of replication is to place read-only copies of entries as near as
possible to the users who require them most frequently, and to provide backup in
case the DSA holding the master copy of a naming context becomes temporarily
unavailable.

Your network could have many DSAs, most of which hold shadow copies only.
You can have any number of shadow copies of a given naming context, although a
given DSA only holds one copy of a given naming context.

Note

Compagq strongly recommends that you give every DSA a shadow

copy of the naming context that contains the highest entry in your
organization’s DIT. This simplifies the configuration requirements of your
DSAs (described in Section 5.2), and improves the performance of search
requests.

5-6 Planning DSAs to Hold Your Directory Information Tree

Planning DSAs to Hold Your Directory Information Tree
5.1 Dividing Your Directory Information Tree into Naming Contexts

It also ensures that all of your DSAs have a local copy of the directory
entries representing DSAs. This improves the performance of Enterprise
Directory security checks, and ensures that each DSA has the information
it requires for communicating openly with your other DSAs.

If you decide not to implement replication of decDSA entries to all of your
DSAs, then you need to implement some additional DSA configuration

to enable your DSAs to trust each other. Without either a copy of all
decDSA entries or some additional management attributes, your users will
find that requests that involve more than one DSA might fail. If you do
not intend to implement replication as recommended, see Section 7.7 for
details of the additional tasks.

A shadow copy of a naming context can be copied from the master DSA for that
naming context, or from another shadow DSA for it. Thus, you can take shadow
copies of entries (called primary shadowing), or shadow copies of shadow copies
(called secondary shadowing).

Secondary shadowing enables you to spread the communication and processing
costs of keeping shadow copies up to date. This is because each shadow DSA
communicates with its supplier to ask for an update of the relevant naming
context. Supplying shadow naming contexts requires considerable resources,
depending on the size of the naming contexts being supplied. It also temporarily
prevents the supplying DSA from answering some user requests, reducing the
availability of directory information to end users. If the only supplier is the
master DSA, then the master DSA spends a lot of its time communicating with
shadow DSAs (consumers) simply to help them keep their shadow copies up to
date. By allowing shadow DSAs to act as suppliers to further shadow DSAs, the
processing cost of keeping shadow copies up to date is shared.

Figure 5-3 illustrates how CN=DSA?2 is a consumer of a naming context from
CN=DSAL (the master DSA of the illustrated naming context). However, CN=DSA2
is also a supplier of that naming context to CN=DSA3. The arrow leading from
the naming context on CN=DSA1 means that the naming context has a consumer,
and likewise for the arrow leading from the naming context on CN=DSA2. Thus,
CN=DSA2 relieves CN=DSAL of the cost of keeping CN=DSA3 up to date. The naming
context held by CN=DSA3 is a secondary shadow copy.

Figure 5-3 Primary and Secondary Shadowing of Naming Contexts

CN=DSA1l CN=DSA2 CN=DSA3
Master copy Primary shadow Secondary shadow
MIG0245

Note

Compagq's DSAs can only replicate directory information to and from other
Compaq DSAs. You can have other vendors’ DSAs in your Enterprise

Planning DSAs to Hold Your Directory Information Tree 5-7

Planning DSAs to Hold Your Directory Information Tree
5.1 Dividing Your Directory Information Tree into Naming Contexts

Directory, but they cannot hold the same naming contexts as your

Compaqg DSAs.

Figure 5-4 shows how the four naming contexts from Figure 5-2 are replicated to
other DSAs. The small naming context that is to contain the organization entry
and the DSA entries is replicated to all DSAs. Each of the other naming contexts
is replicated at least once according to the needs of the user communities near the
various DSAs. Some of the DSAs have only shadow naming contexts, and some
have a mixture of shadow naming contexts and master naming contexts. Some
DSAs have more naming contexts than others, depending on DSA system capacity
and the needs of the users local to each DSA. Note also that CN=DSA5 and CN=DSA6
have secondary shadows of the naming context containing the organization entry,

supplied by CN=DSA3 rather than CN=DSAL.

Note that there are no empty DSAs. All DSAs now have at least one haming

context.

Figure 5-4 Replicating Naming Contexts to Their Shadow DSAs

CN=DSA2

\N

-

|~

CN=DSA3

.

CN=DSAS5

ST

CN=DSA6

@

5-8 Planning DSAs to Hold Your Directory Information Tree

MIG 0246

Planning DSAs to Hold Your Directory Information Tree
5.2 Planning DSA Configuration Information

5.2 Planning DSA Configuration Information

To help you configure your DSAs to meet your distribution and replication
requirements, Compaq suggests that you create a worksheet for each system that
is to host a DSA.

The following sections tell you how to fill out the worksheet. You might also find
it useful to have an illustration like Figure 5—-4 showing where you want each
naming context to be, and with arrows showing the intended replication.

Having planned how to distribute and replicate your DIT across one or more
DSAs, you need to plan the configuration details for each of your DSAs so that
they fulfill their intended role within your Enterprise Directory.

Every DSA needs to know the following:

= Its own application entity title (AE title), its own presentation addresses, and
its own password

e What entries it holds
e Whether it is the master DSA or a shadow DSA for those entries

= If the DSA holds shadow copies, it needs to know which DSA is its supplier,
and which DSA is the master DSA for the entries

< Which DSAs, if any, are to consume copies of naming contexts from this DSA
= Where to go for information that it does not hold

These items of information are called knowledge information, and many of
them are manually configured. Knowledge information is represented using
characteristic attributes of the DSA entity and its subentities. The different
requirements are met by the following entities:

e The DSA entity

< The Naming Context entity

= The Superior Reference entity

= The Subordinate Reference entity

For each DSA, you need to plan which of these entities are required, and fill out
a worksheet which will help you to configure them.

Planning DSAs to Hold Your Directory Information Tree 5-9

Planning DSAs to Hold Your Directory Information Tree
5.2 Planning DSA Configuration Information

5.2.1 DSA AE Titles

You need to plan each DSA's application entity title (AE title). This is represented
by the AE Title attribute of the DSA entity, and you configure it using NCL
commands.

A DSA’s AE title is exactly the same as the distinguished name of the
directory entry that represents the DSA. For example, a valid DSA AE title

is / C=US/ O=Abacus/ CN=DSAL. See Section 4.5 for details of how to plan names for
DSA entries.

This version of the Enterprise Directory provides a DSA configuration utility that
sets an AE title for a DSA, but it only sets a temporary AE title based on the
DSA system name, for example, / CN="nynode. abacus. conf. You need to plan

an AE title that conforms to your naming policy, and set that value using NCL.
(The real benefit of the configuration utility is that it sets a DSA's presentation
address.)

Figure 5-5 shows the worksheet for CN=DSA1 with the AE title filled in.

5.2.2 DSA Passwords

You need to choose a password for each of your DSAs. A DSA uses its password
when communicating with other DSAs. For example, a DSA uses its password

when it asks a supplier DSA to update its shadow copies, and when chaining a
request on behalf of an authenticated user.

Note

DSA passwords are represented in two places: the Password attribute
of the DSA entity in NCL, and the user Passwor d attribute of the decDSA
entry that represents the DSA in the DIT.

When a DSA wants to make a secure connection to another DSA, it quotes
the value of the Password characteristic attribute. The target DSA checks
this value against the user Passwor d attribute of the decDSA entry. It is
essential, therefore, that the two representations always match. If you
ever change a DSA's password, always change it in both the DSA entity
and the decDSA entry.

Figure 5-5 shows the worksheet for CN=DSA1 with the password filled in.

Figure 5-5 Worksheet for CN=DSAL Listing AE Title and Password

Worksheet for CN=DSA1

AE Title ="/C=US/O=Abacus/CN=DSA1"
Password = unguessable-textstring

MIG0489

5-10 Planning DSAs to Hold Your Directory Information Tree

Planning DSAs to Hold Your Directory Information Tree
5.2 Planning DSA Configuration Information

5.2.3 DSA Presentation Addresses

This version of the Enterprise Directory provides a DSA configuration utility that
sets a DSA's Presentation Address attribute. This saves you from having to plan
and set the attribute manually.

Uﬁ?ﬁ You need superuser privileges to run the configuration utility. To run
the utility, type:
[var/dxd/ scripts/dsa_configure
.
You need SYSPRV and OPER privileges to run the configuration
OpenVMS | utility. To run the utility, type:

$ @YS$STARTUP: DXDSDSA_CONFI GURE
.

If your privileges are insufficient, the utility displays an error message and exits.

A DSA's presentation address is required not only by the DSA itself, but also

as part of the knowledge information of other DSAs. For example, when you
implement replication, you will need to specify the presentation address of a
consumer DSA in an attribute held by the supplier DSA. You are therefore
recommended to add the presentation address to the DSA's worksheet so that you
can refer to it easily later. The utility displays the presentation address before
exiting.

5.2.4 DSA LDAP Port

The Enterprise Directory listens for LDAP requests on the port where the DSA is
enabled. To configure the DSA, set up the LDAP port as follows:

ncl > SET DSA LDAP PORT 389

The LDAP port number must be non-zero for the DSA to start listening for LDAP
requests when the DSA is enabled. The standard TCP/IP port number for LDAP
is 389. The DSA configure script in Section 5.2.3 sets the LDAP port to 389.

5.2.5 Naming Context Entities

A naming context is a subtree of the DIT. Each naming context held by a DSA is
represented by a Naming Context entity. Without one or more Naming Context
entities, a DSA would not know what entries it is expected to hold, and you would
be unable to create the relevant part of your DIT.

Each DSA has one Naming Context entity for each naming context that it holds,
either as a shadow DSA or as a master DSA. For example, CN=DSA2 in Figure 5-4
needs three Naming Context entities, although it is only the master of one
naming context.

Amend your worksheets to list the naming contexts that each DSA is to hold.
Section 5.1.3 explains how to determine the names of your naming contexts.

Planning DSAs to Hold Your Directory Information Tree 5-11

Planning DSAs to Hold Your Directory Information Tree
5.2 Planning DSA Configuration Information

Figure 5-6 Worksheet for CN=DSA2 Listing Naming Contexts

Worksheet for CN=DSA2

AE Title ="/C=US/O=Abacus/CN=DSA2"
Password = another-password

Pres Addr = ""DSA"/"DSA"/"DSA"/NS+49AA001992AAA0000000,CLNS’
LDAP Port = 389

Naming Contexts
(A) /C=US/O=Abacus (shadow)

(B) /C=US/O=Abacus/OU=Sales (master)

(C) /C=US/O=Abacus/OU=Research (shadow)

MIG0274

Figure 5-6 illustrates the worksheet for CN=DSA? in Figure 5-1. It indicates
whether the DSA is the master DSA or a shadow DSA for each of its haming
contexts.

The Naming Context entities for the master DSAs of naming contexts have to
be created manually. The Naming Context entities for shadow DSAs of haming
contexts are created automatically as a result of the replication process.

5.2.5.1 Planning Primary and Secondary Consumer Information
If you are not implementing replication, you do not need to read this section.

Having planned a Naming Context entity, you need to identify any consumers of
that naming context (see Section 5.1.5 for a discussion of consumers).

For example, CN=DSAl’'s Naming Context entity (representing Naming Context
A) requires consumer information that identifies each of CN=DSA2, CN=DSA3, and
CN=DSA4. Each of those three DSAs is to be a consumer of that naming context
directly from CN=DSAL (see Figure 5-4). They are primary shadows of the naming
context.

Note that CN=DSA1 does not need to know about its secondary shadows; CN=DSA5
and CN=DSA6. Instead, CN=DSA5 and CN=DSA6 are consumers from CN=DSA3, so
CN=DSA3 needs the consumer information.

When CN=DSA3 gets a copy of the Naming Context entity as a result of replication,
you can add consumer access points to it. This is how you implement secondary
shadowing.

5-12 Planning DSAs to Hold Your Directory Information Tree

Planning DSAs to Hold Your Directory Information Tree
5.2 Planning DSA Configuration Information

Fill out your worksheets for each DSA to indicate the AE titles and presentation
addresses of the DSAs that are to be consumer of each of its naming contexts
(master or shadow).

Figure 5-7 Worksheet for CN=DSA2 Listing Consumers

Worksheet for CN=DSA2

AE Title ="/C=US/O=Abacus/CN=DSA2"
Password = another-password

Pres Addr = ""DSA"/"DSA"/"DSA"/NS+49AA001992AAA0000000,CLNS’
LDAP Port = 389

Naming Contexts
(A) /C=US/O=Abacus (shadow)

(B) /C=US/O=Abacus/OU=Sales (master)
consumer AE Title = "/C=US/O=Abacus/CN=DSA4"
Pres Addr ="DSA"/"DSA"/"DSA"/NS+49aa001992aa90000000,CLNS’
(C) /C=USs/O=Abacus/OU=Research (shadow)

MIG0275

Figure 5-7 illustrates the worksheet for CN=DSA2 after information about one
consumer DSA has been added.

In Figure 54 there is an arrow leading from each naming context to each of its
shadows. Each arrow means that its naming context has a consumer, so you need
as many items of consumer information for a given naming context as there are
arrows. For CN=DSA2, only one of its naming contexts is consumed by another
DSA (CN=DSA4 consumes a copy of naming context B), so it requires one item of
consumer information for that naming context only.

Cross-check your DSA worksheets to ensure that each shadow DSA is listed as
a consumer by each of its suppliers. For example, CN=DSA2 is a consumer of two
naming contexts, so you would check the worksheets for CN=DSA1 and CN=DSA6 to
ensure that they each list CN=DSA2 as a consumer of the relevant naming context.

The worksheets could also specify the details of each DSA's suppliers. However,
supplier details are automatically created on a consumer DSA during replication,
so adding them to the worksheets is not essential. However, you do use the
presentation address of a supplier when you replicate for the first time, so it is
useful to make a note of them. Figure 5-8 shows the worksheet for CN=DSA2 with
the supplier details filled in for reference purposes.

Planning DSAs to Hold Your Directory Information Tree 5-13

Planning DSAs to Hold Your Directory Information Tree
5.2 Planning DSA Configuration Information

Figure 5-8 Worksheet for CN=DSA2 Listing Suppliers

Worksheet for CN=DSA2

AE Title "/C=US/O=Abacus/CN=DSA2"

Password = another-password

Pres Addr = "DSA"/"DSA"/"DSA"/NS+49AA001992AAA0000000,CLNS’
LDAP Port = 389

Naming Contexts

(A) /C=US/O=Abacus (shadow)
supplier AE Title ="/C=US/O=Abacus/CN=DSA1"
Pres Addr =""DSA"/"DSA"/"DSA"/NS+49004005002BOAEBDB21,CLNS’
(B) /C=US/O=Abacus/OU=Sales (master)
consumer AE Title = "/C=US/O=Abacus/CN=DSA4"
Pres Addr ="DSA"/"DSA"/"DSA"/NS+49AA001992AA90000000,CLNS’
(C) /C=US/O=Abacus/OU=Research (shadow)
supplier AE Title = "/C=US/O=Abacus/CN=DSA6"
Pres Addr = ""DSA"/"DSA"/"DSA"/NS+49aa0019922aa22000000,CLNS’

MIG0491

5.2.6 Subordinate Reference Entities

If you are implementing your entire DIT as one naming context, you do not need
to read this section.

Subordinate references serve two purposes:

= They provide DSAs with the information they need to locate naming contexts
that they do not hold.

< They mark the boundaries between naming contexts, such that a DSA does
not claim ownership of entries that actually belong in a naming context held
by another DSA.

Your planning task is to identify which DSAs require the manual creation of
Subordinate Reference entities. Subordinate references that mark the lower
boundary of a naming context are always replicated with that naming context.
Therefore, you only need to create the subordinate references on the master DSA
for that naming context. Section 5.2.6.1 explains how to identify which DSAs
need the manual creation of Subordinate Reference entities.

5.2.6.1 Identifying Which DSAs Require Manually Created Subordinate References

Firstly, only master DSAs require the manual creation of Subordinate Reference
entities. Any DSA that holds only shadow information requires no manual
intervention.

For each master DSA, you need to consider each of its master naming contexts.
Each master naming context that is immediately superior to another naming
context requires a Subordinate Reference entity to that subordinate naming
context. A given naming context may require multiple Subordinate Reference
entities because it is immediately superior to several naming contexts.

5-14 Planning DSAs to Hold Your Directory Information Tree

Planning DSAs to Hold Your Directory Information Tree
5.2 Planning DSA Configuration Information

This requirement applies regardless of whether the immediately subordinate
naming contexts are held locally or remotely.

If you have followed Compagq’s advice for dividing your DIT into haming contexts,
you have only one naming context that has subordinate naming contexts. The
master DSA for that naming context requires you to create Subordinate Reference
entities to mark the boundaries between the superior naming context and each of
the subordinate naming contexts.

To return to the example DIT illustrated in Figure 5-1, Naming Contexts B, C,
and D are all immediately subordinate to Naming Context A. Therefore, CN=DSAL,
the master DSA for Naming Context A (see Figure 5-4), needs three Subordinate
Reference entities that identify where naming contexts B, C, and D are held.

If you divided your DIT in a more complicated way, then you must consider

the requirements of each master naming context that is superior to further
naming contexts. For example, Figure 5-9 illustrates a DIT that is divided into
many layers of naming contexts. In this example, there are several naming
contexts that have subordinate naming contexts, and therefore need subordinate
references.

The disadvantage of this way of dividing your DIT is that you increase the
amount of configuration that you need to do to ensure that all DSAs have a
complete set of knowledge information. If any DSA has incomplete knowledge,

it is likely that user requests for information will not be satisfied efficiently. It
is also possible that DSAs will not realise that some naming contexts exist, and
that some entries will be created on the wrong DSA as part of the wrong naming
context. To reduce the chance of having incomplete knowledge and to optimize
performance, Compaq recommends the simpler division of your DIT illustrated in
Figure 5-1.

Figure 5-9 A Multi-Layered Division of a DIT
c)

MIG0497

Planning DSAs to Hold Your Directory Information Tree 5-15

Planning DSAs to Hold Your Directory Information Tree
5.2 Planning DSA Configuration Information

Amend your worksheets to reflect your Subordinate Reference requirements.

For each Subordinate Reference entity, make a list of the AE titles and the
presentation addresses of the DSAs that hold a master or shadow copy of the
naming context! to which the subordinate reference refers. Indicate whether each
DSA referred to is the master DSA or a shadow DSA for the relevant naming

context.

Figure 5-10 illustrates the worksheet for CN=DSAL after this information has been

added.

Figure 5-10 Worksheet for CN=DSAL Listing Subordinate Naming Contexts

Worksheet for CN=DSA1
AE Title ="/C=US/O=Abacus/CN=DSA1"

Password = unguessable-textstring

Pres Addr = ""DSA"/"DSA"/"DSA"/NS+49004005002BOAEBDB21,CLNS’
LDAP Port = 389

Naming Contexts

(A) /c=us/o=abacus (master)

consumer AE Title = "/C=US/O=Abacus/CN=DSA2"

Pres Addr ="DSA"/"DSA"/"DSA"/NS+49aa001992aaa0000000,CLNS’
consumer AE Title = "/C=US/O=Abacus/CN=DSA3"

Pres Addr =""DSA"/"DSA"/"DSA"/NS+49aa001992aa20000000,CLNS’
consumer AE Title = "/C=US/O=Abacus/CN=DSA4"

Pres Addr =""DSA"/"DSA"/"DSA"/NS+49aa001992aa90000000,CLNS’

Subordinate References

(B) /C=US/O=Abacus/OU=Sales
master AE Title = "/C=US/O=Abacus/CN=DSA2"
Pres Addr =""DSA"/"DSA"/"DSA"/NS+49aa001992aaa0000000,CLNS’
copy AE Title = "/C=US/O=Abacus/CN=DSA4"
Pres Addr ="'DSA"/"DSA"/"DSA"/NS+49aa001992aa90000000,CLNS’

(C) /C=US/O=Abacus/OU=Research
master AE Title = "/C=US/O=Abacus/CN=DSA6"
Pres Addr = "DSA"/"DSA"/"DSA"/NS+49aa0019922aa22000000,CLNS’
copy AE Title ="/C=US/O=Abacus/CN=DSA2"
Pres Addr ="DSA"/"DSA"/["DSA"/NS+49aa001992aaa0000000,CLNS’
copy AE Title = "/C=US/O=Abacus/CN=DSA4"
Pres Addr ="DSA"/"DSA"/"DSA"/INS+49aa001992aa90000000,CLNS’

(D) /C=US/O=Abacus/OU=Personnel
master AE Title = "/C=US/O=Abacus/CN=DSA5"
Pres Addr ="DSA"/"DSA"/"DSA"/NS+49aa001992aa30000000,CLNS’
copy AE Title = "/C=US/O=Abacus/CN=DSA6"
Pres Addr = "DSA"/"DSA"/"DSA"/NS+49aa0019922aa22000000,CLNS’

MIG0276

5.2.7 Superior Reference Entities

You only need to plan superior references if either or both of the following are
true:

Some DSAs do not have a copy of your highest naming context.

1

Each Subordinate Reference entity can refer to the master DSA and/or to any shadow
DSAs of a subordinate naming context. You are advised to provide each Subordinate
Reference entity with a complete set of references to all available copies, as this increases
the chances of user requests succeeding.

5-16 Planning DSAs to Hold Your Directory Information Tree

Planning DSAs to Hold Your Directory Information Tree
5.2 Planning DSA Configuration Information

Any such DSA needs a superior reference to a DSA that does hold that
context. For example, all DSAs in Figure 5-4 could have a superior reference
to CN=DSAL, the master DSA for naming context A. However, since they all
have a copy of naming context A, this is optional.

e Your DIT is connected to a global Enterprise Directory.

In this case, DSAs that hold a copy of your highest naming context require a
reference to one external DSA that holds an even higher naming context.

DSAs that do not hold a copy of your highest naming context need a superior
reference to one that does.

If you follow Compaq’s recommendation for dividing and replicating your DIT,
none of your DSAs will need one, unless your Enterprise Directory is connected to
a global service.

A superior reference ensures that if a DSA receives a request for which none of
its other knowledge information is helpful, it can pass the request to a DSA that
holds hierarchically superior information. A DSA with high level naming contexts
often knows about parts of the DIT that a lower DSA does not know about.

A superior reference is represented by a Superior Reference entity, and contains
the AE title and presentation address of a superior DSA.

If any of your DSAs require a superior reference, add the AE title and
presentation address of a superior DSA to the relevant worksheets. In the
example, none of the Abacus DSAs require a superior reference.

Note that Superior Reference entities are not replicated. You need to create a
Superior Reference manually on each DSA that requires one.

5.2.8 Using the Worksheets

When you have filled out the DSA worksheets, you have the information required
to configure your DSAs after installation. See Chapter 8 for details of how to use
the worksheets to configure DSAs.

5.2.9 Attributes of DSA Entries

Chapter 4 explained that you need to represent your DSAs using directory
entries, and explained how to plan names for those entries. This section explains
how to plan the DXIM commands that you will use to create the entries that
represent your DSAs. You will use these DXIM commands as part of your
configuration, as described in Chapter 8.

When you create an entry to represent one of your Compaq DSAs, you must
specify values for each of the following attributes:

obj ect O ass

comonNane (specified as part of the entry’s distinguished name)
present ati onAddr ess

user Passwor d

t rust edDSAnane

During normal operation, a Compaq DSA automatically modifies its own entry to
add more attributes. Indeed, it is possible that a DSA will create its entry before
you do. In that case, your task is to ensure that all of the above attributes are
present, and to modify the entry to add any that are not present.

The following subsections discuss these attributes.

Planning DSAs to Hold Your Directory Information Tree 5-17

Planning DSAs to Hold Your Directory Information Tree
5.2 Planning DSA Configuration Information

Object Class
Use the decDSA class. This is a subclass of dSA and appl i cationEntity.

Common Name

A DSA's common name is planned as described in Section 4.5.1, for example,
CN=DSAL.

When you create a DSA entry, the common name is actually specified as part of
the entry’s distinguished name, for example, / C=US/ O=Abacus/ CN=DSAL.

Presentation Address
The value of the present ati onAddr ess attribute is planned in Section 5.2.3.

User Password

The user Passwor d attribute must match the Password characteristic attribute of
the DSA entity (see Section 5.2.1). The password is case sensitive.

If the values do not match, other DSAs will be unable to verify the DSA's identity.
This restricts the DSA's ability to interwork with other DSAs.

Trusted DSA Name

The trust edDSAnane attribute must specify the distinguished name of the decDSA
entry, for example, / C=US/ O=Abacus/ CN=DSAL.

5.2.9.1 Planning the DXIM Command to Create DSA Entries

Plan the DXIM command line that you will use to create each DSA entry. For
example, the following example would create an entry to represent one of the
Abacus DSAs:

dxi m> create /C=US/ O=Abacus/ CormonName=DSAL -

_dxinme attributes objectC ass=(applicationEntity, dSA decDSA), -
_dxi m> trust edDSAnane="/ C=US/ O=Abacus/ CN=DSAL", -

_dxi m> user Passwor d=unguessabl e-textstring, -

_dxi m> paddr=""DSA"/" DSA"/" DSA"/ NS+49004005002B0AEBDB21, CLNS'

This command will create the DSA entry to represent CN=DSA1. The name of
the entry is the one planned in Section 4.5.1, and is identical to the AE Title
attribute of the DSA entity. The values of the various attributes match the values
planned in this chapter. To reduce line length, the abbreviated keyword paddr is
used for the present ati onAddr ess attribute.

Plan a similar DXIM command line for each of your Compaq DSAs. These
commands will be used when you configure your Enterprise Directory, as
described in Chapter 8.

There are alternative methods of configuring DSAs to be able to recognize each
other, using characteristic attributes and subentities of the DSA entity. That
alternative method has several management disadvantages, but if you want to
consider it, see Section 7.7.

5-18 Planning DSAs to Hold Your Directory Information Tree

6

Customizing the Schema

Chapter 4 explained how to plan a DIT and choose classes and names for your
entries. If you were able to choose a standard class for each type of object that
you want to represent, and the default rules for those classes meet your needs,
then you do not need to customize the schema and do not need to read this
chapter.

This chapter explains how to customize the schema so that it is possible to store
information that is not permitted by the default schema definitions. For example,
this chapter describes how to:

« Define new attribute types

= Define auxiliary classes that enable you to increase the range of attributes
that you can store in an entry

= Define structural classes that enable you to represent objects for which no
standard class is suitable

Defining a structural class also requires the definition of the following:
— Rules for naming entries of the new class (a name form)

— Rules for where such entries may be created in the hierarchy (structure
rules)

If you make customizations, you can also define how the new information is to be
displayed in DXIM. For example, for new attributes you can specify user friendly
descriptive names, and for classes you can specify the order in which attributes
are displayed. Such rules for displaying directory information can also be defined
in the schemal.

New attributes and auxiliary classes can be defined at any time either before
or after you create directory entries. You can make an entry a member of an
auxiliary class at any time, which means you do not need to do it immediately.
However, if you need to define a structural class, you must do so before you
attempt to create the entries of that class. You cannot change an entry’s
structural class once an entry has been created.

1 Rules for displaying information in the Lookup Client are defined in its defaults file. The

Lookup Client does not refer to the schema. See Section 9.7 for details of customizing
the Lookup Client defaults file.

Customizing the Schema 6-1

Customizing the Schema

6.1 Schema Text Files

6.1 Schema Text Files

Compag’s schema is provided as a set of text files? with the file extension .sc.

Tru64
UNIX

OpenVMS

The schema text files are installed in /var/dxd, and are called:

dec.sc
dit.sc
dua.sc
dxd_schema.sc
mts.sc
cosine.sc
quipu.sc
x400.sc
x500.sc
ids.sc
entrust.sc
¢

The schema files are installed in DXD$DIRECTORY, and called:

DEC.SC
DIT.SC
DUA.SC
DXD$SCHEMA.SC
COSINE.SC
QUIPU.SC
MTS.SC
X400.SC
X500.5C
IDS.SC
ENTRUST.SC
14

To customize the schema, create a file with the file extension .sc in the relevant
directory, for example, customer.sc. Use this file to contain all of your definitions.
Edit dxd_schema.sc or DXD$SCHEMA.SC, as appropriate, to make sure that
your file is included whenever you run the schema compiler.

If you need to edit any of the schema files provided with the Directory Service,
always make a copy of the file first, so that you can undo any mistakes easily.
Ideally, you should experiment with the schema on a test system rather than on
a production system.

The DSA and DXIM read the compiled schema during startup, so if you change
the schema you need to stop and restart them.

2

MTS.SC and IDS.SC contain definitions for other Compagq applications, and must not

be amended. Both COSINE.SC and QUIPU.SC contain definitions for COSINE and
QUIPU directory services. The COSINE definitions were defined in RFC1274 and have
definitions that are used by many directories. The ENTRUST.SC schema provides
directory definitions for the Entrust V5.0 product. DEC.SC contains definitions required
by the DSA, and must not be amended. The inclusion of these definitions enables DXIM
to handle information from those services should you make a connection. Displays of
such information should be user-friendly. However, Compaq's DSA does not support
all of the syntaxes required by these definitions, so entries based on those definitions
cannot necessarily be held by the DSA. Appendix A documents the syntaxes supported
by Compaq’'s DSA.

6—2 Customizing the Schema

Customizing the Schema
6.1 Schema Text Files

Notes About Compaqg’s Schema Files
This section contains useful notes about Compagq’s schema files.

Every time you reinstall the Enterprise Directory on OpenVMS systems, or
deinstall it on Tru64 UNIX systems, the procedure saves any schema files it finds
on the system. Every installation leads to a default set of schema files being
created. If you customize your schema, then after any reinstallation, you need to
retrieve your schema files and copy them over the newly installed defaults.

Tru64

UNIX During deinstallation of the Enterprise Directory, schema files are

moved to /var/dxd/savn where n is a unique number. After the
next installation, you can retrieve any customizations from that
subdirectory.

.

The schema files are saved in a subdirectory of DXD$DIRECTORY,
OpenVMS | called DXD$DIRECTORY:[DXD$SERVER.SAVN], where n is a
unique number. After reinstalling the Enterprise Directory, you can
retrieve your schema files from that subdirectory, and start the DSA.

If you are upgrading from a previous version of the Enterprise
Directory software, then you need to combine your customizations
with the newly installed schema source files. You must not use
old versions of the default schema files with the new Enterprise
Directory. The newly installed schema files contain important
amendments. See Read Before Installing for further details.

.

If you want to make notes in your schema file, you can use two hyphens (-) as
comment characters. For example:

- this line is ignored during schema conpilation

Some of the default schema definitions are required for the operation of the
Enterprise Directory. You must therefore edit the default schema files with
great care, and keep records of all changes you make. Specifically, many of

the definitions in the DEC.SC file are required by the Enterprise Directory,

and must not be changed. Also, the definitions in MTS.SC are required by
Compaqg’s MAILbus 400 MTA, and must not be changed. If you ever change the
schema in ways that prevent the Enterprise Directory or the MAILbus 400 MTA
from working, you must undo the relevant changes, or reinstall the Enterprise
Directory and start your customizations again.

All schema definitions are case sensitive. Whenever you edit the text files, make
sure that all references from one definition to another are consistent in case.
For example, if you define an attribute type called enpl oyeeNunber, then all
references to that attribute type must use that same combination of uppercase
and lowercase letters.

The encoding of Compag’s schema files is not portable to another vendor's DSA
or directory application. If you want another vendor’'s DSA to support definitions
from Compagq’s schema files, refer to the other vendor’s documentation for details
of how their product supports schema customization.

Customizing the Schema 6-3

Customizing the Schema
6.1 Schema Text Files

Conventions Used to Document Schema Definitions

This chapter contains several statements of the syntax that you use to specify
new schema definitions. This section explains the conventions used.

Schema definitions are case sensitive. Schema keywords are all in uppercase
letters. For example, the following is an example of an attribute definition:

conmonName ATTRI BUTE
W TH ATTRI BUTE- SYNTAX stringSyntax (SIZE(1..64))
EQUALI TY MATCH NG RULE casel gnoreStringMat ch
ORDERI NG MATCHI NG RULE casel gnoreStringMat ch
SUBSTRI NG MATCHI NG RULE casel gnor eSubst ri nghat ch
APPROXI MATE MATCHI NG RULE i ni ti al Wor dAppr oxi mat eMat ch
STORE NORMALI ZED
c:= {attributeType 3}

The sequence of the arguments of a definition is significant. For example, if
you rearrange the order of the lines of a definition, the schema compiler returns
errors.

If you use lowercase letters for keywords, such as ATTRI BUTE, the schema fails
to compile. Other parts of the definitions are also case sensitive, such that all
references to the attribute comonName must use that combination of lowercase
and uppercase characters. The same applies to the names of syntaxes, classes,
matching rules, and so on.

To clarify which parts of a definition are optional, this chapter uses square
brackets [] to enclose optional parts. For example, the following is the syntax of
an attribute definition:

attributeName ATTRI BUTE
W TH ATTRI BUTE- SYNTAX synt axNane [constraint]
[EQUALI TY MATCH NG RULE mat chi ngRul eNane]
[ORDERI NG MATCHI NG RULE mat chi ngRul eNane]
[SUBSTRI NG MATCHI NG RULE mat chi ngRul eNane]
[APPROXI MATE MATCHI NG RULE mat chi ngRul eNang]
[SINGLE VALUED]
STORE NORMALI ZED | STORE ORI G NAL
;.= {attributeType n}

In this case, the constrai nt argument is optional, and so are each of the lines

that declare a matching rule, and the line that states whether an attribute is
single-valued.

To clarify parts of a syntax that are a choice, this chapter uses the | character.
For example, in the above syntax definition, there is a choice of STORE NORMALI ZED
and STORE ORI G NAL. You must specify one of the listed choices.

The letter n specified on its own indicates that an integer is required.

Variable parts of the syntax are shown in mixed case, and are explained in the
text that accompanies the example. For example, attri but eNane is a variable,
and the accompanying text explains that this is where you specify the name of
the attribute for which this is the definition.

6-4 Customizing the Schema

Customizing the Schema
6.2 Compiling the Schema

6.2 Compiling the Schema

The schema compiler reads the files included by dxd_schema.sc or
DXD$SCHEMA.SC, and creates a single data file called dxd_schema.dat or
DXD$SCHEMA.DAT. The schema file is required by the DSA and the DXIM
utility.

During installation, a compiled version of the default schema data file is installed.
The default schema contains standard object classes and attributes defined by
international standards bodies and Enterprise Directory providers. If the default
schema meets your requirements, you never need to use the schema compiler.

If you customize the schema, for example to define a new class, you need to
recompile the schema, as follows:

U“?; Before compiling the schema, make a copy of the existing dxd_
schema.dat file. This will enable you to return to that version of the
schema in the event that your customizations are incompatible with
the entries already held in the DSA.

To compile the schema, type the following commands:
cd /var/ dxd
[usr/sbin/dxd_sc
The compiled schema is created in /var/dxd.
.
To compile the schema, type:
OpenVMS P! P
$ SET DEFAULT DXD$DI RECTCRY

$ RUN SYS$SYSTEM DXD$SCHEMA_COWPI LER. EXE

The compiled schema is created in the DXD$DIRECTORY directory.
¢

If the schema compiler finds any errors in the schema text files, such as duplicate
definitions or references to non-existent definitions, the compilation fails, and an
error is displayed. Edit the files to fix any errors, and recompile.

After compiling the schema successfully, stop and restart the DSA as follows:

Tru64 # nel

UNIX_ | nel > DI SABLE DSA
ncl > DELETE DSA TO SNAPSHOT
ncl > CREATE DSA FROM SNAPSHOT
ncl > ENABLE DSA

The deletion and creation take longer than usual because the
snapshot option is specified. This version of the DSA on Tru64 UNIX
systems uses memory image files by default. Snapshot files are only
required for a few tasks such as the loading of a newly compiled
schema file. See Section 8.3 for further details of the memory image
file.

Customizing the Schema 6-5

Customizing the Schema
6.2 Compiling the Schema

When the DSA has been recreated and enabled successfully with the
new schema, you can delete the snapshot file from the DSA system,
as follows:

rmDSA-i nf ormati on-tree. snapshot *

The DSA does not need this file any longer, so you can save disk
space by deleting it. Do not delete any of the other database files.
3

$ RUN SYS$SYSTEM NCL
Openvis NCL> DI SABLE DSA
NCL> DELETE DSA

NCL> CREATE DSA

NCL> ENABLE DSA

¢

If the new schema is incompatible with the entries already in the DSA, the
CREATE DSA directive fails, and issues a message identifying the definition
that is missing from the schema. In this case, check your customizations
carefully, correct any problems, recompile the schema, and repeat the sequence of
commands as shown above for the relevant operating system.

If you want to run the DSA while you review and fix your customizations, copy
the old schema data file back into position, and continue to use that. Remember
to use the FROM SNAPSHOT argument to the CREATE DSA command on Tru64
UNIX systems in this case. When reviewing your customizations, remember that
the customized schema must continue to support all existing entries, as well as
supporting the new classes and attributes that you define. If you really want to
retire some definitions that are in use in the database, you need to delete any
entries that are based on those definitions.

When you have customized the schema and restarted the DSA successfully, you
should also stop and restart any DXIM processes so that they also read the new
schema. If DXIM uses the same schema as your DSASs, then they can display
information consistently, and allow you to create and modify entries based on the
new definitions.

Note

Compag recommends that all Enterprise Directory nodes use the same
schema, especially if you intend to replicate directory information between
DSAs. Therefore, if you customize the schema, edit the schema text files
on one node, verify that they compile without error and are compatible
with the existing DIT, and then copy those text files to every DSA node
and to every DXIM node. Compile the schema text files on each node
before restarting the DSA and DXIM on that node.

Note that you cannot copy the compiled schema data file across nodes.
You must copy the text files, and recompile on each node. The text files
are platform independent.

6-6 Customizing the Schema

Customizing the Schema
6.3 Assigning Object Identifiers to New Definitions

6.3 Assigning Object Identifiers to New Definitions

Many of the definitions you can make in the schema require a unique object
identifier. The definitions that require object identifiers are:

e Attribute definitions
e Class definitions
e Name Forms

Structure rule definitions have integer identifiers, but these are not required to
be globally unique. Structure rule identifiers need only be unique within your
schema. Other definitions have no identifier, or are not customer definable.

This section describes how to define an object identifier that uniquely identifies
your organization’s schema customizations, and then a set of object identifiers
for your organization’s attributes, classes, and name forms. If you do not
ensure that your organization uses unique object identifiers for its schema
customizations, there is a possibility that your definitions will clash with those of
other organizations, causing interworking problems.

If there is a Enterprise Directory naming authority already established for your
country or region, then you can refer to them and ask them to assign a unique
object identifier to your organization’s schema customizations. If no such naming
authority exists, then Compagq’s schema files include an object identifier that you
can use as the basis for unique object identifiers.

The schema file DEC.SC contains the following definitions:

custonmer SQMfaci lity OBJECT-1DENTIFIER ::= {dec-osi-directory 10}
cust omer I nt Tel Number OBJECT-|DENTIFIER ::= {dec-osi-directory 11}

You use one of these definitions as follows:

« If your organization has a Software Quality Management facility code,
assigned by Compagq, then you can use that code in conjunction with the
cust omer SQM aci | i ty definition.

For example, the Abacus organization has the SQM facility code 97887. The
Abacus directory manager could therefore create the following definition in
the schema file CUSTOMER.SC:

abacusl d OBJECT- | DENTI FIER ::= {customer SQM acility 97887}

= You can use the international telephone number of your organization in
conjunction with the cust oner | nt Tel Nunber definition.

For example, the Abacus organization has the international telephone
number 1 123 5554444. This includes all of the country and regional codes.
The Abacus directory manager could therefore create the following definition
in the schema file CUSTOMER.SC:

abacusl d OBJECT- | DENTI FI ER :: = {customer|nt Tel Number 11235554444}

You need to define either one of the above definitions. In either case, you can then
use the unique identifier of your organization to make three further definitions,

as follows:

abacusAttribut eType OBJECT- | DENTI FI ER :: = {abacusld 1}
abacusbj ect d ass OBJECT- | DENTI FI ER :: = {abacusld 2}
abacusNameForm OBJECT- | DENTI FI ER :: = {abacusld 3}

Customizing the Schema 6-7

Customizing the Schema
6.3 Assigning Object Identifiers to New Definitions

Having defined these three object identifiers, you can then use their descriptive
names in your schema definitions of attributes, classes, and name forms. For
example:

enpl oyeeNunber ATTRI BUTE
W TH ATTRI BUTE- SYNTAX nuneri cSynt ax
EQUALI TY MATCH NG RULE nunericStringhatch
SUBSTRI NG MATCHI NG RULE nuneri cSubstri ngMat ch
STORE NORMALI ZED
.= {abacusAttributeType 1}

abacusEnpl oyee OBJECT- CLASS SUBCLASS OF top AUXI LI ARY

MUST CONTAIN {

enmpl oyeeNunber }
MAY CONTAIN

birthDate,

hi reDat e,

t mBerver}

.. = {abacusCbj ect 0 ass 1}

dogNanmeFor m NAME- FORM
NAMES dog
W TH ATTRI BUTES conmonNane
;.= {abacusNameFor m 100}

These object identifiers are guaranteed to be unique to your organization’s
schema, and therefore will never clash with schema definitions of other
organization’s whose Enterprise Directory you might connect to.

6.4 Planning to Customize the Schema

Having chosen a standard structural class, such as or gani zati onal Per son to
represent an object, and perhaps created entries using that class, you might
decide that the class does not enable you to represent all of the information that
you would like. Indeed, you might find that there is no standard structural class
suitable for one of your types of object.

The following sections use case studies to illustrate how to plan extra information
requirements, and then how to implement those plans.

Section 6.5 uses the example of employees to illustrate how to plan extra
information for or gani zat i onal Per son entries.

Section 6.7 explains how to plan a completely new structural class to represent
an object for which there is no standard structural class.

Those two sections also describe any customizations you need to make to the
schema files to provide user friendly displays of your new definitions in the DXIM
utility.

In addition, Section 6.9 describes how to customize or define user friendly search
filters for use in the DXIM Find window. The purpose of the filter definitions is to
reduce the amount of information that end users need to understand when they
are searching the directory. If you do not intend to use the DXIM windows utility,
then you do not need to read Section 6.9.

6-8 Customizing the Schema

Customizing the Schema
6.5 Planning an Auxiliary Class

6.5 Planning an Auxiliary Class

The Abacus organization wants to create X.500 entries to represent each of its
employees. It has a list of information that it wants to represent in those entries,
and has chosen the or gani zat i onal Per son class as a starting point.

The or gani zati onal Per son class provides many useful attributes, but Abacus
wants to represent a range of other information which is not provided for by that
class. The list of other information that Abacus wants to represent is:

= The unique employee number by which Abacus identifies each of its
employees

= The date that an employee was originally hired by Abacus
= The date of birth of an employee
= A name of the time management server that an employee uses

The personnel department stated a requirement for the first few attributes so
that they could monitor employment trends; the time management application
developers stated the requirement for the time management server name.

Note

The list of requirements is used to illustrate the planning process only.
Compagq does not suggest that these particular attributes are useful or
appropriate for your organization.

None of the attributes provided by the default schema meet these particular
requirements. The Abacus planning team therefore has to plan how to
extend the default schema so that the required information can be stored,
and so that the newly defined attributes are permitted within entries of the
or gani zat i onal Per son structural class.

To meet this requirement, the Abacus team define an auxiliary class called
abacusEnmpl oyee. The auxiliary class can be used with all entries of the

organi zat i onal Per son structural class. The abacusEnpl oyee class is to have four
attributes, all of which are defined by Abacus.

For each of the new attributes, the planning team make a number of decisions, as
follows:

= They define an enpl oyeeNunber attribute.

They decide that the enpl oyeeNunber attribute is a single-valued attribute
with an integer syntax. Each employee has only one employee number, so
it would be incorrect to permit multiple values. They also decide that the
attribute is mandatory so that all employee entries must include it.

= They define a bi rt hDat e attribute.

The bi rt hDat e attribute is to be single-valued, with a numeric string syntax,
such as "12 12 1962". The attribute is optional.

The team agree that every date should be in the sequence "<month> <day>
<year>". They also agree that the numbers 1 to 9 inclusive should be denoted
by 01 to 09. These policy decisions (which are not enforced by the Enterprise
Directory) mean that values can be ordered accurately. For example, the date
"05 08 1963" is earlier than "12 31 1963".

Customizing the Schema 6-9

Customizing the Schema
6.5 Planning an Auxiliary Class

The team discussed using the generalized time syntax for this attribute, but
decided that syntax required too much precision, and was not user friendly
enough.

= They define a hi reDat e attribute.

This is similar to the bi rt hDat e attribute. It is to be optional, single-valued,
with a numeric string syntax, for example, "01 06 1989".

= They define a t nBerver attribute.

The t nBerver attribute is single-valued with the distinguished name syntax.
The value of the attribute is the X.500 distinguished name of an entry that
represents a time management server. The attribute is optional.

Having planned the four new attributes that they want to use in employee
entries, the Abacus team have to define the new attributes in the schema text
files.

Section 6.5.1 describes how to edit the schema files to define an auxiliary class,
and Section 6.5.3 explains how to define new attributes.

6-10 Customizing the Schema

Customizing the Schema
6.5 Planning an Auxiliary Class

6.5.1 Defining an Auxiliary Class
An auxiliary class definition must conform to the following syntax:

cl assname OBJECT- CLASS SUBCLASS OF top AUXI LI ARY
MUST CONTAIN {attribute [, attribute, ...]}
MAY CONTAIN {attribute [, attribute, ...]}
;.= {object-identifier}

where:
= classnane is the name of the class for which this is the definition.

= attribute is the name of an attribute type.

Specify each attribute that is to be permitted for this auxiliary class in the
appropriate line according to whether it is mandatory or optional. If there are
no mandatory attributes, omit that line, and similarly, if there are no optional
attributes, omit that line.

= object-identifier uniquely identifies this class, for example,
cust oner (bj ect C ass 1.

See Section 6.3 for details of how to define your equivalent of the
cust oner Obj ect O ass identifier. The integer must be unique amongst
definitions that use that identifier.

For example, the Abacus organization planned an auxiliary class called
abacusEnpl oyee in Section 6.5. The following example shows the class definition
for that new class:

abacusEnpl oyee OBJECT- CLASS SUBCLASS OF top AUXI LI ARY

MJUST CONTAIN {
enmpl oyeeNunber }
MAY CONTAIN {
birthDate,
hireDat e,
t nServer}

.= {abacusObj ect 0 ass 1}

Every attribute must also be defined in the schema (see Section 6.5.3). The list
of attributes is case sensitive; you must use exactly the same string as you use
when defining the attribute. For example, if the above list included the string

Bi rt hDat e, the schema compiler displays an error, because the attribute definition
uses a lowercase b.

You should also define a label for your new auxiliary class (see Section 6.6).

The example auxiliary class shown here states that it is a subclass of t op,
which means the definition inherits the attributes of that class. It is also
possible to define an auxiliary class as a subclass of another auxiliary class. For
example, having defined the abacusEnpl oyee class, you could define a subclass
of abacusEnpl oyee. In that case, the subclass definition specifies that it is a
SUBCLASS OF abacusEnpl oyee.

Customizing the Schema 6-11

Customizing the Schema
6.5 Planning an Auxiliary Class

6.5.2 DXIM Restrictions on the Use of Auxiliary Classes

The DXIM windows utility does not fully support the management of entries that
are members of an auxiliary class. The Create and Modify windows only display
attributes that are present in an entry because they are defined in the structural
class definition. Any attributes that are defined in an auxiliary class are not
displayed in those windows.

The DXIM command line utility does support management of auxiliary classes.
For example, the following command modifies an existing or gani zat i onal Per son
so that it is a member of the abacusEnpl oyee auxiliary class (see Section 6.5.1).
The command adds the name of the auxiliary class as a value of the obj ect O ass
attribute, and also specifies the mandatory enpl oyeeNunber attribute.

dxi > nodi fy /c=us/ o=abacus/ ou=sal es/ cn="Jon Low' -
_dxi m> add val ue obj ect cl ass=abacusEnpl oyee -
_dximp add attribute enpl oyeeNunber =1390921

You can also specify membership of an auxiliary class when you create an entry,
as long as you also specify all attributes that are mandatory for all classes. For
example:

dxi m> create /c=us/o=abacus/ou=sal es/cn="Jon Low' -
_dxime attributes objectclass=(person, organi zational Person, abacusEnpl oyee), -
_dxi m> surname=Low, enpl oyeeNunber =1390921

Although the DXIM windows utility only supports the creation and modification
of attributes that are defined in an entry’s structural class, it does display all
attributes when you expand an entry in the Browse and Find windows.

6.5.3 Defining Attributes
An attribute type definition must conform to the following syntax:

attributeName ATTRI BUTE
W TH ATTRI BUTE- SYNTAX synt axNane [constraint]
[EQUALI TY MATCHI NG RULE mat chi ngRul eNane]
[ORDERI NG MATCHI NG RULE mat chi ngRul eNane]
[SUBSTRI NG MATCHI NG RULE mat chi ngRul eNane]
[APPROXI MATE MATCH NG RULE mat chi ngRul eNang]
[SINGLE VALUED]
STORE NORMALI ZED | STORE ORI G NAL
;.= {attributeType n}

where:

- attributeNane is a descriptive name for your new attribute.

The mixture of uppercase and lowercase letters that you use in this
descriptive name is the mixture that you must use in all references to
this attribute type in other schema definitions.

= syntax is the name of the syntax to be used for the attribute.

You must specify one of the syntaxes documented in Section A.4, using the
correct mixture of uppercase and lowercase letters. When choosing a syntax,
consider what matching rules the syntax supports. The choice of syntax and
matching rule determines whether the DSA can maintain an index for your
new attribute (see Section 6.5.4).

6-12 Customizing the Schema

Customizing the Schema
6.5 Planning an Auxiliary Class

If none of the default syntaxes is suitable for your new attribute, you can
use the undefinedSynt ax. The only syntactic checking the DSA applies

to this syntax is to ensure that the value is encoded in valid ASN.1. This
syntax might be useful if, for example, you develop an application that has a
particular syntax requirement not provided for by the other default syntaxes.
However, because the DSA only checks the validity of the encoding, it is up
to the application to monitor such attribute values for compliance with the
intended format. Whenever possible, use a syntax for which the DSA can
provide fuller support.

constraint is an optional statement of a constraint on the size or range of a
value.

For example, for string syntaxes, you can constrain values to be no more than
10 characters long by specifying (SI ZE(1..10)). You can specify that a string
must be exactly a certain length by specifying a single integer, for example,
(SI ZE(10)).

For integer syntaxes, you omit the Sl ZE keyword and the outermost
parentheses. For example, you can constrain integer values to a range by
specifying the lower and upper bounds of the range, for example, (18. . 30).

If a constraint is specified for a list syntax, the constraint applies to each
element of the list rather than to the list as a whole. For example, if
you define an attribute that uses i nt eger Li st Synt ax and specify a range
constraint of (1..10), then each integer is constrained to that range.

mat chi ngRul eName is the name of a matching rule that is supported for the
syntax of this attribute for the relevant type of matching: equality, substring,
ordering, or approximate.

For example, for stringSynt ax, an appropriate equality matching rule is
casel gnoreStringhMat ch, whereas an appropriate substring matching rule is
casel gnor eSubst ri nghat ch.

Each matching rule must be defined elsewhere in the schema. Section A.4
lists the matching rules supported for each syntax, and Section A.5 specifies
which types of matching the matching rules are suitable for.

It is advisable to specify at least an equality matching rule, even if you leave
out the other types of matching rule. Without an equality matching rule, the
DSA has no way of testing whether one value matches another. This makes
it difficult to modify attributes, because the DSA cannot tell whether a value
you try to add is already present in the entry, or whether a value you try to
remove is present. This greatly complicates the management of the attribute.

If you use the undefinedSynt ax, specify the exact Encodi nghat ch as an
equality matching rule. This enables the DSA to provide simple matching of
values even though the syntax is undefined.

See Section 6.5.4 for notes about choosing matching rules, especially if you
are defining an attribute that you intend to use for naming entries.

SI NGLE VALUED means that the attribute can have only one value.

The absence of this clause means that the attribute can have any number of
values.?

3

Note that multi-valued attributes are stored as sets rather than sequences; that is, you
cannot assume that the order in which you add values will be the order in which they

are returned when you read an attribute. If you are defining an attribute for which one
value is more important than another, see Section 6.5.3.1 for advice.

Customizing the Schema 6-13

Customizing the Schema
6.5 Planning an Auxiliary Class

e STORE NORMALI ZED means that the DSA should normalize values of this
attribute.

Normalizing an attribute involves optimizing its values so as to improve the
performance of matching functions.

A typical effect of normalization is that multiple spaces embedded in
a value specified by a user are reduced to one space. Thus, the value
" John Smith " is normalized to "John Smi th".

If a value is not stored normalized, then the DSA must normalize it every
time it needs to compare it with a value specified by the user. This reduces
the performance of the DSA for most user requests.

The decision to normalize or not also affects DXIM displays. If a value is
stored normalized, then it is displayed in normalized form. However, if a
value is stored in original form, then DXIM displays it accordingly.

The only reason to specify STORE ORIGINAL would be so that displays

of attribute values exactly represent those values as they were originally
entered by the user who added them to the directory. For example, if you
consider it useful for embedded spaces to be preserved in the value, and
displayed to users, then you can specify STORE ORIGINAL for the relevant
attribute type. It is unlikely that this will be a useful choice.

See also Section 6.5.4 which explains that normalization improves the
performance of an index of attribute values, which greatly improves the
performance of searches, as well as most other requests.

< nis aunique number that identifies this attribute type.

For example, your first new attribute definition could be given the following
object identifier:

::= {custonerAttributeType 1}

Section 6.3 explains how to assign a value to cust omer At tri but eType so that
your definitions are guaranteed to be globally unique.

The following example illustrates a typical attribute definition, taken from the
default schema:

conmonName ATTRI BUTE
W TH ATTRI BUTE- SYNTAX stringSyntax (SIZE(1..64))
EQUALI TY MATCH NG RULE casel gnoreStringMat ch
ORDERI NG MATCHI NG RULE casel gnor eStringhat ch
SUBSTRI NG MATCHI NG RULE casel gnor eSubst ri nghat ch
APPROXI MATE MATCHI NG RULE i ni ti al Wor dAppr oxi nat eMat ch
STORE NORMALI ZED
;o= {attributeType 3}

When you define a new attribute, you can also define a label. A label specifies

what the descriptive name of the attribute should be for the purposes of display
in applications (see Section 6.6).

6.5.3.1 Defining Primary and Secondary Attributes
It is important to understand that multi-valued attributes are stored by the
DSA as sets rather than sequences. The order in which values are added to an
attribute cannot be guaranteed to be the order in which they are returned when
you read the attribute. Furthermore, the order in which values are returned on
one occasion is not guaranteed to be used on another occasion.

6-14 Customizing the Schema

Customizing the Schema
6.5 Planning an Auxiliary Class

This can influence your strategy for defining new attribute types. If a given
attribute has one value that is particularly important for some reason, then you
might consider defining an attribute type specifically for that value, and another
attribute type for other values. For example:

favouriteSport ATTRI BUTE
W TH ATTRI BUTE- SYNTAX stringSyntax (SIZE(1..64))
EQUALI TY MATCH NG RULE casel gnoreStringMat ch
ORDERI NG MATCHI NG RULE casel gnor eStringhat ch
SUBSTRI NG MATCHI NG RULE casel gnor eSubst ri nghat ch
APPROXI MATE MATCHI NG RULE i ni ti al Wor dAppr oxi mat eMat ch
SINGLE VALUED
STORE NORMALI ZED
;.= {attributeType 10007}

Sport ATTRI BUTE
W TH ATTRI BUTE- SYNTAX stringSyntax (SIZE(1..64))
EQUALI TY MATCH NG RULE casel gnoreStringMat ch
ORDERI NG MATCHI NG RULE casel gnoreStringhat ch
SUBSTRI NG MATCHI NG RULE casel gnor eSubst ri nghat ch
APPROXI MATE MATCHI NG RULE i ni ti al Wor dAppr oxi mat eMat ch
STORE NORMALI ZED
::= {attributeType 10008}

In this example, the favouriteSport attribute is defined as single-valued.

The Abacus organization could use this attribute to identify the sport that an
employee most enjoys, while the multi-valued Sport attribute lists all sports that
the employee participates in. In this way, each employee’s favourite sport can be
easily recognized by users and applications.

You might think of an attribute such as favouriteSport as a primary attribute,
and Sport as a secondary attribute. It is up to the directory manager to ensure
that such attributes are used for the purpose they are defined for; the DSA does
not recognize the logical connection between such attributes.

6.5.4 Planning to Index Attribute Values

The DSA can create indexes of attribute values. When you define new attribute
types, you should consider whether you want the DSA to maintain an index for
that attribute’s values.

You can also consider whether you want the DSA to maintain indexes of the
attributes defined in the default schema. The following sections explain the
purpose of indexes, and how to make the DSA create and maintain an index of a
given attribute’s values.

6.5.4.1 The Purpose of Indexes
If a DSA does not maintain an index for a given attribute, then when a user
attempts to search for entries containing that attribute value, the DSA must
check each possible entry in turn to see whether the attribute value matches.
This requires the DSA to do a lot of processing. However, if a DSA maintains an
index for the attribute, then the DSA can refer to the index to determine what
entries have the relevant value. This is considerably faster than checking each
entry in turn.

The use of indexing therefore greatly improves search performance, and is also

useful for other user requests. However, indexing requires the DSA to use extra
memory to store its attribute indexes. If your DSA system has limited resources,
you need to decide whether to use indexing, or whether to use it only for certain

Customizing the Schema 6-15

Customizing the Schema
6.5 Planning an Auxiliary Class

attributes. An attribute value that is indexed is approximately 20 bytes larger
than if it is not indexed.

The DSA can maintain two types of index for a given attribute, depending on
what matching rules the attribute uses. Some attribute types cannot be indexed
at all. See Section 6.5.4.2 for more details.

6.5.4.2 Making a DSA Index a Given Attribute’s Values

Not all attributes can be indexed. The ability to index a given attribute depends
on which matching rules the attribute uses for equality matching and/or for
approximate matching.

If the equality matching rule supports indexing, then the DSA can maintain
an index that improves the performance of equality matching. Likewise, if an
attribute has an approximate matching rule which supports indexing, then
the DSA can maintain a separate index that improves approximate matching
performance.

Although it is not possible to specify that you want an index for the purposes

of substring matching or ordering matching, the DSA automatically uses the
equality matching index if it is suitable. This depends on how complex the syntax
is; for simple syntaxes, such as strings, it is often possible for the DSA to use an
equality matching index for substring and ordering matching as well.

Consider the example of the sur nane attribute type from the default schema:

surname ATTRI BUTE
W TH ATTRI BUTE- SYNTAX stringSyntax (SIZE(1..64))
EQUALI TY MATCHI NG RULE casel gnoreStringMat ch
ORDERI NG MATCHI NG RULE casel gnoreStringMat ch
SUBSTRI NG MATCHI NG RULE casel gnor eSubst ri nghat ch
APPROXI MATE MATCHI NG RULE i ni ti al Wor dAppr oxi mat eMat ch
STORE NORMALI ZED
.= {attributeType 4}

The equality matching rule is casel gnoreStri nghat ch, and the approximate
matching rule is i ni tial Wr dAppr oxi mat eMat ch.

To determine whether indexing is possible for the sur nane attribute, you need to
refer to the definitions of these two matching rules. The definitions are as follows:

casel gnoreStringhat ch MATCHI NG RULE
W TH | NDEX
APPLI ES TO
stringSyntax, printableStringSyntax, countryNameSyntax
::= {matchi ngRul e 21}

i nitial \Wor dAppr oxi mat eMat ch MATCH NG RULE
W TH | NDEX
APPLI ES TO stringSyntax, printableStringSyntax
.. = {decMat chi ngRul e 3}

Both of the matching rule definitions include the keywords W TH | NDEX. This
indicates that those rules both support indexing, and therefore that it is possible
to index the surnane attribute for both types of matching.

When you choose the matching rules to be used for a new attribute type, check
whether those matching rules support indexing. This may modify your choice of
syntax.

6-16 Customizing the Schema

Customizing the Schema
6.5 Planning an Auxiliary Class

To make a DSA actually index a given attribute type, having determined that one
or both of the rules support indexing, you need to add the attribute’s name to the
| NDEX FOR EQUALI TY MATCHI NG and/or | NDEX FOR APPROXI MATE MATCHI NG lists in
X500.SC. For example, by default the sur nane attribute is specified in both lists.
Therefore, by default the DSA creates an index of sur nane attribute values for
both types of matching.

6.5.4.3 Notes About Indexing Attribute Values
This section provides a list of factors to consider when deciding whether to use
attribute indexes. By default, the schema specifies that all possible attribute
types are indexed, because the performance gains are so great.

If you want to use an attribute type as a naming attribute (see Section 4.4),
then its equality matching rule must support indexing.

It is not necessary to actually use indexing, as long as indexing is possible for
that attribute type. It does not matter whether the approximate matching
rule, if any, supports indexing.

If an attribute definition includes the STORE ORI G NAL clause, then the
advantages of indexing that attribute’s values are reduced.

If an index contains values that are in original form (see Section 6.5.3),
the DSA must normalise each index entry to determine whether it matches
the value specified by the user. An index is far more efficient if it contains
normalized attribute values.

An indexed attribute value requires approximately 20 bytes more memory
than if it is not indexed.

If a DSA system has limited resources, you might decide to edit the | NDEX FOR
EQUALI TY MATCHI NG and/or | NDEX FOR APPROXI MATE MATCHI NG lists in X500.SC.
By removing attributes from those lists you reduce the amount of memory
required by the DSA. However, you also impact the performance of search and
some other operations.

There is no requirement for all DSAs to index the same set of attributes.

For example, the decision to index attribute values on one DSA does not
require any other DSA to index the same attribute values, even if the other
DSA holds some of the same directory entries.

There is no requirement for a given attribute to be indexed for both equality
matching and approximate matching.

If you expect that users will not use approximate matching frequently, then
you might decide not to index any attributes for that purpose.

The decision to index a given attribute applies to all directory entries held on
the DSA.

6.6 Defining a Label

A label specifies alternative names for attributes, classes, and for DXIM windows
(see Section 6.7.4).

Note that these labels affect DXIM and LDAP clients.

Customizing the Schema 6-17

Customizing the Schema
6.6 Defining a Label

The alternative names improve the DXIM user interface, so that users and
managers are not exposed to unfriendly, unpunctuated attribute names, such

as stat eOr Provi nceNane. A label can specify abbreviations and user friendly
alternatives for long and unfriendly descriptive names. You can also use labels to
provide foreign language support within DXIM.

The default schema includes labels for all attributes. Most labels are defined in
DUA.SC, and you can customize them as much as you like.

The syntax of a label definition is as follows:

LABEL | abel Nane
[KEYWORD "keyword", "keyword", ...]
[MENU "text"]
[DESCRI PTION "text"]

END

All parts of a label are optional. You can specify more than one keyword, but only
one menu label and one description label. Keywords must not contain spaces, and
must use the printable string character set only.

Note

If the schema files contain more than one label definition for an attribute,
then the last definition takes effect, and all others are ignored. The
schema compiler does not warn you that multiple label definitions have
been found.

Menu labels and description labels can contain spaces, but must also use the
printable string character set.

The following example shows the label definition for the cormonName attribute.

LABEL conmonNare
KEYWORD "CN', "common", "Nang"
MENU " Nane"
DESCRI PTI ON " Common Name"
END

where:

= KEYWORD specifies keywords that will be accepted in DXIM command line
input to mean comonNane.

The name of the attribute definition is always accepted as a keyword. For
example, commonNane is a valid keyword even though it is not listed.

The first listed keyword is the one that DXIM uses for the attribute if

it appears in an entry’s name and if information is being written to a
script file. For example, DXIM would display CN="John Snith" rather than
commonNane="John Snith". Choose a short first keyword so that displays of
distinguished names are short.

With LDAP requests, the DSA tries to return attributes with the same name
as used in the request. If all user attributes are requested, then the first
keyword is used to return attributes.

A keyword is not required for window labels, because you never refer to
windows in command lines.

6-18 Customizing the Schema

Customizing the Schema
6.6 Defining a Label

< MENU specifies the string that is used by the DXIM windows interface
whenever this attribute, class, or window appears on a menu.

Specify only one text string for display on menus. The string can contain
spaces, and is case sensitive.

= The DESCRI PTI ON line specifies the string that is used by DXIM when
displaying information in a window.

For example, the description is displayed when you show the attributes of
an entry using the DXIM show command, or expand an entry in a DXIM
window. Specify only one text string for display as a description. The string
can contain spaces, and is case sensitive.

If you do not specify a label for an attribute type, DXIM uses the string that
uniquely identifies the attribute type definition. For example, if there is no label
for the cormmonNane attribute type, such as Common Name, DXIM uses the string
commonName. This behaviour also applies to any other schema definitions that
are displayed in the user interface, such as object class names, window names,
filter names, and so on. Most definitions in the default schema have labels. You
can modify these labels if you do not like the defaults, or if English is not your
users’ first language.

6.7 Planning a Structural Class

This section demonstrates how to plan a new structural class when no existing
classes are suitable for a given type of object that you want to represent.

Note

Defining a new structural class is the most complicated of the possible
schema customizations, requiring a detailed understanding of the X.500
model of information. For ease of implementation, it is better to use a
standard structural class if possible, and to use auxiliary classes to extend
the usefulness of the structural class (see Section 6.5).

The Abacus organization decides that it wants to represent dogs as directory
entries. Many of the organization’s security guards own a guard dog, and the
organization decides that it will be useful to have directory entries representing
them.

No existing structural class is suitable for representing a dog, so Abacus decides
to define a new class, and several new attributes.

The organization decide to define a structural class called dog. The dog class is
not derived from any other class except t op (from which all classes are derived).
Its only inherited attribute is therefore the obj ect O ass attribute (all classes
inherit the mandatory and optional attributes of the classes from which they are
derived).

Note

You can define a structural class as a subclass of an existing structural
class. In this case, the new subclass inherits the attributes permitted for
its superclass.

Customizing the Schema 6-19

Customizing the Schema
6.7 Planning a Structural Class

However, if there is a structural class that is suitable for this approach,
then defining an auxiliary class is easier and more flexible than defining
a subclass. Section 6.5 describes how to plan an auxiliary class.

The organization decide that the attributes of each dog are cormonNane, br eed,
birt hDat e, and handl er.

The commonNane attribute is a standard attribute provided by the default schema.
It therefore requires no further planning, except to state that it is mandatory for
a dog to have a common name.

The breed attribute is a new attribute. It is to be single-valued, mandatory, and
have a printable string syntax.

The bi rt hDat e attribute is the same as the one planned in Section 6.5, and
requires no further planning except to state that it is optional for dogs.

The handl er attribute is a new attribute. It is to be single-valued, optional, and
have a distinguished name syntax. It is to contain the distinguished name of the
security guard who is responsible for the dog.

Note that the organization deliberately reuses existing attribute definitions where
possible, so that the amount of planning and implementation required is kept to a
minimum, and so that information is represented as consistently as possible, even
for different classes of entry. Defining new attributes for use with a structural
class is the same as for an auxiliary class. Section 6.5.3 explains how to define a
new attribute.

The planners decide that all dog entries must be named using the conmonNane
attribute. They need to define a name form for this rule. Section 6.7.2 explains
how to define a name form for a new structural class.

The organization also decide that dog entries are to be created as subordinates
of organi zational Unit or | ocal ity entries. They need to define some structure
rules in the schema. Section 6.7.3 explains how to define structure rules for a
new structural class.

Section 6.7.1 explains how to edit the schema text files to define a new structural
class, such as dog. Section 6.7.4 explains how to define a window definition for a
new structural class.

Defining a label for a structural class is the same as for an auxiliary class.
Section 6.6 explains how to define a label.

6.7.1 Defining a Structural Class
A structural class definition must conform to the following syntax:

cl assname OBJECT- CLASS SUBCLASS OF superclass STRUCTURAL
MJUST CONTAIN {attribute [, attribute, ...]}
MAY CONTAIN {attribute [, attribute, ...]}
;.= {object-identifier}

where:
« ¢l assnane is the name of the class for which this is the definition

= supercl ass is the name of the immediate superclass of this class

6—20 Customizing the Schema

Customizing the Schema
6.7 Planning a Structural Class

For example, most classes are immediate subclasses of t op, but the

or gani zat i onal Person class is a subclass of person. If you define a class

as a subclass of another class, then list the immediate superclass only. The
superclass of a new structural class must itself be either a structural class or
an abstract class. You cannot define a structural class to be a subclass of an
auxiliary or alias class.

It is also possible for a class to be a subclass of two or more different classes.
Only one of the immediate superclasses can be a structural class. All but one
of the specified superclasses must be abstract classes. An abstract class is
defined to provide a common basis for the definition of further classes. For
example, you could define a manmal abstract class, to provide a common basis
for defining structural classes such as cat and dog. For most purposes, this
additional complexity is probably unnecessary.

If you want to define a class as a subclass of more than one superclass,
list each immediate superclass from which your new class is derived, using
commas as separators. For example:

cl assnane OBJECT- CLASS SUBCLASS OF supercl ass, supercl ass STRUCTURAL

Note

Do not confuse the concept of superclasses with the concept of permitted
superiors in the DIT. The former helps to define classes in the schema,
while the latter helps to define permitted relationships in the DIT.

For example, the or gani zat i onal Per son class has the superclass per son.
That superclass hierarchy is different from the rules that specify that
organi zati onal Per son entries can have organi zation, local ity, or
organi zati onal Unit entries as permitted superiors in the DIT.

attribute is the name of an attribute type.

obj ect-identifier uniquely identifies this class, for example,
cust omer (bj ect C ass 1.

See Section 6.3 for details of how to define your equivalent of the
cust oner bj ect O ass identifier. The integer must be unique amongst
definitions that use that identifier.

All of the specified superclasses and attribute types must also be defined in the
schema.

The planner’s task is to write such a definition for each new structural class. The
following example shows the class definition for the new dog class:

dog

OBJECT- CLASS SUBCLASS OF top STRUCTURAL

MJUST CONTAIN {

conmonNarne,

br eed}
MAY CONTAIN {

birthDate,

handl er}
.= {abacusQbj ect O ass 100}

Customizing the Schema 6-21

Customizing the Schema
6.7 Planning a Structural Class

6.7.2 Defining Name Forms

When you define a structural class, you must also define a name form. A name
form specifies what attribute is to be used for naming entries of a given class.

The syntax of a name form is as follows:

nameFor mName NAME- FORM
NAMES cl ass
W TH ATTRI BUTES attribute |ist
[AND OPTI ONALLY attribute list]
;.= {object-identifier}

where:
< nanmeFor mMNane is a unique name for this name form.
= class is the name of the class to which this name form applies.

e attribute |ist isa list of one or more attributes.

All attributes used for naming must support storage optimization (see
Section 6.5.4).

- object-identifier uniquely identifies this name form, for example,
cust oner NameFor m1.

See Section 6.3 for details of how to define your equivalent of the
cust omer NaneFor midentifier. The integer must be unique amongst definitions
that use that identifier.

For example, in Section 6.7 the Abacus organization decided that entries of the
dog class would be named using the commonName attribute. The following example
shows the name form that defines this rule.

dogNanmeFor m NAME- FORM
NAMVES dog
W TH ATTRI BUTES conmonNane
.. = {abacusNameFor m 100}

It is possible to specify more than one naming attribute. To specify a set of
attributes that must be used in naming, list the attributes, using commas to
separate them. For example, the following W TH ATTRI BUTES clause would specify
that each of cormpnNane and handl er must always be used in naming dog entries:

dogNaneFor m NAME- FORM
NAMES dog
W TH ATTRI BUTES comnmonName, handl er
: .= {abacusNameFor m 100}

It is also possible to specify that a naming attribute is optional for the purposes of
naming, using the AND OPTI ONALLY clause. For example, the following name form
specifies that conmonNane is required in names of dog entries, but that handl er
and br eed are both optional:

dogNaneFor m NAME- FORM
NAMES dog
W TH ATTRI BUTES conmonNane
AND OPTI ONALLY handl er, breed
.. = {abacusNameFor m 100}

Note that an attribute can be listed as mandatory or optional for naming,
regardless of whether the attribute is mandatory or optional according to the
class definition.

6-22 Customizing the Schema

Customizing the Schema
6.7 Planning a Structural Class

The last line of the name form definition assigns an object identifier that uniquely
identifies this name form within the schema.

6.7.3 Defining Structure Rules

When you define a structural class you must also define one or more structure
rules.

Alias classes (see Section 6.8) also have structure rules, which are defined in the
same way. Auxiliary classes do not have structure rules.

Conceptually, there are two types of structure rule:

= Those that permit entries to be created immediately beneath the root of the
DIT

= Those that permit entries to be created beneath other specified classes of
entry

If you do not define any structure rules for your new classes, then your DSA does
not allow you to create entries of those classes. You must define rules that specify
where entries are permitted in the DIT, as well as defining what attributes they
have.

6.7.3.1 Structure Rules for Entries Immediately Beneath the Root

The syntax of a structure rule that permits entries to be created immediately
beneath the root of the DIT is as follows:

struct ur eRul eName STRUCTURE- RULE
NAVE FORM naneFor mNane
:i= integer

where:
= structureRul eName is the name of the rule that you are defining.

= naneFor m\ane specifies a name form for all entries that use this structure
rule.

= integer is a number that uniquely identifies this rule.

Note that structure rules do not have object identifiers, unlike most
definitions. Specify an integer that is unique within your schema. See
Section 6.7.3.3 for advice about assigning structure rule identifiers.

For example, the following structure rule permits or gani zati on entries to be
created immediately beneath the root:

or gani zat i onRoot St ruct ur eRul e STRUCTURE- RULE
NAME FORM or gani zat i onNameFor m
=3

Note that it is unlikely that you will need to define classes of entry that can be
created immediately beneath the root, because that will probably exceed your
authority to create and name entries.

Note that this rule does not permit or gani zati on entries to be created anywhere
else in the DIT. Any class that can be created beneath other entries needs a
slightly different structure rule (see Section 6.7.3.2). Some classes of entry
therefore have two structure rules, so that they can be created beneath the root
or created beneath other classes of entry.

Customizing the Schema 6-23

Customizing the Schema
6.7 Planning a Structural Class

6.7.3.2 Structure Rules for Entries Beneath Other Entries

The syntax of a structure rule that permits entries to be created beneath other
classes of entry is as follows:

struct ureRul eName STRUCTURE- RULE
NAVE FORM naneFor m\ame
SUPERI OR RULES rul eName [, ruleNang, ...]
:i= integer

where:
= structureRul eNane is the name of the rule that you are defining.

= nameFor mMNane specifies a name form for all entries that use this structure
rule.

« rul eNane is the name of a structure rule that enables the existence of entries
that are to be immediately superior to the entries for which this is the
structure rule.

- integer is a number that uniquely identifies this rule.

For example, the following rule permits an or gani zat i onal Per son entry to be
created beneath or gani zati on, organi zati onal Unit, and | ocal i ty entries:

or gani zat i onal PersonStruct ureRul e STRUCTURE- RULE
NAVE FORM or gani zat i onal Per sonNameFor m
SUPERI OR RULES
organi zationStructureRul e, organi zati onRoot Struct ureRul e,
localityStructureRul e, IocalityRootStructureRule,
organi zational Uni t StructureRul e
=T
Note that the list of superior rules includes the rule that permits or gani zati on
entries beneath the root, and the rule that permits or gani zat i on entries beneath
other classes of entry. This means that an or gani zat i onal Person entry can
be created beneath any or gani zati on entry regardless of what superiors the
organi zati on may or may not have. If only one of the two rules is listed, it is
only possible to create an or gani zat i onal Per son entry beneath or gani zati on
entries that conform to the one rule listed.

Similarly, the list of superior rules includes the rule that permits | ocal i ty entries
beneath the root, as well as the rule that permits | ocal i ty entries beneath other
entries.

See Section 6.7.3.4 for an example of the definition of structure rules for a new
structural class.

Note

If you define a structural class, you might want to be able to create entries
of a standard class beneath entries of your new class. For example, you
might define a t eamclass, and then want to be able to create standard

or gani zat i onal Per son entries beneath t eamentries.

To achieve this, you need to amend the structure rule of the

organi zati onal Person class to add the t eanSt ruct ur eRul e as one of
its SUPERI OR RULES. Structure rules for default classes are defined in
DIT.SC.

This ability to amend the structure rules of existing definitions is
particularly important for the decDSA class, which is required for the

6-24 Customizing the Schema

Customizing the Schema
6.7 Planning a Structural Class

implementation of security. If you intend to use a customer-defined class
of entry as the immediate superior of decDSA entries, then you must
amend the structure rule for the decDSA class to make this possible. If
you do not make this amendment, you will be unable to create decDSA
entries in the intended position, and will be unable to implement security
in the recommended way.

6.7.3.3 Assigning Structure Rule Identifiers

Every structure rule requires an identifier that is unique within your schema.
You need to assign an identifier to each structure rule you define.

There is a danger that future versions of the Enterprise Directory might include
new rules with identifiers that clash with your customizations. For this reason,
Compaq reserves integers in the range 10000 to 19999 for your use. You are
advised to assign integers from within that range, and thereby avoid any danger
of clashing with future additions to the default schema.

The upper limit to the integer values that you use for structure rules is2%31—1.

6.7.3.4 Structure Rule Definitions: An Example

This section provides an example of how to define structure rules for a new
structural class.

The Abacus organization in Section 6.7 defined a structural class called dog. They
therefore need to define one or two structure rules that enable dog entries to be
created in the required positions in the DIT.

The Abacus organization wants to be able to create dog entries beneath

organi zational Uni t entries, and | ocal i ty entries. They do not want to be

able to create dog entries immediately beneath the root of the DIT. (That latter
requirement would be unusual.) They therefore need to define one structure rule,
as follows:

dogStruct ureRul e STRUCTURE- RULE
NAME FCRM dogNameFor m
SUPERI OR RULES
organi zational Unit StructureRul e,
localityStructureRule, localityRootStructureRule
::=10001
Note that the superior rules list actually specifies three superior rules. This is
because the | ocal i ty class is an example of a class that can be created beneath
the root of the DIT as well as beneath other entries. The | ocal i ty class therefore
has two structure rules, and both are listed. If either of the two rules for the
| ocal ity class are not specified, then dog entries cannot be created beneath any
| ocal i ty entries that conform to the unspecified rule.

Note that the list of superior rules cannot include any structure rules defined for
alias classes. Alias classes cannot have subordinate entries.

6.7.4 Defining Window Definitions

When you define a new class, you also need to create a window definition
(assuming that you want to use the DXIM windows interface to create and modify
entries of this class).

Customizing the Schema 6-25

Customizing the Schema
6.7 Planning a Structural Class

A window definition specifies the appearance of the DXIM Create and Modify
windows. If you do not define a window definition for a new class, then the DXIM
windows interface will not have a Create or Modify window for that class. The
DXIM support of the class is therefore limited to browsing and finding, rather
than creating and modifying.

In Section 6.7, the Abacus organization planned a dog class. Section 6.7.1
explains how to implement the dog class in the schema, and the following
example shows the window definition.

dogW ndow W NDOW
FOR CLASS dog
NAM NG ATTRI BUTES {
comonNane}
ATTRI BUTES {
breed,
handl er,
bi rt hDat e}
END

where:
e The FOR CLASS line specifies what class of entry this definition is for.

= The NAM NG ATTRI BUTES line specifies the attributes that are used for naming
entries of this class, and must correspond to the name form for this class. Do
not put any other attributes here.

= The ATTRI BUTES line specifies a list of attributes that are not used for naming.

The list must include all mandatory attributes for the class, except for the
obj ect G ass attribute. If you do not include all other mandatory attributes,
then you will be unable to create entries of the class.

You do not have to list all optional attributes for the class if there are some
attributes that you never use, or that are too technical and application-specific
to display. However, a class’'s window should display all attributes that you
are likely to use and manage, and in particular, the naming attributes must
always be specified in the NAM NG ATTRI BUTES line.

Do not list any attributes that are not displayable because of access controls
(see Chapter 7). For example, do not list the user Passwor d attribute, because
DXIM will be unable to display it, and attempts to modify it will fail. Such
attributes can only be managed using the command line interface.

If you define a class as a subclass of another class, then remember that the
subclass inherits the attributes of its superclass. Therefore, you need to consider
which inherited attributes you want to display. You can list the attributes in any
order, regardless of whether they are inherited. The order that you list them in
determines their order of display in Create and Modify windows. Remember that
if an attribute is mandatory for a superclass, then it is also mandatory for all
subclasses, and needs to be included in the list.

6.8 Planning Alias Classes

If you define a new structural class, then you might also want to define an alias
class that mimics it.

6—26 Customizing the Schema

Customizing the Schema
6.8 Planning Alias Classes

For example, the default schema contains an alias class called

organi zati onal PersonAl i as which is designed to mimic the

or gani zat i onal Per son structural class. This enables you to create alias entries
that look as though they are or gani zat i onal Per son entries, but which are
actually alias entries. The alias class is defined to have the same name form and
structure rules as the structural class that it mimics.

The syntax of an alias class definition is as follows:

cl assname OBJECT- CLASS SUBCLASS OF alias ALIAS
MUST CONTAIN {attribute [, attribute, ...]}
MAY CONTAIN {attribute [, attribute, ...]}
;.= {object-identifier}

where:
« classnane is the name of the class for which this is the definition.

= attribute is the name of an attribute type.

Specify each attribute that is to be permitted for this alias class in the
appropriate line according to whether it is mandatory or optional.

e nis a unigue number that identifies this class.

= object-identifier uniquely identifies this class, for example,
cust oner (bj ect C ass 1.

See Section 6.3 for details of how to define your equivalent of the
cust oner bj ect O ass identifier. The integer must be unique amongst
definitions that use that identifier.

For example:

dogAl i as OBJECT- CLASS SUBCLASS OF alias ALIAS
MUST CONTAIN { commonNane}
.. = {abacusOhj ect O ass 5}

The attribute commonNane is specified because that is the attribute that is defined
as the naming attribute of the dog structural class (see Section 6.7.1). The
dogAl i as definition could specify other attributes as mandatory or optional, but
the purpose of an alias entry is only to provide an alternative name for another
entry; not to hold information in its own right.

Because the alias class is defined as a subclass of the al i as class, it inherits
the al i asedbj ect Nane attribute. This is the attribute that you use to hold the
distinguished name of the entry for which you have created a given alias entry.

If you define an alias class, you need to define a name form and one or more
structure rules. The definitions for these are the same as the name forms and
structure rules of structural classes, and are described in Section 6.7.

There is no requirement for an alias class to have the same naming attributes as
the class of entry that it is intended to provide an alias for. Similarly, there is no
requirement for an alias class to have the same structure rules. In fact, there is

no defined relationship between an alias class and any other class, and you could
use an alias to provide an alias name for any other entry, regardless of class. For
example, you could create a rol eAl i as class which you use to provide aliases for
both or gani zat i onal Per son entries and or gani zat i onal Rol e entries.

Customizing the Schema 6-27

Customizing the Schema
6.8 Planning Alias Classes

Finally, when you define a new alias class, you need to define a window definition
for it, so that the DXIM windows utility can display entries of this class
consistently (see Section 6.7.4). You can also define labels for the alias class so
that when its name appears on menus and screen displays, it looks user friendly
(see Section 6.6.

For example, the set of definitions required for an alias class that mimics the dog
structural class (see Section 6.7), is as follows:

dogAl i as OBJECT- CLASS SUBCLASS OF alias ALIAS
MJUST CONTAI N {
comonNane}
.. = {abacusObj ect d ass 5}

dogAl i asNameFor m NAVE- FORM
NAMES dogAl i as
W TH ATTRI BUTES commonNane
.. = {abacusNanmeFor m 5}

dogAl i asStructureRul e STRUCTURE- RULE
NAVE FORM dogAl i asNameFor m
SUPERI OR RULES or gani zat i onal Uni t Struct ureRul e,
localityStructureRule, localityRootStructureRule
;.= 10002

dogAl i asW ndow W NDOW
FOR CLASS dogAl i as
NAM NG ATTRI BUTES { cormonNane}

ATTRI BUTES {
al i asedChj ect Nane
}
END

LABEL dogAlias
KEYWORD "dogAl i as"
MENU "Dog Ali as"
DESCRI PTION "Dog Ali as"
END

Note that the integer specified for the structure rule is in the range 10000 to
19999, as recommended in Section 6.7.3

See Section 6.7.4 for further details of window definitions. See Section 6.6 for
further details of labels. See Section 6.7.2 for further details of name forms. See
Section 6.7.3 for further details of structure rules.

6.9 Defining Search Filters and Filter Fields for the Windows Utility

The DXIM Find window provides a simplified interface to the search services
provided by the Enterprise Directory.

The purpose of the simplifications is to minimize the amount of X.500 knowledge
required by end users of DXIM, making the windows utility suitable for end users
as well as managers. A typical end user of the Directory Service might know a
person’s name, but might not understand that a name can be represented using
several different attributes.

The schema provided with the product includes user friendly filters for all of the
classes defined in the default schema. If you define any new classes or attributes,
then you probably need to customize the filters so that they support those new
definitions.

6—28 Customizing the Schema

Customizing the Schema
6.9 Defining Search Filters and Filter Fields for the Windows Utility

All filters are defined in the schema file DUA.SC. There are actually two sets of
definitions:

e Filter definitions
= Filter field definitions

Depending on what customizations you make to the schema, you might want to
create new filter definitions and/or new filter field definitions, or you might want
to amend existing definitions.

Section 6.9.1 explains the syntax and significance of filter definitions, and
Section 6.9.2 explains the syntax and significance of filter field definitions.

6.9.1 Search Filter Definitions

A search filter provides a template for search requests that users are most likely
to want to make. For example, a search filter might be designed to simplify the
task of searching for entries representing people.

Each search filter specifies a list of fields which can be presented to the user
as suitable things to search for, such as names. The user does not need to
know exactly what X.500 attributes these fields map onto, and does not need to
understand the semantics of the X.500 search service.

A search filter appears to the user as a menu option on the left side of the DXIM
Find window. The user selects the type of information they want to search for,
and the window displays a relevant field on the right side (typically the Name
field). Figure 6-1 shows the Find window with the Person filter selected on the
left side, and the Name field on the right side.

Figure 6-1 DXIM Find Window

=| dXim: Find [=]0

File Edit View Directory Help

Looking under: /C=us
Press MB3 or F4 to add search fields

OrganizationalPerson ...

| Name I

The syntax of a filter definition is as follows:

Customizing the Schema 6-29

Customizing the Schema
6.9 Defining Search Filters and Filter Fields for the Windows Utility

filtername FILTER
W TH FI ELDS {fieldnane, fieldnane, ...}
[AND VALUES
{ATTRIBUTE attribute = "value", "value", ...}

END
where:
« filtername is the name of this filter definition.

< The WTH FI ELDS argument specifies which filter fields are to be available to
the user when using this filter (see Section 6.9.2).

If the user fills in a field, then the search only finds entries that match the
details they specify. If the user fills in several fields, then the search only
finds entries that match all the specified details. See Section 6.9.2 for an
explanation of what constitutes a match for a given field.

= The AND VALUES argument enables you to specify attribute values that are
always to be included in searches using this filter. The search only finds
entries that match all of the details specified.

— The ATTRI BUTE argument enables you to specify one or more attribute
values that are to be included in all searches using this filter.

For example, you could specify that all searches include the specification
that obj ect 0 ass=per son. This means that when the user uses this filter,
the search only returns entries of that class. Entries that match the
details provided by the user are excluded from the search if they are not
also of the person class.

You can specify the ATTRI BUTE argument more than once, to specify a list
of attribute values that must be included in all searches using this filter.
If you specify more than one ATTRI BUTE argument, then the search must
match all of the attribute values listed.

For example, the default schema contains an or gani zati onal Person-filter, as
follows:

organi zati onal Person-filter FILTER
W TH FI ELDS {
nameFi el d,
descriptionField,
| ocationFiel d

AND VALUES

{ ATTRI BUTE obj ect Cl ass = "organi zati onal Person" }
END

The filter specifies that three filter fields are available to the user. The filter
also specifies that all searches using this filter must include the attribute value
obj ect O ass=or gani zat i onl Person.

Thus, if the user uses the nanmeFi el d in the DXIM Find window, and specifies
"Jones", then DXIM actually invokes a search that looks for entries of the

or gani zati onal Per son class in which at least one of the attributes listed in the
naneFi el d has the value Jones.

6-30 Customizing the Schema

Customizing the Schema
6.9 Defining Search Filters and Filter Fields for the Windows Utility

6.9.1.1 Customizing Search Filter Definitions
The most likely customizations to make to search filter definitions are as follows:

= To include another object class in an existing filter.

For example, if you define an object class such as abacusEnpl oyee, (see
Section 6.5.1), then you could simply amend the or gani zat i onal Per son-
filter definition, to specify that all searches using that filter include that
new class.

Thus, the filter becomes:

organi zati onal Person-filter FILTER
W TH FI ELDS {
nameFi el d,
descriptionField,
| ocati onFiel d

AND VALUES
ATTRI BUTE obj ect Cl ass = "organi zati onal Person", "abacusEnpl oyee"

}
END

e To create a new filter definition.

If you create a new class, for which no existing filter is suitable, you can
define a new filter. The new filter appears on the menu of options presented
on the left side of the DXIM Find window. The filters are listed in the order
that they are defined in the schema.

If you define a new filter, then you should also define a label for the filter, to
give it a user friendly appearance on the menu.

e To delete a filter definition.

If some of the filters in DUA.SC are designed for classes of entry that you do
not use in your DIT, or classes that you do not want end users to search for,
you can delete or comment out the filter definition. This removes the option
from the menu of options in the Find window.

If you remove a filter, you must also remove the corresponding label.

= To specify a particular attribute value that must be present in all entries
returned by a search using a given filter.

You can also change the label definition of each filter so that it presents
the search option in a way that your users will understand. For example,
you could change the label of the organi zati onl Person-filter to be

Enpl oyee instead of or gani zat i onal Person, or similarly, if you only use the
organi zati onal Rol e class to represent managers, then you could change the
label of the organi zational Rol e-filter to be Manager instead.

6.9.2 Filter Field Definitions

A filter field provides a user friendly interface to X.500 attribute types. A
single filter field can map onto any number of attribute types, giving them the
appearance of being one attribute. The end user therefore does not need to
know exactly which attribute type is being used to store a particular item of
information.

For example, the naneFi el d maps onto a number of attributes: comrmonNane,
surname, title, organi zati onName, and or gani zat i onal Uni t Name. As far as the
end user is concerned, all they need to specify is a "name".

Customizing the Schema 6-31

Customizing the Schema
6.9 Defining Search Filters and Filter Fields for the Windows Utility

If a user fills in a filter field, then the search only finds entries which have the
specified value in at least one of the attribute types specified as being part of
the filter field. For example, if the user specifies Name=Sni t h, then entries with
a conmonNane and/or surnanme and/or title and/or organi zati onNane and/or
organi zati onal Uni t Name with the value Smith are found.

A filter field appears to the user as an input field on the right side of the DXIM
Find window. Whatever the user types into that input field is processed by DXIM
into a search request. The value specified by the user is searched for in all of the
attributes listed in the filter field definition. Figure 6—2 shows the DXIM Find
window with several fields displayed. Each of the fields is listed within the filter
definition for the Person filter.

Figure 6—2 DXIM Find Window Showing Filter Fields

= dxim: Find =10

File Edit View Directory Help

Looking under: /C=us
Press MB3 or F4 to add search fields

The syntax of a filter field definition is as follows:

fiel dname FILTER-FIELD
ATTRIBUTES {attribute, attribute, ...}
END

where at tri but e is the name of an attribute that is included in this filter field.

For example, the default schema contains a nameFi el d filter field:

naneFi el d FI LTER-Fl ELD
ATTRI BUTES { conmonNane,
sur nane,
title,
or gani zat i onNane,
or gani zat i onal Uni t Nane}
END

To make the filter field name appear user friendly in the window, the schema also
contains a label definition:

LABEL naneField
MENU " Nang"
END

6-32 Customizing the Schema

Customizing the Schema
6.9 Defining Search Filters and Filter Fields for the Windows Utility

See Section 6.6 for details of label definitions.

The definition of the filter field means that when a user supplies the value
Jones, DXIM generates a search request that looks for entries that have the
value Jones in any of the above attributes. This means that the user does not
need to understand about different attribute types, and does not have to know
which particular attribute to specify. As far as the user is concerned, the entry
they are searching for simply has the name Jones, and DXIM supports this user
expectation.

6.9.2.1 Customizing Filter Field Definitions
The most likely customizations to filter fields are as follows:

= To add another attribute to an existing filter field.

If you define a new attribute (see Section 6.5.3) you might want to include it
in an appropriate filter field.

e To create a new filter field.

If you define a new filter field, you also need to define a search filter that uses
it, or add the filter field to the list of filter fields for an existing search filter.

e To remove an attribute from a filter field.

If a filter field contains attributes that you never use in your DIT, or that you
do not want users to search on, then you can remove the attribute from the
list. DXIM always searches for all of the listed attributes, so by reducing the
list you can improve the performance of searches.

Note that a given filter field can be used by more than one search filter. If you
decide to delete an attribute from a filter field, remember that the lack of that
attribute might reduce the usefulness of the filter field in some of the search
filters that use it.

Customizing the Schema 6-33

v

Controlling Access to Your Directory
Information and Services

This chapter describes how to plan access controls for your DIT. Access controls
enable you to control the interrogation and modification of directory information.

This chapter also describes a method of controlling access to DSAs (rather

than to the information they hold). If you have implemented decDSA entries

and replication in the ways recommended by Chapter 4 and Chapter 5, then
controlling access to DSAs is not required, and its disadvantages outweigh its
advantages. However, if you have not implemented the recommended method, or
you have a strong requirement to control access to a specific DSA, this chapter
explains an alternative method.

7.1 The Default Access Control

Implementing access control is not mandatory; nor does access control have
to be implemented immediately. Compaq DSAs have a default access control
configuration that applies to all information until you decide to implement
something different.

By default, Compaq's DSAs allow everyone all access to all information except for
the user Passwor d attribute. Users are not allowed to display passwords or search
for them. For example, you cannot search for all entries with a specific password.

If this default level of access control is sufficient for your needs, then you do not
need to read this chapter.

However, it is likely that you will eventually want to implement more restrictive
controls, especially if other organizations will have access to your Enterprise
Directory. If so, proceed to Section 7.2.

7.2 The Access Control Template File

To simplify the task of implementing non-default access control, Compaq provides
a template file. The template file contains two DXIM commands that, when
completed and executed, create an access control subentry in your DIT. Your
task is to specify the name of the access control subentry, and the directory names
of the users who are to have management privileges.

If the template file does not meet your needs, you can customize it. You can
change and execute the template more than once, if you decide that you need to
change the access controls.

You can set up access control at the same time as you populate your DIT, or at
any time afterwards.

To plan the name of the access control subentry, see Section 7.3. If you want an
overview of the access controls defined in the template file, see Section 7.4.

Controlling Access to Your Directory Information and Services 7-1

Controlling Access to Your Directory Information and Services
7.3 Planning the Name of the Access Control Subentry

7.3 Planning the Name of the Access Control Subentry

This section recommends a simple way to implement access controls. It assumes
that you have planned your DIT as described in Chapter 5 and illustrated in
Figure 7-1.

Figure 7-1 also shows the recommended position for the access control subentry.
It is positioned immediately subordinate to the highest entry in the Abacus DIT.
As such, the access control subentry is replicated as part of Naming Context A.
Chapter 5 recommends that your equivalent of Naming Context A is replicated to
all DSAs.

Figure 7-1 Recommended Position for Creating an Access Control Subentry

) O=Abacus
Naming
CorKex=Access Control,

OU=Personnel

o)

OU=Research
People, etc'

oo

OU=Physics| (OU=Biology OU=Payroll

oo)

Naming
Context
D

Naming
Context
C

Foierod) (Foopne)

Naming
Context

B MIG0495

The name of the access control subentry shown in Figure 7-1 is
| C=US/ O=Abacus/ CN=" Access Control ".

Note

Subentries are a special class of entry to which normal structure rules do
not applyl. A subentry must be created as an immediate subordinate of
an entry that is at the top of a naming context. Unlike other classes, it
does not matter what class of entry the superior is, as long as it is at the
top of a naming context.

1 Another feature of subentries is that they are usually hidden from users of the

directory unless named explicitly. For example, if you search the directory or show
the subordinates of an entry, subentries are hidden by default. These two commands
provide a parameter that enables you to indicate that you want to see subentries.
Refer to the online help for the DXIM command line utility for further details of the
subentries control.

7—-2 Controlling Access to Your Directory Information and Services

Controlling Access to Your Directory Information and Services
7.3 Planning the Name of the Access Control Subentry

In this example, none of the other three naming contexts contain an access
control subentry. Any naming context that has no access control subentry can
inherit! the access controls specified for a superior naming context that is held
on the same DSA. Therefore, by replicating your equivalent of Naming Context A
to all DSAs, you can ensure that all the other naming contexts inherit the same
access controls.

Thus, creating one access control subentry entry in the recommended position has
the following advantages:

= You have consistent access controls for your entire DIT.

= You change access controls for your entire DIT by managing that single
subentry.

= You can analyze access control problems by reference to that single subentry.

Note that you could implement independent access controls for each naming
context, but unless there is a security requirement to do this, or you have not
followed Compaqg’'s recommended replication model, it merely complicates the
management of access control.

When you have decided where you need to create your access control subentry,
and what its name will be, the only other thing that you need to plan is which
users are to be information managers. Each directory information manager
needs to be represented by a directory entry, and each of those entries needs a
user Passwor d attribute. When you have all of this planned, you can complete
and execute the template file as described in Chapter 11.

If you want to know what access controls the file defines, see Section 7.4.

7.4 What the Access Control Template File Does

This section provides an overview of the access controls defined in the template
file.

If these controls are suitable for your directory information, then all you need to
do is insert the name of the access control subentry that the template file creates,
and the names of people who are to have management access to the directory.
You can then execute the file as described in Chapter 11.

The template defines four access control information items (AClitems), as follows:

= The"Directory Managers" AClitem.

This gives specified users full access to all information except passwords.
It indicates that the named users must provide their name and password
(simple authentication) in order to be granted this access.

e The "Authenticated users" AClitem.

This applies to users who have authenticated themselves to the directory, but
who are not directory managers. It enables such users to use the Compare
service to check passwords. This access is required by DSAs as part of normal
operation. Do not remove or override this AClitem.

« The "Unaut henti cat ed users" AClitem.

1 See Section 7.6 for a detailed discussion of the scope and inheritance of access controls.

Controlling Access to Your Directory Information and Services 7-3

Controlling Access to Your Directory Information and Services
7.4 What the Access Control Template File Does

This applies to users who do not authenticate themselves. It grants many
types of access, but excludes all forms of modification. It also explicitly denies
access to the user Passwor d attribute.

e The"Om entry" AClitem.

This applies to users who authenticate and then attempt to access their
own entry. It grants modification access to their entry, and full access to a
list of attributes. It permits a user to compare, add, and remove their own
user Passwor d attribute. It does not allow a user to delete or rename their
entry.

It also grants a user access to their own present ati onAddress,
protocol I nformation, and support edAppl i cati onCont ext attributes.
These attributes are specified so that Compaq's DSAs can keep their own
entries up to date. Do not remove or override this aspect of the AClitem.

Compaq suggests that these four AClitems should provide effective control to
your directory information, at least until you have had time to understand the
complexities of access control. Chapter 11 explains how to use the template file.

7.5 Customizing Access Controls

If the access controls specified by the template file do not meet your needs, you
can customize the file, or create a completely different file.

If you want to customize access controls, you really need to understand:

< Which access controls are required for the normal operation of the Enterprise
Directory itself.

Compaq DSAs are themselves users of the Enterprise Directory. You need
to ensure that they have the access that they need. This is discussed in
Section 7.5.1

= Which access controls are required by managers of directory information.

For example, the ability to change access controls is itself controlled by access
control. A directory information manager requires certain access rights.
These are discussed in Section 7.5.2.

= The composition of AClitems.

Each AClitem is composed of three elements. This is discussed in
Section 7.5.3.

< How AClitems that contradict each other are applied.

AClitems are ranked according to their precedence and how specific they

are about the user or the directory information they refer to. You need

to understand how this ranking works, so that you can assign the correct
precedence to a given AClitem. See Section 7.5.4 for a discussion of this topic.

= The DXIM command line syntax for defining access controls.

Appendix B documents the DXIM syntax for specifying access controls, and
the template file provides an excellent example.

7-4 Controlling Access to Your Directory Information and Services

Controlling Access to Your Directory Information and Services
7.5 Customizing Access Controls

7.5.1 Access Controls Required for Normal Operation of the Enterprise
Directory

Some of the details specified by the template file are required by Compaq's DSAs
themselves. If you customize the template file, you need to avoid changing those
details. If you create an entirely new template file, you need to incorporate these
details in it.

The "Aut henti cat ed User" AClitem specifies that authenticated users can check
the passwords of entries. This enables DSAs to check each other’s passwords
during normal operation. If you change this permission, DSAs might not be
able to verify each other’s identities, which can result in distributed operation
failures. A DSA might reject a connection from another DSA, or decide not to
attempt a connection to another DSA. This might prevent such routine activities
as replication or the chaining of user requests.

The "Oan entry" AClitem specifies that the directory user who owns an
entry has all access to the present ati onAddress, protocol I nformation, and
support edAppl i cati onCont ext attributes. If you change these permissions,
Compagq's DSAs will not be able to manage their own entries, and might stop
working. Do not change these details of the "Oa entry" AClitem.

7.5.2 Access Controls Required by Directory Information Managers

The access control template file includes some statements that are required by
directory information managers. If you customize the template file, you need to
avoid changing those details. If you create an entirely new template file, you need
to incorporate these details in it.

The "Directory Managers" AClitem specifies that managers have full access to
the t rust edDSAnane attribute. Do not change this permission. It is important for
managers to be able to add and remove this attribute, to indicate whether a DSA
is to be trusted by other DSAs.

Similarly, it is important that directory managers have full access to the
prescriptiveACl attribute, so do not change that permission. If nobody has
permission to manage the prescriptiveAC attribute, then once you have
implemented access control, you may have to refer to Compaq Enterprise
Directory for eBusiness Problem Solving for details of how to bypass access
controls temporarily, to fix your access controls.

7.5.3 The Composition of Access Control Definitions

All access controls are specified as values of the prescri ptiveACl attribute. The
prescriptiveAC attribute is a multivalued attribute. Each value is called an
access control information item (AClitem).

Each AClitem states the following three sets of information:
< Who this AClitem applies to
= What directory information this AClitem applies to

= What types of request are to be granted and/or denied for those users with
regard to that directory information

For example, an AClitem might state that a specific user is allowed to modify and
read specific attributes, such as passwords.

The following sections discuss the three elements of an AClitem in more detail.

Controlling Access to Your Directory Information and Services 7-5

Controlling Access to Your Directory Information and Services
7.5 Customizing Access Controls

7.5.3.1 Specifying What Users an AClitem Applies To
This section is only required if you want to customize access controls.

When you specify an AClitem, you must specify to whom it applies. This can be
done very specifically by means of a user’s directory name. It can also be done
less specifically, by reference to a directory subtree, to a gr oupOf Nanes entry, or
by the use of two keywords: OMNER and ALL.

These options are known as user classes, and they are documented in detail in
Appendix B.

The significance of the user classes is that when a user connects to the Enterprise
Directory, they have the option of identifying (authenticating) themselves. For
example, when you use the DXIM windows utility, you use the Authenticate
window to specify your name and password. When you use the DXIM command
line utility you can specify your name and password in a BIND command. The
Enterprise Directory can then check for the user’'s name in AClitems whenever
they try to access directory information.

A user who does not authenticate themselves to the Enterprise Directory, is
treated as an anonymous user. Typically, an anonymous user has fewer access
rights than an authenticated user.

Note

When you authenticate yourself, the DSA to which you bind provides
the relevant access to the information held by that DSA. However, if the
DSA needs to communicate with another DSA to satisfy your requests,
then the other DSA does not necessarily believe that you have been
authenticated adequately. The other DSA only believes that you have
been authenticated adequately if it trusts the DSA to which you are
bound and authenticated directly. If this trust does not exist between the
two DSAs, then the attempt to chain the user request will probably fail.

See Section 5.2.9 for full details of decDSA entries and DSA trust.

7.5.3.2 Specifying What Information an AClitem Applies To
This section is only required if you want to customize access controls.

When you specify an AClitem, you must specify what directory information the
AClitem applies to.

The set of options is as follows:

= You can control access to entries as a whole.

Granting access to entries is a prerequisite for most other controls. For
example, having access to particular attributes is useless unless you also have
access to entries as a whole.

= You can control access to specific attributes.

= You can control access more generally to all user attributes.

The schema makes a distinction between user attributes and operational
attributes. The access control syntax provides a means of indicating that an
AClitem applies to all user attributes, such as common names, surnames, and
telephone numbers.

< You can control access to specific operational attributes.

7-6 Controlling Access to Your Directory Information and Services

Controlling Access to Your Directory Information and Services
7.5 Customizing Access Controls

Operational attributes are usually hidden from users. Typical examples are
the t rust edDSAnane attribute which Compag DSAs use to check each other’s
security status, and the prescriptiveACl attribute. Operational attributes

are not displayed unless you request them explicitly.

You can specify a combination of these options in a single AClitem. For example,
you can specify a single AClitem that applies to entries as a whole, and to
specified attributes, and to specified operational attributes. These options are
known as item classes, and they are documented in more detail in Appendix B.

7.5.3.3 Specifying What Types of Request an AClitem Applies To
This section is only required if you want to customize access controls.

When you specify an AClitem, you must specify to what types of directory request
the AClitem applies. For example, you can specify that the AClitem controls the
use of the modify and delete services.

The definition of the different types of access to directory information is based on
the X.500 services, such as search, modify, create and delete. However, the types
of access are defined in more detail, such that you can give a user permission

to search, but prohibit them from using a particular attribute in the search
filter. Similarly, you can give a user permission to modify entries, but deny
modifications to a particular attribute.

The different types of request for which access control can be defined are known
as permissions, and they are documented in more detail in Appendix B.

7.5.4 How AClitems are Ranked According to Precedence and Specificity

An access control subentry may contain several AClitems. The access control
template file, for example, defines four AClitems (see Section 7.4). For each
user request for access to information, a DSA must decide which AClitems are
relevant. If multiple AClitems appear to be relevant, the DSA must decide which
AClitem is the most important.

The DSA makes this decision based on the AClitem precedence and how specific
the AClitem is about the operation that is being requested, and the user who is
requesting it.

If you define AClitems, you need to understand this decision making process so
that you can assign the correct precedence to each AClitem.

If a DSA finds that several AClitems refer to a given access right for a given user,
then the DSA only considers the AClitem of the highest precedence. All other
AClitems are ignored for this request.

If the highest precedence value is shared by multiple relevant AClitems, then the
DSA has to examine those AClitems and determine which is the most specific
about the user and the user request. For example, an AClitem that refers to "all
attributes"” is less specific than one that refers to a particular attribute or list of
attributes. Similarly, an AClitem that refers to "all users" is less specific than an
AClitem that refers to a particular user called John Smith.

The DSA determines which AClitem is the most specific about the access rights
and identity that are required for the operation that is being attempted, and
applies that AClitem.

Compaq Enterprise Directory for eBusiness Problem Solving provides further
information about this topic, and describes how to analyze your access controls
when they do not have the intended effect.

Controlling Access to Your Directory Information and Services 7-7

Controlling Access to Your Directory Information and Services
7.6 Access Control Scope and Inheritance

7.6 Access Control Scope and Inheritance

This section provides an overview of how a Compaq DSA applies access controls
to portions of its database, and how access controls are inherited from one portion
to another.

The basic rules of X.500 access control supported by Compag’s DSA are as follows:

= The unit of access control policy is the naming context.

If you grant a user a certain level of access to a naming context, then they
have that access to all entries in the naming context. Different users can
have different levels of access to the same naming context.

= If there are no access controls stated in a haming context, then the naming
context inherits the access controls from its directly superior naming context
(if there is one).

If the directly superior naming context has no access controls, then the next
most superior naming context’s access controls apply. If none of the directly
superior naming contexts have access controls (or there are no directly
superior naming contexts), then the default access controls apply. By default,
all users have all access to all information, except for user passwords, which
are not readable.

Note

If you replicate a naming context that has inherited access controls, then
those controls are also replicated, just as if the controls were part of the
naming context.

If you replicate a naming context that has no access control and does not
inherit any controls, then the shadow copy of the naming context may
inherit the access controls of a superior naming context on the shadow
DSA. This might mean that the same naming context can inherit different
access controls on different shadow DSAs, and that the shadow copies do
not have the same controls as the master copies.

To avoid having inconsistent access controls on different DSAs for the
same information, Compaq recommends that you set up access control as
described Section 7.3.

< Any naming context that has access control (that is, an
accessControl Subentry entry with a prescriptiveACl attribute) enforces
that access control. It is not affected by any access control from any other
naming context, and it is not affected by the default access control.

< As soon as any access control is specified or inherited for a given naming
context, then all access to that naming context is controlled by that access
control, and no other. None of the default access controls apply any longer.

If the specified or inherited access controls do not explicitly permit a
particular type of access, then that type of access is denied. For example, if
a naming context contains or inherits access controls that do not state that
modifying information is allowed, then it is not allowed.

7-8 Controlling Access to Your Directory Information and Services

Controlling Access to Your Directory Information and Services
7.6 Access Control Scope and Inheritance

For example, Figure 7-2 illustrates a DSA that holds four naming contexts.
The presence of an accessCont rol Subentry entry in a given naming context is
represented by an entry marked ACI.

Figure 7-2 Access Control in a DSA

/CN=DSA9

MIG0493

Naming Context W contains an accessCont rol Subentry entry with a
prescriptiveACl attribute. Access to Naming Context W is defined by that
entry.

Naming Context X does not contain an accessControl Subent ry entry. However,
it is directly subordinate to Naming Context W. It therefore inherits the access
controls defined for Naming Context W.

Naming Context Y contains an accessControl Subentry entry. Access to
Naming Context Y is defined by that entry. The fact that Naming Context Y is
subordinate to Naming Context W has no effect on Naming Context Y because it
has access controls of its own.

Naming Context Z does not contain an accessCont rol Subentry entry, and it is
not subordinate to any naming context that does. Therefore, the DSA applies the
default access controls to Naming Context Z.

Note

If Naming Context Z is a shadow copy of a haming context, then it may
be controlled by access controls that are inherited on the supplier DSA
and replicated to this DSA with Naming Context Z. In this case, the
accessControl Subent ry entry that controls Naming Context Z is actually
superior to that naming context (not shown in Figure 7-2).

Controlling Access to Your Directory Information and Services 7-9

Controlling Access to Your Directory Information and Services
7.7 Alternative Method of Controlling Access to DSAs

7.7 Alternative Method of Controlling Access to DSAs

This section explains how to implement security for accessing DSAs if you decide
not to follow the recommended method.

The recommended method involves using decDSA entries as described in
Section 4.5, replicating them to all DSAs, as described in Section 5.1.5, and
implementing access controls, as described in Section 7.1.

The advantages of implementing access controls as recommended are that:

= The recommended controls are replicated with the information, and therefore
apply consistently to all copies the information.

< The recommended controls are far more flexible and detailed than the controls
described in the following sections.

= The DSA applies the recommended controls to all users as soon as they are
implemented, not just to new connections.

= The controls are not dependent on volatile configuration details.

< The recommended controls can provide different levels of access to different
parts of the DIT, whereas the controls described in the following sections
apply to all information in the relevant DSA.

It is also possible to implement a mixture of the recommended method and the
methods described in the following sections. However, this makes diagnosing
problems more difficult, as you need to understand how the various methods of
control interact. It is therefore advisable to use only one method.

7.7.1 Alternative Method of Configuring DSA Trust

To make a Compag DSA trust another DSA, you can use the Trusted DSA Name
characteristic attribute of the DSA entity. The attribute can contain a list of
distinguished names (AE titles) of DSAs that are to be trusted by this DSA. For
example, you could set the attribute as follows:

NCL> SET DSA TRUSTED DSA NAMES -
_NCL> {"/c=us/ o=abacus/ cn=DSA1" , "/c=us/o=abacus/cn=DSA2"}

Each name listed in the Trusted DSA Names attribute must match the AE Title
attribute of the relevant DSA.

The DSA trusts all DSAs whose distinguished names (AE titles) are listed in
that attribute. The effect of this trust is that the DSA permits these trusted
DSAs to access its information, and trusts these DSAs when they claim to be
acting on behalf of authenticated users. This means that a user can authenticate
themselves to one DSA, and have access to information on another DSA.

In order for the DSA to trust the named DSAs, those DSAs must specify their
password when they bind to this DSA. This DSA checks the password, either by
reference to the entry in the directory that represents the DSA (if there is such
an entry), or by reference to an Accessor entity that has the DSA's name. For
example, the following command creates an Accessor entity for a DSA:

NCL> CREATE DSA ACCESSCR "/ C=US/ O=Abacus/ CN=DSA2" -
_NCL> PASSWORD f | obadob

7-10 Controlling Access to Your Directory Information and Services

Controlling Access to Your Directory Information and Services
7.7 Alternative Method of Controlling Access to DSAs

This Trusted DSA Name characteristic attribute serves the same purpose as
the trust edDSAname attribute of decDSA entries. You are recommended to use
the attribute of decDSA entries if possible. However, DSAs only refer to the

t rust edDSAnane attributes of decDSA entries that they hold locally. That method
therefore fails if you do not implement replication as discussed in Section 5.1.5.
Not following the recommendation for replication is the most likely reason you
would need to use this alternative method.

Note

A DSA only checks the value of the Trusted DSA Name attribute when it
receives a new connection request. It either accepts or rejects the request
accordingly. Any changes to the value of the Trusted DSA Name attribute
have no effect on existing connections. You need to disable and re-enable
the DSA to make sure that there are no existing connections benefitting
from a level of access that you no longer want to provide.

7.7.2 Alternative Method of Configuring User Security

If you do not want to implement access controls, as described in Section 7.1, or
you want to override access controls for a specific DSA, you can use characteristic
attributes of the DSA entity to specify the names of directory users who are
allowed to access information. If you use either of these attributes, then

any users who are not listed are not allowed access. This is therefore a very
restrictive method of providing security, and probably not suitable for most DSAs.

This method is not recommended because it has to be managed manually and
independently for each DSA, and because it does not provide the level of detail or
flexibility that the recommended access controls provide.

The characteristic attributes only allow you to specify the names of users who can
read directory information and/or users who can modify directory information. If
you implement access controls as well as these attributes, then the characteristic
attributes can override the access controls. For example, if you set up a list of
users who are allowed to modify information, then any user who is not on that
list is unable to modify information regardless of the permissions defined for them
using AClitems.

The following examples show how to configure these two attributes:

NCL> SET DSA WRI TER NAMES -
_NCL> {"/c=us/ o=abacus/ ou=sal es/ cn=Jon Ml e" , -
_NCL> "/c=us/o=abacus/ ou=sal es/ cn=Betty Hughes"}

NCL> SET DSA READER NAMES -
_NCL> {"/c=us/ o=abacus/ ou=sal es/ cn=Jan Thorp" , -
_NCL> "/c=us/o=abacus/ ou=sal es/ cn=Dave Hemmi ngl y"}

The two users listed in the first command are allowed to modify information
(for example, using DXIM MODIFY, RENAME, CREATE, DELETE, and SET
commands), subject to the provision of a password and to the access controls
defined for them using AClitems. Other users are not allowed to modify
information, regardless of any AClitems defined for them. Being listed as a
writer automatically enables these two users to read information as well, subject
to any AClitems. These two users are therefore implicit members of the reader
list as well.

Controlling Access to Your Directory Information and Services 7-11

Controlling Access to Your Directory Information and Services
7.7 Alternative Method of Controlling Access to DSAs

Similarly, the two users listed in the second command are allowed to read
information on this DSA (for example, using DXIM SHOW, SEARCH, and
COMPARE commands), subject to the provision of a password and to the access
controls defined for them using AClitems. These two users cannot modify
information, regardless of any permissions specified for them in AClitems.
Their absence from the Writer Names attribute prevents them from modifying
information. Other users are not allowed to read information (except for those
listed as writers), regardless of any AClitems defined for them.

Note that these attributes do not allow you to specify detailed access controls;
they simply allow you to identify "readers"” and "writers".

In order for the DSA to permit the named writers and readers the relevant access
to information, the users must provide their name and password when they bind

to the DSA. The DSA checks the password, either by reference to the entry in the
directory that has the user’s name, or by reference to an Accessor entity that has
the user’s name. For example, the following command creates an Accessor entity

for Jon Mole:

NCL> CREATE DSA ACCESSCR "/ C=US/ O=Abacus/ OU=Sal es/ CN=Jon Mbl e" -
_NCL> PASSWORD flinflam

You need to use a similar command for every writer and reader who requires
access to a given DSA, but who is not represented by a directory entry.

Note that the Accessor entity is specific to a single DSA. Such entities would have
to be created manually on each DSA that uses this method of controlling access
to DSAs. Furthermore, the Accessor entity is volatile information. When you
use the NCL DELETE DSA command, all Accessor entities are lost, and must

be reconfigured when you next start the DSA. If a user’s password changes, then
all Accessor entities that represent the user must be modified independently to
reflect the change.

Note also that a DSA only checks these attributes and entites when it receives
a new connection request. It either accepts or rejects a connection accordingly.
Any changes to the configuration have no effect on existing connections. You
need to disable and re-enable the DSA to make sure that there are no existing
connections benefitting from a level of access that you no longer want to provide,
or to make sure that a user gains the benefit of an increased level of access from
reader to writer.

For further details about the Writer Names and Reader Names attributes, and
the Accessor entity, refer to the online help for the Directory Module within the
NCL director.

The management overhead of this method of controlling access to DSAs is
considerably greater than the recommended method.

This method of controlling access might be suitable for DSAs that hold very
sensitive information. You can ensure that only the named users have access.
Note that these controls are DSA-specific, unlike the AClitems described in
Section 7.1.

This method might also be useful if you want to temporarily restrict access to
a DSA, without having to amend the access controls implemented according to
Compagq’s advice.

7-12 Controlling Access to Your Directory Information and Services

Controlling Access to Your Directory Information and Services
7.7 Alternative Method of Controlling Access to DSAs

The configuration of these attributes on one DSA has no effect on access to

any other DSA. A user might be able to read the sensitive information from some
other DSA that holds a copy of it and does not have these characteristic attributes
configured.

Controlling Access to Your Directory Information and Services 7-13

Part |l

Set Up

This part describes how to set up your directory information and Enterprise
Directory according to your plan.

Chapter 8 describes how to configure a DSA to hold naming contexts and to
replicate them to and from other DSAs.

This chapter is essential reading, although the sections about replication
might not be relevant to all readers.

Chapter 9 describes how to configure Compagq’s directory applications so that
they can connect to a DSA.

This chapter is essential reading unless you do not want to use Compagq’s
directory applications.

Chapter 10 describes how to use Compagq’s directory applications to create
directory entries.

This chapter is not essential. Compagq’s directory applications provide online
help, which might be all you require. If you do not want to use Compaqg’s
directory applications, then you need to refer to the documentation provided
with your preferred application.

Chapter 11 describes how to use the access control template file.

This chapter is only required if you want to control access to your directory
information, and you want to use the template file rather than develop your
own.

38

Configuring DSAs

This chapter explains how to configure each of your DSAs. It assumes that you
have completed the planning described in Part I1.

Section 8.1 documents some important restrictions and recommendations that
will help you when you configure your DSA.

Section 8.2 describes how to use the new DSA configuration utility to configure a
presentation address and a temporary AE title for your DSA. You may have used
the DSA configuration utility already as described in Section 5.2, because it is an
easy way to generate presentation addresses you need for your worksheets. If so,
you do not need to use the utility again.

Section 8.3 describes how to create a DSA and explains what happens during
creation. Section 8.3.1 describes how to set the planned AE title for a DSA. The
DSA configuration utility only sets a temporary AE title; you need to set the AE
title as planned in Section 5.2.

Section 8.3.2 and Section 8.3.3 describe how to set a DSA's Password and the
Volatile Modifications attributes, which are both recommended.

Section 8.3.4 describes how to set DSA Presentation Addresses. Section 8.3.5
describes the level of support for LDAP protocols, and how to set up the LDAP
port.

Section 8.4 to Section 8.7 describe how to implement the planned DIT structure
and distribution, and how to enable a DSA, and Section 8.8 shows how to create
directory entries to represent your DSAs. The commands are documented in the
order that you are most likely to use them the first time you configure a DSA.
Section 8.9 provides a summary and example of these tasks. You will need your
planning worksheets (see Chapter 5).

Section 8.10 explains how to implement replication. It also describes how you can
customize replication, which was not supported in previous versions.

Section 8.11 and Section 8.12 describe how to disable and delete a DSA.

Section 8.13 explains how to automate the startup and shutdown of a DSA on
OpenVMS systems.

Configuring DSAs 8-1

Configuring DSAs
8.1 Notes on Configuring a DSA

8.1 Notes on Configuring a DSA

The following sections explain some restrictions and requirements that you need
to be aware of when you configure a DSA entity and its subentities, such as
Naming Context entities and Subordinate Reference entities.

8.1.1 Management Entities Must Be Created in Order of Superiority

When you configure a given DSA, you must create its Naming Context and
Subordinate Reference entities in their order of superiority in the DIT (top down).

For example, a Naming Context or Subordinate Reference called / C=US/ O=Abacus
must be created before a Naming Context or Subordinate Reference called
| C=US/ O=Abacus/ OU=Sal es.

This restriction helps to prevent you from configuring your DSAs in ways that
can cause problems during Enterprise Directory operation.

8.1.2 Configuring Entities of Different Types with the Same Name

If you need to create a Naming Context and a Subordinate Reference with the
same name on the same DSA, you must create the Subordinate Reference first.

This situation applies to a DSA that is to hold contiguous master naming
contexts, as shown in Figure 8-1.

Figure 8-1 Contiguous Naming Contexts

CN=DSA

MIG0499

The DSA requires a subordinate reference to naming context Y, even though Y is
to be held locally. The subordinate reference has the same name as the naming
context to which it refers.

In such cases, you need to create the Subordinate Reference entity before you
create the Naming Context entity of the same name. This restriction helps you to
remember the requirement for the Subordinate Reference.

8.1.3 Configuring a DSA that Already Holds Information

If you configure a DSA in stages, adding new naming contexts at different times,
you might find that you have created them in the wrong hierarchical order

(see Section 8.1.1). Also, the presence of entities created automatically during
replication prevents the creation of directly superior entities.

If a DSA already holds information subordinate to an entity you attempt to
create, the DSA returns the following messages:

REASON: Has subor di nat es.
Description: The DSA already holds entries or entities subordinate
to the entity being created

8-2 Configuring DSAs

Configuring DSAs
8.1 Notes on Configuring a DSA

Refer to Compaq Enterprise Directory for eBusiness Problem Solving for details
of how to identify the relevant subordinates, identify whether they are master
or shadow information, and remove them so that you can create the entities you
require above them. Alternatively, you might decide to create the new naming
context on some other DSA, bypassing the problem.

Because of the inconvenience of having to remove existing information before
creating superior information, it is highly advisable to implement your
information in order of superiority, and to implement replication only after
configuring as many DSAs as possible.

8.1.4 Configuring a DSA Remotely

In the following sections, it is assumed that you manage each DSA entity from an
account on that entity’s local system.

You can use NCL commands remotely. However, for most commands this requires
proxy access to a privileged account on the remote system, or the specification of
a name and password on each NCL command. See the NCL documentation for
details of specifying management access controls in NCL commands if you want
to manage entities remotely.

Also, if you want to use NCL on a system that does not run DECnet—Plus to
manage a remote Compaq DSA, then you may need to use the following NCL
command:

NCL> SET NCL TRANSPORT TCPIP

8.1.5 DSA Configuration Details are Permanent

The configuration tasks described in this chapter only need to be done once for
each DSA. For example, a DSA's AE Title attribute needs to be configured when
you first create a DSA, but only the first time. The DSA stores its configuration
details in its database files, and configures itself every time you create it.

Once a DSA has been configured, the only commands that need to be repeated
are CREATE DSA, ENABLE DSA, DISABLE DSA, and DELETE DSA. These are
normally executed automatically during system startup and shutdown. The DSA
installation procedure adds the DSA startup and shutdown procedures to the
system procedures on Tru64 UNIX systems. Section 8.13 explains what you need
to do to provide automatic startup and shutdown of DSAs on OpenVMS systems.

The only exception to this behaviour is the Accessor entity, which is not used for
any of the configuration described in this chapter. The Accessor entity is deleted
when you delete a DSA, and has to be manually recreated when you recreate the
DSA, assuming you still need the entity.

8.1.6 NCL Command Line Help is Available Online

This chapter does not attempt to provide a full description of all NCL commands
that you can use for the DSA. It concentrates on the commands you need to
configure a typical Enterprise Directory.

If you want further details about any of the NCL commands used in this chapter,
or about the other attributes of the DSA entities and subentities, or about the
events and messages generated by the DSA, refer to the NCL online help. To
access the Enterprise Directory help, use the following command:

NCL> HELP DI RECTORY_MODULE

Configuring DSAs 8-3

Configuring DSAs
8.1 Notes on Configuring a DSA

The help module for the Enterprise Directory provides full details of all entities,
attributes, directives, events, and errors of the OpenVMS Enterprise Directory

for eBusiness. Compaq Enterprise Directory for eBusiness Problem Solving also
provides information about the NCL interface to the DSA, and explains how to

respond to the various error messages.

8.2 Running the DSA Configuration Utility
This version of the Enterprise Directory provides a DSA configuration utility.

The main benefit of this utility is that it configures a DSA's presentation address,
and sets the DSA's LDAP port number to 389, rather than requiring you to plan
and configure this manually.

The utility also sets a temporary AE title for a DSA, but you need to replace
this temporary value with the value you planned in Section 5.2. The temporary
value enables you to start the DSA and experiment with it even before you have
planned your final configuration properly.

If you have already used the DSA configuration utility, as described in
Section 5.2.3, then there is no need to use it again.

U;IG; You need superuser privileges to run the configuration utility. To run
the utility, type:
[var/dxd/ scripts/dsa_configure
.
You need SYSPRV and OPER privileges to run the configuration
OpenVMS | utility. To run the utility, type:

$ @YS$STARTUP: DXDSDSA_CONFI GURE
.

The utility only sets an AE title for your DSA if the DSA does not already have
one. It never overwrites an existing AE title. If the DSA has no AE title, the
utility sets one based on the name of the DSA system.

If your privileges are insufficient, the utility displays an error message and exits.

8-4 Configuring DSAs

Configuring DSAs
8.3 Creating DSAs

8.3 Creating DSAs

Create a DSA entity on each system that is to host a DSA.
NCL> CREATE DSA

If the command fails, see Compaq Enterprise Directory for eBusiness Problem
Solving.

A created DSA can be configured, but needs to be enabled before it can receive
connections from directory applications and other DSAs. Before you enable
the DSA for the first time, you need to configure the planned AE Title and
Password attributes. The DSA configuration utility (see Section 8.2) sets a
temporary AE title which you need to replace with the planned value. You
are also recommended to set the Volatile Modifications attribute to True. See
Section 8.3.1, Section 8.3.2, and Section 8.3.3 for details.

Tru64

UNIX This version of the DSA uses memory image files rather than the

snapshot files of previous versions. Memory image files provide
superior startup and shutdown times, especially for very large
databases. They are stored in /var/dxd.

Snapshot files are only supported for a small number of reasons:
< So that you can upgrade from a previous version.
= So that you can load a new schema file (see Chapter 6).

e So that you can defragment the memory image file (see
Section 8.14).

= So that you can upgrade to a future version of the Enterprise
Directory.

Different versions of the DSA may use different memory
structures. A memory image file cannot, therefore, be supported
through an upgrade.

For those occasions when you need snapshot files, the CREATE DSA
and DELETE DSA commands support new options:

NCL> CREATE DSA FROM SNAPSHOT
NCL> DELETE DSA TO SNAPSHOT

If a given task requires a snapshot file, the documentation tells you
what to do.
.

8.3.1 Setting DSA AE Titles

This version provides a DSA configuration utility that sets an AE title for your
DSA. However, the utility only sets a temporary AE title which you need to
replace with the value that you planned to conform to your naming policy (see
Section 4.5).

You do not need to set the planned AE title immediately. You can enable a DSA
and experiment with it using the temporary AE title set by the DSA configuration
utility. However, you need to set the planned AE titles before DSAs can interwork
properly, for example, for replication.

Configuring DSAs 8-5

Configuring DSAs
8.3 Creating DSAs

The DSA must be in state OFF when you set its AE Title. The syntax is:
SET DSA AE TITLE "<AEtitle>"
where <AEtit|e> is the AE Title for this DSA, specified in quotation marks.
For example:
NCL> SET DSA AE TITLE "/ C=US/ O=Abacus/ CN=DSAL"
Remember that a DSA's AE Title is identical to the distinguished name of the
decDSA entry that represents (or will represent) the DSA.
8.3.2 Setting DSA Passwords
The DSA can be either ON or OFF when you set its Password. The syntax is:

SET DSA PASSWORD " passwor d"

where passwor d is the password of this DSA. The password can be up to 128
characters long, and is case-sensitive.

The value of the Password attribute of the DSA entity must match the value of
the user Passwor d attribute of the decDSA entry that represents this DSA.

If the values do not match, then this DSA will not be able to prove its identity
to other DSAs. This prevents replication, and restricts the distribution of user
requests.

If you ever change a DSA's password, remember to configure that change using
both NCL and the DXIM Set Password command, so that the value in the DSA’s
directory entry always matches the Password attribute of the DSA entity.

8.3.3 Setting DSA Volatile Modifications

This is an optional DSA configuration task, but one that is recommended for
performance reasons.

By default, a DSA always writes modifications to disk immediately, and delays
sending a success response to the user until this has been done. This behaviour
ensures that modifications are not lost in the event of an unexpected shutdown.

However, Compag suggests that you configure the DSA to allow volatile
modifications. This means that changes are written to disk after a delay

of up to fifteen seconds. During this brief delay there is a possibility of an
unexpected shutdown causing some loss of recent modifications. However, there
is a significant performance advantage in allowing volatile modifications.

Unless your DSA has a strong requirement to guarantee no loss of modifications,
Compaq recommends that you configure the DSA as follows:

ncl > SET DSA VOLATI LE MODI FI CATI ONS TRUE

8.3.4 Setting DSA Presentation Addresses

DSA presentation addresses are most easily configured using the DSA
configuration utility (see Section 8.2). There should never be any need to
configure them manually. However, it is possible to use NCL to set a DSA's
presentation address, using the following syntax:

SET DSA PRESENTATI ON ADDRESS ' <paddr >’

8-6 Configuring DSAs

Configuring DSAs
8.3 Creating DSAs

where <paddr > is the presentation address for this DSA, specified in single
guotation marks. For example:

NCL> SET DSA PRESENTATI ON ADDRESS ' " DSA"/"DSA"/ " DSA"/ NS+49200190400012, CLNS
The DSA must be in state OFF when you set its Presentation Address.

If a DSA has multiple network addresses, for example for RFC1006, X.25, and
CLNS, separate each network address with the | character, for example:

NCL> SET DSA PRESENTATI ON ADDRESS ' " DSA"/" DSA"/ " DSA"/ NS+490011AA0000021, CL
NS| NS+37102251220021, CONS| RFC1006+11. 22. 33. 44, RFC1006’

Do not attempt to break a presentation address across multiple command lines;
simply wrap the address as shown, or use a wider terminal window.

Note that the display conventions that NCL uses for presentation addresses are
not the same as the input conventions, and are not consistent across all platforms.
If you want to cut and paste an address from a display into a command, be careful
to select only the address itself, and to enclose the address in single quotes. NCL
supports the use of single quotes in commands, as shown in the example above,
consistently on all platforms.

8.3.5 Setting DSA LDAP Port

The X.500 DSA supports both the LDAP V2 and V3 protocols. This allows LDAP
clients to access the X.500 directory.

The Enterprise Directory listens for LDAP requests on that port when the DSA is
enabled. The following command is used to set up an LDAP port:

NCL> SET DSA LDAP PORT 389

8.4 Creating a Naming Context Entity

A DSA can be either ON or OFF when you create a Naming Context entity.
Remember that you must only create Naming Context entities for the naming
contexts for which the DSA is the master DSA. Any naming contexts that are
to be held as replicated copies are represented by entities that are created
automatically during replication.

The syntax is:
CREATE DSA NAM NG CONTEXT "<di sti ngui shed- nane>"

where <di sti ngui shed- nane> is the name of a naming context, in quotation
marks. For example:

NCL> CREATE DSA NAM NG CONTEXT "/ C=US/ O=Abacus"

Refer to the DSA worksheet to find out what naming contexts to specify for a
given DSA. Remember that you must create subentities of the DSA in their order
of hierarchical superiority (see Section 8.1).

If the command fails, see Compaq Enterprise Directory for eBusiness Problem
Solving.

Configuring DSAs 8-7

Configuring DSAs
8.4 Creating a Naming Context Entity

8.4.1 Configuring Consumer Access Points on Naming Contexts

It is possible to specify the Consumer Access Point attribute in a CREATE DSA
NAMING CONTEXT command, to indicate which DSAs are primary consumers
of a naming context. However, it is advisable to wait until the relevant consumer
DSAs are actually ready to respond to replication requests. This prevents the
supplier DSA from attempting to supply information before the consumers are
ready to receive it.

If you want to specify the attribute in the CREATE command, the syntax is as
follows:

CREATE DSA NAM NG CONTEXT "<di sti ngui shed_name>" -
CONSUMER ACCESS PO NT -
{[AE TITLE = "<AEtitle>", PRESENTATI ON ADDRESS = ’<paddr>']}

where <di sti ngui shed- nane> is the name of a naming context in quotation
marks, <AEtit| e> is the AE title of a consumer DSA in quotation marks, and
<paddr > is a presentation address of a consumer DSA in single quotation marks.

If the Naming Context is to be supplied to more than one primary consumer DSA,
details of each consumer can be specified, as follows:

CREATE DSA NAM NG CONTEXT "<di sti ngui shed_nane>" -

CONSUMER ACCESS PO NT -

{[AE TITLE = "<AEtitle>", PRESENTATI ON ADDRESS = '<paddr>'], -
[AE TITLE = "<AEtitle>", PRESENTATI ON ADDRESS = '<paddr>']}

The {} characters enclose a comma separated list, with each access point enclosed
by [] characters.

If you do not specify the Consumer Access Point on the CREATE command, then
you use the SET DSA NAMING CONTEXT command when you are ready to
implement replication, as shown in Section 8.10. Section 8.10 also shows an
example of how to implement secondary shadowing, which always requires the
use of the SET command, because shadow naming contexts are never created
manually.

8.5 Creating a Subordinate Reference Entity
To create a Subordinate Reference entity, use the following command syntax.

CREATE DSA SUBORDI NATE REFERENCE " <di st i ngui shed- nane>" -

ACCESS POINT -

{[AE TITLE = "<AEtitle>", PRESENTATI ON ADDRESS = '<paddr>']}, -
COPY ACCESS POINT -

{[AE TITLE = "<AEtitle>", PRESENTATI ON ADDRESS = '<paddr>']}

where <di sti ngui shed- nane> is the name of a subordinate naming context in
guotation marks, <AEtit| e> is an application entity title in quotation marks of a
DSA that holds the naming context, and <paddr > is the presentation address of a
DSA that holds the naming context.

For example, the following command sets up a Subordinate Reference entity that
provides a reference to the naming context called / C=US/ O=Abacus/ OU=Sal es:

NCL> CREATE DSA SUBORDI NATE REFERENCE "/ C=US/ O=Abacus/ OU=Sal es" -

_NCL> ACCESS PO NT -

_NCL> {[AE TITLE = "/ C=US/ O=Abacus/ CN=DSA2", -

_NCL> PRES ADDRESS='"DSA"/"DSA"/"DSA"/ NS+49AA001992AAA00000000, CLNS']}, -
_NCL> COPY ACCESS PO NT -

_NCL> {[AE TITLE = "/ C=US/ O=Abacus/ CN=DSA4", -

_NCL> PRES ADDRESS='"DSA"/"DSA"/" DSA"/ NS+49AA001992AA900000000, CLNS']}

8-8 Configuring DSAs

Configuring DSAs
8.5 Creating a Subordinate Reference Entity

The keywords PRESENTATI ON ADDRESS are abbreviated in this example, to save
space.

The Access Point attribute contains information about the master DSA of the
naming context for which this is a reference. The Copy Access Point attribute
contains information about a shadow DSA for the subordinate naming context.

If you want to specify more than one Copy Access Point, because you know of
more than one shadow DSA for the subordinate naming context, use the following
syntax:

CREATE DSA SUBCRDI NATE REFERENCE " <di sti ngui shed- nane>" -
ACCESS PONT -
{[AE TITLE = "<AEtitle>", PRESENTATI ON ADDRESS = '<paddr>']}, -
COPY ACCESS PONT -
{[AE TITLE = "<AEtitle>", PRESENTATI ON ADDRESS = ' <paddr>'],
[AE TITLE = "<AEtitle>", PRESENTATI ON ADDRESS = '<paddr>'], -
[AE TITLE = "<AEtitle>", PRESENTATI ON ADDRESS = '<paddr>']}
You need to specify at least one attribute for each subordinate reference, although
it can be either an Access Point attribute or a Copy Access Point attribute.

Refer to the worksheet to find out what Subordinate Reference entities to create
for a given DSA, and what presentation addresses and AE titles to specify for the
attributes.

If the command fails, see Compaq Enterprise Directory for eBusiness Problem
Solving.

You can use the NCL SET, ADD, REMOVE, and SHOW directives to manage the
access point information for the Subordinate Reference entity. For example, if a
Subordinate Reference entity has a Copy Access Point attribute that contains an
incomplete list of DSAs that hold copies of the naming context, you can use the
ADD command to add further access points. Similarly, you can use the REMOVE
command to remove access points from the list.

8.6 Creating a Superior Reference Entity
To create a Superior Reference entity, use the following command syntax:

CREATE DSA SUPERI OR REFERENCE -
ACCESS POINT -
([AE TITLE = "<AEtitle>", -
PRESENTATI ON ADDRESS = ' <paddr>'] }

where <AEtit|e> is an application entity title, and <paddr > is a presentation
address of a superior DSA.

For example, the following command sets up a superior reference for a DSA to a
superior DSA called "/ C=US/ CN=Nat i onal DSA":

NCL> CREATE DSA SUPERI OR REFERENCE -

_NCL> ACCESS PO NT -

"NCL> {[AE TITLE = "/C=US/ CNeNat i onal DSA", -

"NCL> PRESENTATI ON ADDRESS = ' "DSA"/"DSA"/ " DSA"/ NS+12341234123414, CLNS]}

You only specify details of one superior DSA; multiple access points are not
permitted. The superior DSA can be either a master DSA or a shadow DSA.

Refer to your worksheet DSA to find out what Superior Reference entity, if any, a
given DSA requires.

If the command fails, see Compaq Enterprise Directory for eBusiness Problem
Solving.

Configuring DSAs 8-9

Configuring DSAs
8.7 Enabling DSAs

8.7 Enabling DSAs

The ENABLE DSA directive puts a DSA into state ENABLING. When the DSA
has finished enabling, it goes into state ON. You cannot enable a DSA unless the
AE Title and Presentation Address attributes are configured.

The command syntax is:
NCL> ENABLE DSA

When in state ON, a DSA can receive connections from directory applications
and other DSAs. For example, you can use DXIM to bind to the DSA and create
and display directory entries. In state ON, the DSA can also receive replication
requests from other DSAs.

If the command fails, see Compaq Enterprise Directory for eBusiness Problem
Solving.

8.8 Creating Directory Entries to Represent Your DSAs

When you have configured the DSA that holds your organization’s highest naming
context, you can create the directory entries that represent your DSAs. If you
follow Compag’s recommendations, these entries are part of your highest naming
context.

The DSA entries were planned in Section 4.5 and the DXIM commands that you
use to create them were planned in Section 5.2.9.1. You can now create those
entries, although you need to create their parent entry as well. For example:

1. Configure application defaults on the system that runs the DSA that holds
your highest naming context.

Section 9.1 describes the DUA configuration utility.

2. Invoke the DXIM command line utility, as follows:

Tru64 ;
UNIX $ dxim-c
L4
$ DXI M/ | NTERFACE=CHARACTER CELL
OpenVMS .

3. Create the entry at the top of the highest naming context. For example, the
Abacus directory manager types:

dxim> create / C=US/ O=Abacus attributes objectd ass=0rganization

4. Create the entries to represent your DSAs. For example, the Abacus manager
uses the following command to create the entry for CN=DSA1.

dxi m> create /C=US/ O=Abacus/ CN=DSAL -

_dxinme attributes -

_dxim> obj ect O ass=(decDSA, DSA, appl i cationEntity), -
_dxi > trust edDSANanme="/ C=US/ O=Abacus/ CN=DSA1", -
_dxi m> user Passwor d=unguessabl e-textstring, -

_dxim> presentationAddress=""DSA"/"DSA"/ " DSA"/ NS+49004005002B0AEBDB21, CLNS'

Use a sequence of DXIM commands like this to create entries to represent
each of your Compaq DSAs. Remember that the user Passwor d attribute is
case sensitive, so you need to specify the same case as you used in NCL SET
DSA PASSWORD command.

8-10 Configuring DSAs

Configuring DSAs
8.8 Creating Directory Entries to Represent Your DSAs

If one or more of the DSA entries already exist, this is because Compag DSAs
attempt to create them automatically. This is not a problem.

8.9 Summary of Configuration

When you have created all of the Naming Context entities and Subordinate
References for a DSA, then the DSA is ready to be populated. Section 8.8 shows
how to begin populating your highest naming context to create the entries to
represent your DSASs.

It is possible to configure and populate one naming context at a time, if you
prefer. It is not advisable to populate a naming context before configuring the
subordinate references related to that naming context.

The commands described in Sections 8.3 to 8.7 provide a distributed Enterprise
Directory. Note that consumer information has not yet been configured, so
replication is not yet implemented.

Also, only your equivalent of CN=DSAL has a full set of knowledge about

naming contexts held by other DSAs. The other DSAs are going to get these
references automatically when they consume copies of the Naming Context called
| C=US/ O=Abacus. Section 8.10 explains how to implement replication.

If you do not want to implement replication, then the alternative solution is to
give each DSA a Superior Reference entity that identifies your equivalent of
CN=DSAL. However, that solution greatly increases the workload of CN=DSAL, and if
that DSA is unavailable for any reason, the usefulness of your whole Enterprise
Directory is greatly reduced. By implementing replication as recommended, the
workload of your Directory Service is shared by your DSAs, and performance is
improved.

The example in Section 8.9.1 shows how the worksheet for CN=DSAL (see
Chapter 5) translates into a sequence of configuration commands.

8.9.1 Examples of Configuring DSAs

This section shows how the worksheets for CN=DSAL (see Chapter 5) translates
into a sequence of configuration commands.

The completed worksheet for CN=DSAL is shown in Figure 8-2.

Configuring DSAs 8-11

Configuring DSAs
8.9 Summary of Configuration

Figure 8-2 Worksheet for CN=DSAL

Worksheet for CN=DSA1
AE Title ="/C=US/O=Abacus/CN=DSA1"
Password = unguessable-textstring

Pres Addr = ""DSA"/"DSA"/"DSA"/NS+49004005002BOAEBDB21,CLNS’
LDAP Port = 389

Naming Contexts

(A) /c=us/o=abacus (master)

consumer AE Title = "/C=US/O=Abacus/CN=DSA2"

Pres Addr ="DSA"/"DSA"/"DSA"/NS+49aa001992aaa0000000,CLNS’
consumer AE Title = "/C=US/O=Abacus/CN=DSA3"

Pres Addr =""DSA"/"DSA"/"DSA"/NS+49aa001992aa20000000,CLNS’
consumer AE Title = "/C=US/O=Abacus/CN=DSA4"

Pres Addr =""DSA"/"DSA"/"DSA"/NS+49aa001992aa90000000,CLNS’

Subordinate References

(B) /C=US/O=Abacus/OU=Sales
master AE Title = "/C=US/O=Abacus/CN=DSA2"
Pres Addr =""DSA"/"DSA"/"DSA"/NS+49aa001992aaa0000000,CLNS’
copy AE Title = "/C=US/O=Abacus/CN=DSA4"
Pres Addr ="'DSA"/"DSA"/"DSA"/NS+49aa001992aa90000000,CLNS’

(C) /C=US/O=Abacus/OU=Research
master AE Title = "/C=US/O=Abacus/CN=DSA6"
Pres Addr = "DSA"/"DSA"/"DSA"/NS+49aa0019922aa22000000,CLNS’
copy AE Title ="/C=US/O=Abacus/CN=DSA2"
Pres Addr ="DSA"/"DSA"/["DSA"/NS+49aa001992aaa0000000,CLNS’
copy AE Title = "/C=US/O=Abacus/CN=DSA4"
Pres Addr =""DSA"/"DSA"/"DSA"/NS+49aa001992aa90000000,CLNS’

(D) /C=US/O=Abacus/OU=Personnel
master AE Title = "/C=US/O=Abacus/CN=DSA5"
Pres Addr ="DSA"/"DSA"/["DSA"/NS+49aa001992aa30000000,CLNS’
copy AE Title = "/C=US/O=Abacus/CN=DSA6"
Pres Addr = "DSA"/"DSA"/"DSA"INS+492a0019922aa22000000,CLNS’

This DSA will be the master DSA for the highest naming context in the Abacus
DIT. It will supply copies of that naming context to three other DSAs. However,

MIG0276

consumer details will not be specified yet (see Section 8.10).

The DSA will have three subordinate references. Each of these includes details of
the master DSA and all shadow DSAs for the three subordinate naming contexts.

The following sequence of NCL commands configures the DSA to implement these

plans.

8-12 Configuring DSAs

Configuring DSAs
8.9 Summary of Configuration

NCL> CREATE DSA
NCL> SET DSA AE TITLE "/ C=US/ O=Abacus/ CN=DSAL"

NCL> SET DSA PRESENTATI ON ADDRESS -
_NCL> " "DSA"/"DSA"/ " DSA"/ NS+49004005002B0AEBDB21, CLNS'

NCL> SET DSA LDAP PORT 389
NCL> SET DSA PASSWORD "unguessabl e-textstring"
NCL> CREATE DSA NAM NG CONTEXT "/ C=US/ O=Abacus"

NCL> CREATE DSA SUBORDI NATE REFERENCE "/ C=US/ O=Abacus/ OU=Sal es" -

_NCL> ACCESS PO NT -

NCL> {[AE TITLE="/ C=US/ O=Abacus/ CN=DSA2", -

NCL> PRES ADDRESS='"DSA"/"DSA"/"DSA"/ NS+49AA001992AAA00000000, CLNS |, -
TNCL> [AE TITLE="/ C=US/ O=Abacus/ CN=DSA4" , -

TNCL> PRES ADDRESS=""DSA'/" DSA"/ " DSA" / NS+49AA001992AA900000000, CLNS |}

NCL> CREATE DSA SUBORDI NATE REFERENCE "/ C=US/ O=Abacus/ OU=Resear ch" -

_NCL> ACCESS POINT -

NCL> {[AE TI TLE="/ C=US/ O=Abacus/ CN=DSAG", -

NCL> PRES ADDRESS='"DSA'/"DSA"/" DSA"/ NS+49AA001992AA220000000, CLNS]} -
“NCL> COPY ACCESS POINT -

"NCL> {[AE TITLE="/ C=US/ O=Abacus/ CN=DSA2", -

"NCL> PRES ADDRESS='"DSA"/" DSA"/ " DSA"/ NS+49AA001992AAA00000000, CLNS |, -
"NCL> [AE TITLE="/C=US/ O=Abacus/ CNEDSA4", -

"NCL> PRES ADDRESS='"DSA"/" DSA"/ " DSA"/ NS+49AA001992AA900000000, CLNS]}

NCL> CREATE DSA SUBORDI NATE REFERENCE "/ C=US/ O=Abacus/ QU=Per sonnel " -
_NCL> ACCESS PO NT -

_NCL> {[AE TITLE="/C=US/ O=Abacus/ CN=DSA5", -

_NCL> PRES ADDRESS=""DSA"/"DSA"/ " DSA"/ NS+49AA001992AA300000000, CLNS' |} -
_NCL> COPY ACCESS PO NT -

_NCL> {[AE TITLE="/ C=US/ O=Abacus/ CN=DSAG", -

_NcL> PRES ADDRESS='"DSA"/"DSA"/" DSA"/ NS+49AA001992AA220000000, CLNS' | } -

The above commands provide CN=DSAL with all of its knowledge information
configuration. CN=DSA1 can now be enabled, as follows:

NCL> ENABLE DSA

DXIM can then bind to CN=DSAL, and populate the naming context for which it is
the master DSA. See Chapter 9 for details of configuring DXIM to bind to a DSA
automatically.

When you populate your equivalent of the / C=US/ O=Abacus naming context,
remember to create decDSA entries, as described in Section 8.8.
8.10 Implementing Replication

This section describes how to implement replication for a typical Enterprise
Directory. Note that replication cannot be guaranteed to succeed between DSAs
with different schema. If you have customized the schema of any DSA, check that
the same customizations have been applied to all DSAs (see Chapter 6).

Figure 8-3 shows the planned replication between the six DSAs in the example
Enterprise Directory discussed in Chapter 5.

Configuring DSAs 8-13

Configuring DSAs
8.10 Implementing Replication

Figure 8-3 Planned Replication of Naming Contexts

CN=DSA1

CN=DSA2 CN=DSA3

\N

CN=DSA4 CN=DSA5

L)

.

/
\

CN=DSA6
@

The plan includes examples of primary and secondary shadowing.

MIG 0246

When this plan is fully implemented, the following will all be true:

= Each DSA will be configured with details of the DSAs that are to consume
each of its naming contexts.

< Each DSA will be able to verify the password of every other DSA in the
example service.

This is because each DSA will hold a local copy of the naming context that
contains the decDSA entries.

Compag recommends that the simplest way to reach that final state is to
implement all of the replication plans for your equivalent of Naming Context A
first. Naming Context A contains the entries that represent your DSAs. As soon
each DSA receives a copy of that naming context, it can verify the identities of all
other DSAs, making further replication plans much easier to implement. This is
one of the reasons why that naming context is replicated to all DSAs.

For the example shown in Figure 8-3, the simplest sequence of tasks is as
follows:

1. Use NCL on CN=DSAl to add the Consumer Access Point attribute to Naming
Context A (/ C=US/ O=Abacus), as follows:

8-14 Configuring DSAs

Configuring DSAs
8.10 Implementing Replication

NCL> SET DSA NAM NG CONTEXT "/ C=US/ O=Abacus" -

_NCL> CONSUMER ACCESS PO NT -

_NCL> {[AE TI TLE="/ C=US/ O=Abacus/ CN=DSA2"

_NCL> PRES ADDRESS=""DSA"/"DSA"/ " DSA"/ NS+49aa001992a000000000, CLNS']} -
_NCL> [AE TITLE="/ C=US/ O=Abacus/ CN=DSA3", -

_NCL> PRES ADDRESS=""DSA"/"DSA"/ " DSA"/ NS+49aa001992aa20000000, CLNS']} -
_NCL> [AE TITLE="/ C=US/ O=Abacus/ CN=DSA4", -

_NCL> PRES ADDRESS=""DSA"/"DSA"/ " DSA"/ NS+49aa001992aa90000000, CLNS'] }

The keywords PRESENTATI ON ADDRESS are abbreviated in these examples.

CN=DSAL reacts to this command by trying to communicate with each of the
three listed consumer DSAs. However, this fails because those three DSAs
cannot yet verify CN=DSAL1's password. (They could refer to CN=DSAl to verify
the password, but clearly that would be a security risk).

2. Use the following UPDATE DSA directive on CN=DSA2 (which must be in state
ON):

NCL> UPDATE DSA SUPPLIER ' "DSA"/"DSA"/" DSA"/ NS+49004005002B0OAEBDB21, CLNS'

where the specified presentation address is that of CN=DSAL.

The command creates a connection to CN=DSA1, and causes a shadowing
agreement to be created between this DSA and CN=DSAl. Replication
happens automatically almost immediately afterwards. See Section 8.10.1 for
some important notes about shadowing agreements.

3. Repeat step 2 for each of CN=DSA3 and CN=DSA4.

When these tasks are completed, CN=DSA1, CN=DSA2, CN=DSA3, and CN=DSA4
will all have local access to the decDSA entries. This means that further
replications between them do not require you to use the UPDATE DSA
directive as shown in step 3. Each of the three consumer DSAs will
periodically connect to CN=DSAL to ask for any updates to the replicated
naming context.

This has implemented the primary shadowing of Naming Context A to three
consumers, as shown in Figure 8-3.

CN=DSA5 and CN=DSA6 are to use secondary shadowing to replicate copies of the
| C=US/ O=Abacus naming context from CN=DSA4.

4. Add a Consumer Access Point attribute to the shadow naming context on
CN=DSAd:

NCL> SET DSA NAM NG CONTEXT "/ C=US/ C=Abacus" -

_NCL> CONSUMER ACCESS POINT -

_NCL> {[AE TITLE = "/ C=US/ O=Abacus/ CN=DSA5", -

_NCL> PRES ADDR ' "DSA"/"DSA"/ " DSA"/ NS+49aa001992aa30000000 CINS']} -
_NCL> {[AE TITLE = "/ C=US/ O=Abacus/ CN=DSA6", -

_NCL> PRES ADDR ' "DSA"/"DSA"/ " DSA"/ NS+49aa0019922aa2200000 CLNS' 1}

5. Use the following UPDATE DSA directive on CN=DSA5 (which must be in state
ON):

NCL> UPDATE DSA SUPPLIER ' "DSA"/"DSA"/" DSA"/ N5+49aa001992aa90000000, CLNS

where the specified presentation address is that of CN=DSA4.

The command creates a connection to CN=DSA4, and causes a shadowing
agreement to be created between this DSA and CN=DSA4. Replication
happens automatically almost immediately afterwards.

6. Repeat step 5 for CN=DSAG.

Configuring DSAs 8-15

Configuring DSAs
8.10 Implementing Replication

Replication of Naming Context A is now complete for all DSAs in the example
Enterprise Directory. This means that all six DSAs can verify each other’s
passwords, because they all hold copies of the decDSA entries.

All remaining replication can be implemented simply by adding the relevant
Consumer Access Point attributes to Naming Contexts. Now that the DSAs can
verify each other’s passwords, there is no need to use the UPDATE DSA directive
to make DSAs replicate.

For example, to implement the replication plans for Naming Context B in

Figure 8-3, use NCL on CN=DSA2 to add a Consumer Access Point attribute with
details of the planned consumer: CN=DSA4. When you add this attribute, CN=DSA2
automatically connects to CN=DSA4 and replication takes place almost immediately
afterwards. There is no need to use the UPDATE DSA command on CN=DSA4.

Note

Once replication is established, consumer DSAs and supplier DSAs
communicate periodically (every 12 hours by default) to make sure the
shadow copies are kept up to date.

The UPDATE DSA command is used only for the following reasons:

< To implement replication for the first time, when DSAs cannot verify
each other’s identities.

= To help solve certain problem situations, as described in Compaq
Enterprise Directory for eBusiness Problem Solving

8.10.1 Managing Shadowing Agreement Subentries

This section describes how to customize some aspects of replication. There is
no need to read this section if you are satisfied with the default behaviour of
replication.

Every shadowing agreement between a pair of DSAs is represented by two
subentries; one held by the supplier DSA, and the other by the consumer DSA.
Subentries are a special class of entry that represent aspects of Enterprise
Directory configuration, and that are normally hidden from users.

In the case of shadowing agreement subentries, the configuration information in
a given subentry is specific to the DSA that holds it. The two subentries relating
to a shadowing agreement between two DSAs are not identical. For example,
the one held by the supplier identifies the consumer DSA, and indicates that
this is the supplier’s part of the agreement, while the one held by the consumer
identifies the supplier, and indicates that this is the consumer’s part of the
agreement. The two subentries are not, therefore, copies of each other. They are
an example of DSA specific subentries, that is, they represent configuration
information that is specific to the DSA that holds them.

Because the information in these subentries is relevant to only one DSA, these
subentries are not replicated like normal entries, and other DSAs have no
knowledge that the subentries exist. In order to manage a shadowing agreement
subentry, it is therefore necessary to bind directly to the DSA that holds it.
This is explained in more detail for those tasks that involve management of the
subentries.

8-16 Configuring DSAs

Configuring DSAs
8.10 Implementing Replication

Each pair of shadowing agreement subentries defines the style and frequency

of replication for the naming context to which they apply. The supplier DSA
creates a default shadowing agreement subentry automatically soon after you
configure the Consumer Access Point attribute of a Naming Context entity. The
supplier DSA instructs the consumer DSA to create a corresponding subentry just
before replication takes place for the first time. The subentries are, therefore,
always created automatically. The only reason why you might ever need to
create a shadowing agreement subentry manually is if you are trying to configure
replication between a Compaq DSA and another vendor’s DSA.

Default shadowing agreements specify that the consumer DSA initiates
replication for a given naming context at twelve hour intervals, and that only the
entries that have changed since the last successful replication are replicated (as
opposed to replicating the entire naming context every time).

The two types of amendment to these defaults that you can consider are:
= To amend the frequency and specific schedule of replication attempts

= To amend the style of replication, such that replication happens as soon as
changes occur, rather than after scheduled intervals

One additional management control is the ability to force an immediate
replication attempt, rather than wait for the next scheduled attempt.

The following sections describe how to implement these options, if you consider
them preferable to the defaults.

There is no requirement to manage these subentries manually. The defaults are
designed to give efficient replication that should suit most customers. Certainly,
you should never delete a shadowing agreement subentry manually.

8.10.1.1 Notes About Modifying Shadowing Agreement Subentries

Any amendments you make to an agreement apply only to that agreement. This
means that, for example, you can configure different replication schedules for
different agreements.

If you implement secondary shadowing for a given naming context, you might
consider coordinating the replication schedules of the primary and secondary
agreements. For example, you might arrange secondary replication to occur
shortly after the relevant primary replication should have completed.

If a shadowing agreement is deleted for any reason, and then recreated by

the DSA, the new shadowing agreement may be a default agreement, and any
modifications you made to the schedule or the style of replication may need to be
implemented again. For example, if the Consumer Access Point is deleted, the
relevant shadowing agreement subentries are deleted. If the Consumer Access
Point is added again, a new, default agreement is created.

8.10.1.2 Identifying the Subentries for a Given Shadowing Agreement
If you want to display and manage shadowing agreement subentries, you first
need to find them in the directory. Each agreement is actually represented by two
shadowing agreement subentries; one held by the supplier and one held by the
consumer.

Note

The agreement subentries held by the consumer DSA and supplier DSA
are slightly different from each other, and are not replicated along with
the other entries held in a naming context.

Configuring DSAs 8-17

Configuring DSAs
8.10 Implementing Replication

The consumer DSA does not hold a shadow copy of the subentry, as you
might expect, but holds a slightly different subentry that represents its
view of the agreement.

When modifying agreements, it is important to know whether you need to
modify the subentry held by the consumer or the supplier, and to be able
to tell the difference between the two.

The agreement subentries pertaining to a given naming context are created
immediately beneath the highest entry in the naming context. If a given naming
context is replicated to several DSAs, there will be several agreement subentries.
You need to identify the subentries that represent the particular agreement you
want to modify.

Shadowing agreement subentries have a naming convention that helps you
identify which ones apply to which agreement. For example, suppose that you
want to identify the subentries that represent an agreement between DSA1 and
DSA2 for the naming context called /C=US/O=Abacus, for which DSAL is the
consumer DSA, and DSAZ2 is the supplier.

To identify the consumer’s subentry, bind directly to the consumer DSA, DSA1,
and use the DXIM SEARCH SUBORDINATES command, as follows:

dxi m> search subordinates /C=US/ O=Abacus -
_dxi m> where obj ect O ass=shadow ngAgreement subentries |ocal scope

The SEARCH SUBORDINATES command should cause one or more subentry
names to be listed, including the following:

| C=US/ O=Abacus/ CN="Consuner / C=US/ O=Abacus/ CN=DSA2 1"

The common name of the subentry confirms that it is the agreement held by the
consumer DSA, and that the other DSA supporting this agreement is DSA2.

If you bind directly to the supplier DSA and do the same search command, you
should see a list of names including the following:

| C=US/ O=Abacus/ CN="Suppl i er [/ C=US/ C=Abacus/ CN=DSA1 1"

There may be several agreements whose common names include the word
"Supplier”, but only one that also includes the name / C=US/ O=Abacus/ CN=DSAL.
DSA2 may supply the naming context to several consumers, but only one of its
agreement subentries relates to the agreement with DSA1.

The next task is to identify which of the two DSAs is the initiator of replication.
This is explained in Section 8.10.1.3.

8.10.1.3 Identifying the Initiatior of Replication
Having identified the two subentries that represent the two halves of the
agreement you want to modify (see Section 8.10.1.2), you need to identify which
of the two DSAs is the initiator of replication for this agreement.

By default, the consumer DSA is the initiator of replication, but it is advisable to
confirm this before attempting to modify the agreement.

To confirm that the consumer DSA is the initiator of replication, bind directly
to the consumer DSA (DSAL1), and show the shadowingFlags attribute of the
shadowing agreement subentry. For example:

8-18 Configuring DSAs

Configuring DSAs
8.10 Implementing Replication

dxi m> show / C=US/ O=Abacus/ CN="Consuner [C=US/ O=Abacus/ CN=DSA2 1" -
_dxinp attribute shadow ngFl ags | ocal scope

| C=US/ O=Abacus/ CN="Consuner / C=US/ O=Abacus/ CN=DSA2 1"
shadowi ngFl ags = UseDOP+Consuner | niti at ed+Ct her Ti nes

You can also confirm that the consumer DSA is the initiator of replication by
binding to the supplier DSA, and showing the shadowi ngFl ags attribute of its
shadowing agreement subentry. For example:

dxi m> show / C=US/ O=Abacus/ CN="Suppl i er [C=US/ O=Abacus/ CN=DSAL 1" -
_dxin> attribute shadow ngFl ags |ocal scope

| C=US/ O=Abacus/ CN="Suppl i er [/ C=US/ O=Abacus/ CN=DSA1 1"
shadowi ngFl ags = | sSuppl i er +UseDOP+Consumer | ni ti at ed+Qt her Ti mes

In both cases, the shadow ngFl ags attribute confirms that the agreement is
consumer initiated. If the agreements do not include the Consumerlnitiated flag,
then they have already been modified by someone. In this case, the agreements
should have one of the Supplierlnitiated or OnChange flags.

The important point to remember is that if an agreement is consumer initiated,
then you should modify the subentry held on the consumer DSA, and if it is
supplier initiated, you should modify the subentry held on the supplier DSA. If
the agreement has the OnChange flag, you should modify the subentry held by
the supplier DSA. If you disregard this advice, some modifications may not have
the required effect.

8.10.1.4 Configuring the Replication Schedule

To configure a specific replication schedule, modify the shadow ngBegi nTi me
attribute and shadow ngEndTi ne attributes.

The following example schedules replication for four specific times each day, and
within one hour windows of those times.

dxi m> set <shadowi ngAgreenent nane> attributes -
_dxi m> shadowi ngBegi nTi me=("0 010000", "0 070000", "0 130000", "0 190000"), -
_dxi m> shadowi ngEndTi me=("0 020000", "0 080000", "0 140000", "0 200000")

where the times are expressed in the format d hhmmss, such that "0 010000" is

1 a.m. Universal Time, "0 070000" is 7 a.m., "0 130000" is 1 p.m., and so on.
Remember to specify universal times (GMT), not local times. (The d field in each
value can be used to specify a day of the week. You could, therefore, configure a
schedule with different times and frequencies for different days of the week.)

In this way, you can ensure that replication occurs when the network is least
busy, and you can schedule different agreements to be processed at different
times.

Note

You must make these schedule modifications to the shadowing agreement
subentry held by the DSA that initiates replication. If you modify the
agreement subentry of the DSA that is not the initiator of replication,
then the modification does not have the required effect. Section 8.10.1.3
explains how to identify which DSA is the initiator of a given agreement.

Note also that schedules are ignored if OnChange replication is in force. See
Section 8.10.1.6 for details of how to implement OnChange replication.

Configuring DSAs 8-19

Configuring DSAs
8.10 Implementing Replication

8.10.1.5 Forcing Replication to Happen Immediately

In certain situations, you might want to force an immediate replication attempt
as an exception to the normal schedule.

The usual way to do this is to use the NCL UPDATE DSA command. However,
that method forces a total update, which is not very efficient. If you want to
force an immediate incremental update, you can set the shadow ngNext Updat e
attribute to the any time in the past. You must modify the attribute in the
agreement held by the DSA that initiates replication. For example, if today

is July 6th 1995, you can cause replication to happen immediately using the
following command:

dxi m> set <shadow ngAgreement name> -
_dxim> attribute shadow ngNext Updat e=19950705000000Z

This time represents the beginning of July 5th, which causes an immediate,
replication attempt. Once this attempt is complete, the configured schedule is
resumed.

Section 8.10.1.3 explains how to identify the initiator of replication for a given
agreement. If you modify the shadowi ngNext Updat e attribute of the DSA that is
not the initiator of replication, then the modification has no effect.

8.10.1.6 Configuring Replication to Occur Only When Information Changes
An alternative to scheduled replication is OnChange replication. OnChange
replication causes the supplier DSA to initiate replication whenever a change
occurs in the relevant naming context. If no change occurs, the two DSAs do not
communicate at all. If you use scheduled replication, the two DSAs communicate
according to the schedule even when there are no changes to replicate.

To configure OnChange replication, use the following command to change the
agreement held by the supplier DSA:

dxi m> set <shadowi ngAgreenent nane> attributes -
_dxi m> shadowi ngFl ags=UseDOP+| sSuppl i er +Onchange+Qt her Ti mes

Note that it is important that you apply this combination of shadowing flags to
the subentry held by the supplier, because it includes the IsSupplier flag. That
flag must never be specified in the consumer DSA's agreement.

Note that when OnChange replication is in use, the attributes that configure the
shadowing schedule are ignored, so there is no reason to modify them.

8.10.1.7 Configuring Replication Back to the Default Behaviour

If you change a shadowing agreement to OnChange, but then decide that this
style of replication is unsuitable for that agreement, you can configure the style
of replication back to the default behaviour.

The default behaviour is defined by the following value for the shadowi ngFl ags
attribute in the agreement held by the consumer DSA:

shadowi ngFl ags=UseDOP+Consurmer I ni ti at ed+Qt her Ti mes

To return to this setting, identify the relevant shadowing agreement subentry;,
and use DXIM to modify it as shown in the following example:

dxi m> set <shadowi ngAgreenent nane> attributes -
_dxi m> shadowi ngFl ags=UseDOP+Consuner | ni ti at ed+Ct her Ti mes

8-20 Configuring DSAs

Configuring DSAs
8.10 Implementing Replication

This combination of flags means that replication is scheduled, and initiated by
the consumer DSA. If the schedule interval has been customized, you might
also want to reconfigure a 12 hour schedule using the attributes described in
Section 8.10.1.4.

Another way to reinstate a default agreement is to use NCL to remove the details
of the consumer DSA from the relevant Consumer Access Point held by the
supplier DSA, and then add it back again after a few minutes. This causes the
agreement to be terminated, and then recreated. The newly created agreement
will be a default agreement. However, this method is inefficient because it
causes the consumer DSA to delete its copy of the replicated naming context, and
requires a complete new copy to be supplied when the agreement is recreated.
This method is suitable if you decide that replication needs to be completely
restarted for some reason.

8.10.2 Terminating Replication Agreements

If you decide that a consumer DSA no longer requires a given shadow naming
context, you can simply remove the details of that DSA from the Consumer Access
Point attribute of the Naming Context on the supplier DSA. For example:

NCL> REMOVE DSA NAM NG CONTEXT "/ C=US/ O=Abacus" -

_NCL> CONSUMER ACCESS PO NT -

_NCL> {[AE TITLE = "/ C=US/ O=Abacus/ CN=DSA5", -

_NCL> PRES ADDR ' "DSA"'/"DSA"/"DSA"/ NS+49aa001992aa30000000, CLNS']}

In this case, the DSA (the supplier) informs CN=DSA5 that it must delete the
shadow naming context, and it supplies no further updates for that naming
context to CN=DSA5. It may continue to supply updates for other naming contexts
that it supplies to CN=DSA5.

Note

Do not attempt to terminate replication by deleting the relevant
shadowing agreement subentry. As part of the automated management
of replication, these subentries may be recreated if deleted, such that
replication continues. The supported way to terminate replication is to
amend the Consumer Access Point attribute as described above.

8.11 Disabling DSAs

The DISABLE DSA directive puts a DSA into state DISABLING, in which state
it closes down its activities. When all activities have been terminated, the DSA
goes into state OFF. For example:

NCL> DI SABLE DSA

Disabling a DSA prevents it from receiving connections from directory
applications and DSAs. This means that this DSA will not respond to user
requests for information, and that it will not respond to other DSASs’ attempts to
replicate information or modify shadowing agreements.

In state OFF, you can use NCL commands to manage attributes of the DSA. You
cannot use the UPDATE DSA directive when the DSA is in state OFF.

Configuring DSAs 8-21

Configuring DSAs
8.12 Deleting DSAs

8.12 Deleting DSAs
The DELETE DSA directive removes a DSA from a system. For example:
NCL> DELETE DSA

A deleted DSA is no longer configurable, and is not available to respond to
connections from directory applications or other DSAs.

The time taken for the DELETE DSA directive to complete depends on the
amount of directory information held by the DSA.

Tru64

UNIX This version of the DSA uses memory image files rather than the

snapshot files of previous versions. Memory image files provide
superior startup and shutdown times, especially for very large
databases. They are stored in /var/dxd.

Snapshot files are only supported for a small number of reasons:
= So that you can upgrade from a previous version.

= So that you can load a new schema file (see Chapter 6).

« So that you can defragment the database (see Section 8.14).

= So that you can upgrade to a future version of the Enterprise
Directory.

Different versions of the DSA may use different memory
structures. A memory image file cannot, therefore, be supported
through an upgrade. You need to make the DSA create a
snapshot file shortly before an upgrade. The deinstallation
procedure reminds you of this requirement if it finds no valid
snapshot of the database.

For those few occasions when you need to use snapshot files, the
CREATE DSA and DELETE DSA directives support a new command
option:

NCL> CREATE DSA FROM SNAPSHOT
NCL> DELETE DSA TO SNAPSHOT

If a given task requires you to create a snapshot file, the
documentation makes this clear, and reminds you of the command
option required.

.

8.13 Starting the DSA as Part of OpenVMS System Startup

The installation card for OpenVMS systems explains that you can edit the system
startup file to include the command that runs the Enterprise Directory startup
file, SYS$STARTUP:DXD$COMMON_STARTUP.COM.

This file runs an NCL script file for starting the DSA. By default, the commands
in that NCL script file are commented out. This means that the DSA is not
created or enabled. This is because a DSA cannot be enabled until it has been
configured, so the NCL commands would cause errors during every system
startup.

8-22 Configuring DSAs

Configuring DSAs
8.13 Starting the DSA as Part of OpenVMS System Startup

After configuring a DSA, edit the DSA startup script
SYS$STARTUP: DXDSDSA_STARTUP. NCL to remove the comment characters. Next
time the system reboots, the DSA will start up automatically.

On clusters the file is installed in the system specific startup directory, and must
be edited there.

8.14 Defragmenting the Memory Image File (Tru64 UNIX)

The DSA on Tru64 UNIX systems uses memory image files instead of the
snapshot files of previous versions. Memory image files provide superior startup
and shutdown times, especially for very large databases.

The memory image file can become fragmented over time, for example, if you
delete many entries, or stop the DSA from consuming a naming context.

You can compare the value of the DIT Memory Occupancy attribute of the DSA
entity with the size of the DSA memory image files. Use the NCL SHOW DSA
DIT MEMORY OCCUPANCY command to display the attribute. The memory
image file should always be larger than the DIT Memory Occupancy attribute
indicates, but if it is more than about 10 megabytes larger, you should consider
defragmenting the database.

Use the following procedure to defragment the database.
1. Disable and delete the DSA using the following NCL commands:

ncl > DI SABLE DSA
ncl > DELETE DSA TO SNAPSHOT

The deletion takes longer than usual because the DSA is forced to write a
snapshot file, as in previous versions.

2. Use the following NCL commands to recreate and enable the DSA:

ncl > CREATE DSA FROM SNAPSHOT
ncl > ENABLE DSA

The creation takes longer than usual. When the creation is complete, the
DSA has created a new, unfragmented memory image file.

Configuring DSAs 8-23

Configuring DSAs
8.14 Defragmenting the Memory Image File (Tru64 UNIX)

When the DSA has been recreated and enabled successfully, as shown in step 2, you can delete
the snapshot file from the DSA system, as follows:

rm/var/dxd/ DSA-information-tree. snapshot *

The DSA does not need this file any longer, so you can save disk space by deleting
it. Do not delete any of the other database files.

8-24 Configuring DSAs

9

Configuring and Running Directory
Applications

This chapter documents the following:
= The DUA defaults file that is used by DXIM and the MAILbus 400 MTA
e The DXIM initialization file

= The Lookup Client defaults file that is used by the Compaq X.500 Lookup
Client

< How to run DXIM and the Lookup Client

The DUA defaults file and the Lookup Client defaults file are both created by
configuration utilities. In both cases, the configuration utilities create a defaults
file that applies to all system users. However, individual users can have a
customized copy of the defaults file in their local area if they want a different set
of defaults.

Note

In the case of DXIM, you can also configure some aspects of the user
interface by editing the schema file DUA.SC (see Chapter 6). For
example, you can configure user-friendly names for attributes.

Configuring and Running Directory Applications 9-1

Configuring and Running Directory Applications
9.1 Using the DUA Configuration Utility

9.1 Using the DUA Configuration Utility

The DUA configuration utility communicates with a DSA to find out its
presentation address and AE title.

You need to run the utility on every system that runs DXIM, or the MAILbus
400 MTA. The DSA to which you want these applications to connect must be
configured before you run the DUA configuration utility (see Section 5.2.3). The
DSA may be on the same system as the applications, or remote.

The configuration utility contacts the relevant DSA to determine what values
to use as DUA defaults. The DSA must be in state ON when you use the DUA
configuration utility.

The configuration utility writes a DUA defaults file that includes the presentation
address and AE title of a DSA on a specified node.

Lr;?)? You need superuser privileges to run the configuration utility. To run
the utility, type:
[var/dxd/ scripts/dua_configure
.
You need SYSPRV and OPER privileges to run the configuration
OpenVMS | utility. To run the utility, type:

$ @YS$STARTUP: DXDEDUA_CONFI GURE
¢

If your privileges are insufficient, the utility displays an error message and exits.
Otherwise, the utility checks for the presence of both DECnet—Plus and RFC1006
on your system. Note that if both DECnet-Plus and RFC1006 are available, then
the utility uses DECnet—Plus to connect to the DSA.

The utility then displays:
Enter the name of the node on which the DSA is |ocated:

If the utility detects that there is a DSA installed on the local system, the local
node name is offered as a default.

Specify the name of the DSA system and press RETURN. Note that there is no
requirement for applications to use a local DSA, although that is more efficient.
The option to use a remote DSA means that you can have applications on a
system without a DSA.

When you specify a node name, the utility connects to the DSA on the specified
system to find out what its presentation address and AE title are.

If DECnet—Plus is not present on your system, then the utility connects to the
DSA using RFC1006. When using RFC1006 to connect to the DSA, the utility
requests identifiers for the Upper Layer Selectors of the DSA's presentation
address:

Pl ease enter the Upper Layer Selectors ["DSA"/"DSA"/"DSA"]

9-2 Configuring and Running Directory Applications

Configuring and Running Directory Applications
9.1 Using the DUA Configuration Utility

Note that the Upper Layer Selectors [" DSA"/"DSA"/ "DSA"] are offered as a
default. If you already know that these selectors are not used by the DSA, specify
the correct selectors and press RETURN. If you do not know what selectors the
DSA uses, press RETURN. It is most likely that the DSA uses the selectors
shown by default.

Tru64

UNIX Having contacted the specified DSA, the utility writes the required

information to /etc/dua.defaults, displays a success message, and
exits. Any previous version of the defaults file is renamed to
/etc/dua.defaults.savn, where n is an integer. No details from the
existing version are included in the new version.

.

Having contacted the specified DSA, the utility writes the

OpenVMS | jnformation to DXD$DIRECTORY:DXD$DUA_DEFAULTS.DAT,
displays a success message, and exits. If a file of that name already
exists, a new version is created. No details from the existing version
are included in the new version.

.

If the utility fails to contact the DSA on the specified node, or fails to obtain the
presentation address and AE title information, it displays an error message, and
asks whether you want to try a different DSA node. If you type yes, the utility

asks you to specify the name of another node, and repeats the attempt to obtain
defaults information and write a defaults file.

Having successfully used the utility to create a defaults file, you can invoke
DXIM. DXIM automatically binds to the DSA whose details were written into the
defaults file. This confirms that the defaults details are satisfactory.

Refer to Section 9.2 for further details about the defaults file, and to Section 9.3
for details of how an individual user can create and manage a defaults file for
their own use of DXIM.

9.2 System-wide DUA Defaults

The configuration details that apply to a whole system are stored in the following
files:

Tru64
UNIX iet c/dua. defaul ts

DXD$DI RECTCORY: DXD$DUA_DEFAULTS. DAT

OpenVMS R

The file created by the configuration utility contains a number of defaults in
addition to the presentation address and AE title. The following is a typical
defaults file created by the utility:

Configuring and Running Directory Applications 9-3

Configuring and Running Directory Applications
9.2 System-wide DUA Defaults

DUA. KnownDSAs. paddr = "DSA"/"DSA"/ " DSA"/ NS+490020001122ABA0012, CLNS

DUA. KnownDSAs. ae title = [C=US/ O=Abacus/ CN=DSA1
#DUA. Pr ef er Chai ni ng = true
#DUA. Chai ni ngPr ohi bi t ed = false
#DUA. Local Scope = fal se
#DUA. Dont UseCopy = fal se
#DUA. Dont Der ef erenceAl i ases = fal se
#DUA. ScopeOf Referral = DVD
#DUA. Ti meLi m t = 60
#DUA. Si zeLinit =30
#DUA Priority = Medi um
#DUA. Domai nRoot =/

/

The # character at the beginning of most lines is a comment character. DXIM
ignores lines that begin with a # character. By default, only the presentation
address and AE title defaults are active. To use a particular default, specify the
required value and remove the comment character from the line.

#DUA Initial Entry

In addition to the list of defaults shown above, there are two defaults that you
can add to the defaults file manually. These are:

DUA. AttributeSi zelinit = integer
DUA. CopyShal | DO = True| Fal se

Note that if you specify a given default more than once, only the first instance is
ever used. If the first instance of a default is invalid, DXIM does not attempt to
use a subsequent definition. There is no advantage in specifying more than one
known DSA presentation address, for example.

Each default must be specified on a separate line, and must not wrap onto a
second line.

The defaults that specify true or f al se are booleans, and you can change them
from one value to the other. No other value is allowed for these defaults.

The DUA. Scopef Ref erral default specifies a restriction on any referrals returned
by a DSA. The permitted values of this control are:

< DM (meaning directory management domain)
- country
- world

The DUA. Scope(f Ref erral default means that when your DSA cannot satisfy a
request, it can instead return a referral to the application, suggesting further
DSAs to contact, but only suggesting DSAs within the specified scope.

Note

Compagqg’'s DSAs do not support this control, and do not provide a way
to define the scopes. However, other vendor’s DSAs might enable you to
define scopes, in which case this control might become relevant.

The DUA. Ti meLi mi t default specifies the number of seconds permitted for each
user request to be answered. The value must be an integer no higher than 65535.
The value 0 means that there is no time limit. By default, Compaqg’'s DSA imposes
no time limit.

9-4 Configuring and Running Directory Applications

Configuring and Running Directory Applications
9.2 System-wide DUA Defaults

The DUA. Si zeLi nit default specifies the number of entries that can be returned
for a single user request. The value must be an integer no higher than 65535.
A value of 0 means that there is no limit on the number of entries that can be
returned for a single request. By default, Compaq’s DSA imposes no size limit.

Note

This control applies to the number of entries returned from a given
Compaq DSA, rather than to all DSAs. For example, a value of 10 means
that each DSA that handles the request can return up to 10 entries. If
five DSAs help satisfy a request, a total of 50 entries might be returned.

The DUA. Priority default specifies a default priority for all user requests. The
permitted values are:

 Low
« Medium
= High

Note

Compagq’s DSAs do not prioritize user requests. Other vendors’ DSAs
might, in which case this control might become relevant.

The DUA. Domai nRoot default specifies a default prefix for all user commands that
include incomplete distinguished names.

Use this control to specify the name of the entry at the top of your organization’s
DIT, or of some entry within your organization’s DIT. The Abacus organization,
for example, would edit this control to specify / C=US/ O=Abacus. You can specify
any valid directory name as the domain root.

Note

If you specify the / character, make sure that there are no spaces after the
/ character.

If you specify a distinguished name that contains space characters,
quote the particular value(s) that contain the spaces, rather than
guoting the entire name. For example: / C=US/ O="ACME Co" rather than
"] C=US/ O=ACME Co".

This default enables a DXIM user to omit those terms from any distinguished
name. For example, if the domain root is / C=US/ O=Abacus, a DXIM user could
use the following SHOW command:

dxi n» show ou=sal es/ cn="Bryan Lea"
DXIM displays the entry / C=US/ O=Abacus/ ou=sal es/ cn="Bryan Lea"

The prefixing option also applies to distinguished names specified in attribute
values. For example, you could specify an al i asedChj ect Name attribute as
follows:

al i asedChj ect Nane="ou=sal es/ cn=Bryan Lea"

Configuring and Running Directory Applications 9-5

Configuring and Running Directory Applications
9.2 System-wide DUA Defaults

The DUA. I nitial Ent ry default specifies the name of a directory entry that is to
be the default browse and search base for DXIM. By default, all commands apply
to the initial entry, unless the user specifies otherwise.

As with DUA. Domai nRoot , specify the name of the entry at the top of your
organization’s DIT, or of an entry within your organization’s DIT.

Note

If you specify the / character, make sure that there are no spaces after the
/ character.

If you specify a distinguished name that contains space characters,
quote the particular value(s) that contain the spaces, rather than
guoting the entire name. For example: / C=US/ O="ACME Co" rather than
" C=US/ O=ACME Co".

If you do not specify a value for this default, DXIM uses DUA. Donai nRoot as the
initial entry. If neither default is specified, DXIM defaults to /, which might
prove expensive, and might prevent the use of the DXIM Browse window.

The value of DUA. I nitial Entry also provides a second prefixing option. For
example, if the initial entry is / C=US/ O=Abacus, a DXIM user could use the
following command:

dxi m> show ./ou=sal es/ cn="Bryan Lea"

DXIM displays the entry / C=US/ O=Abacus/ ou=sal es/ cn="Bryan Lea" The period
character before the leading "/" is converted into the value of initial entry. This
prefixing option cannot be used within attribute values, unlike the domain root.

The DUA. Domai nRoot and DUA. I niti al Entry controls are the ones that are
most likely to need changing before you allow DXIM to be used by your user
community.

The DUA. AttributeSi zeLi mit control enables you to specify a limit on the size
of attribute values that you want returned in a request. This is useful if the
DSA stores very large attributes. For example, the DSA supports the j pegPhot o
attribute which can store images. If your directory application does not support
the display of images, then you can set this control to ensure that images, which
tend to be very large, are not returned. Specify the number of bytes that is

to be the attribute size limit. The DXIM command line interface supports a
maxi numat tri but e si ze control that enables you to specify a limit interactively,
to override the default. If you do not use this control, the DSA does not limit the
size of attribute values it returns.

The DUA. CopyShal | Do control enables you to indicate whether you want
information from partial copies of entries. Compaq DSAs do not support

partial copies of entries, so this control is only useful if you have another vendor’s
DSA. Specify a default of TRUE or FALSE. If you do not use this control, the
default setting is FALSE. The DXIM command line interface supports a parti al

i nformati on control that enables you to specify that partial information is
acceptable interactively to override the default.

9-6 Configuring and Running Directory Applications

Configuring and Running Directory Applications
9.3 DUA Defaults for Specific Users

9.3 DUA Defaults for Specific Users

By default, all users are affected by the system-wide defaults file. Individual
directory users might want to have their own definitions of some of the DUA
defaults.

To provide an individual directory user with their own defaults for use of the
directory, create a file in the user’s home or default directory, with the following
name:

Tru64
UNIX ?HOVH dua. defaul ts

SYS$LOG N: DXDSDUA_DEFAULTS. DAT
OpenVMS .

Edit the file to specify one or more of the following defaults:

DUA. Domai nRoot

DUA. Initial Entry
DUA. Request or

DUA. KnownDSAs. paddr

Note that none of the other defaults listed in Section 9.2 are used in the user
defaults file. If you specify them, they are ignored. The four defaults listed
above, if present, override the values in the system defaults file. For example, the
value of DUA. Domai nRoot in a user defaults file overrides the value in the system
defaults file.

See Section 9.2 describes the DUA. Domai nRoot and DUA. | nitial Entry defaults.

The DUA. Request or default specifies the distinguished name by which the user
wants to be identified to the DSA. When the user invokes DXIM, the value of
DUA. Request or is passed to the Enterprise Directory.

Note

If you specify a distinguished name that contains space characters,
quote the particular value(s) that contain the spaces, rather than
guoting the entire name. For example: / C=US/ O="ACME Co" rather than
"/ C=US/ O=ACME Co".

Note that although the user’s name is passed to the DSA, their password is not.
If the user is using the DXIM windows interface, they can use the Authenticate
window. The Name field of that window is filled in automatically, so that the user
only has to supply a password to achieve simple authentication. If the user is
using the DXIM command line interface, they need to use the BIND command
with the Password argument.

If there is no default requestor name in user defaults, then the Enterprise
Directory treats the user as an unauthenticated, unnamed user. The user can
still use the Authenticate window, or the DXIM BIND command to specify their
name and password.

Note that the DUA Request or default is not specified in the system defaults file.
DXIM only uses DUA. Request or defaults specified in user defaults files.

Configuring and Running Directory Applications 9-7

Configuring and Running Directory Applications
9.3 DUA Defaults for Specific Users

The DUA. KnownDSAs. paddr default specifies the presentation address of a DSA.
For example:

DUA. KnownDSAs. paddr = "DSA"/"DSA"/ " DSA"/ NS+490020001122ABA0012, CLNS

This is the presentation address of the DSA to which the DXIM windows
interface binds on invocation for this user. It is also the default presentation
address for the DXIM command line interface, so that when the user uses the
BIND command, they do not need to type a presentation address. If there is no
presentation address specified in user defaults, the default specified in the system
defaults file is used.

9.4 Configuring DXIM to Use Another Vendor’'s DSA

If you want to configure the DXIM utility to use another vendor’s DSA, you
might need to do this manually. If the other vendor’'s DSA supports RFC1006
connections, and the DSA is running, then the configuration procedure might
succeed.

However, if the configuration procedure fails, you need to find out the
presentation address of the DSA, and edit the DUA. KnownDSAs. paddr parameter
in the defaults file manually.

9.5 DXIM Command Line Initialization Files

When you use the DXIM command line interface, you can use an initialization
file in addition to the two defaults files. The initialization file is executed after
DXIM has read the defaults files, and will override defaults specified in those
files if appropriate. The initialization file must be created in your home or default
directory.

The initialization file contains DXIM commands that are executed when
you invoke the command line interface. For example, you could create

an initialization file that contains a DXIM SET DEFAULT NO CHAINING
command.

The initialization file has the following name:

Tru64 ;
UNIX fHO\/E .dxinrce

SYS$LOG N: DXDEDXI M | NI

OpenVMS N

The initialization file can contain any DXIM commands. For example:

bind to address "DSA"/"DSA"/"DSA"/ NS+4900200011220000033, CLNS
set current /c=us/o=abacus/ou=sal es

The example file uses a bind command to establish a binding to a particular DSA.
It then defines a current entry, which overrides the value of DUA. I ni tial Entry.
Refer to the DXIM online help for full details of these and other DXIM
commands.

9-8 Configuring and Running Directory Applications

Configuring and Running Directory Applications
9.6 Running DXIM

9.6 Running DXIM

To run DXIM using the Motif windows interface, type one of the following:

Tru64 $ dxi m

UNIX
¢
$ DXI M
OpenVMS | ¢ DX| M/ | NTERFACE=DECW NDOVS
L4

To run DXIM using the command line interface, type one of the following:

Tru64 ;
UNIX $dxim-c
¢
$ DXI M/ | NTERFACE=CHARACTER_CELL
OpenvMS .

Note that /INTERFACE=DECWINDOWS is the default for OpenVMS systems.

You can also use DXIM from the shell or system prompt. For example, you can
type:

Lﬁ?ﬁ $ dxi mshow/ countryname=US al | attributes
.

$ DXI M SHOW/ COUNTRYNAME=US ALL ATTRI BUTES
OpenVMS .

The presence of a DXIM command line means that it is not necessary to specify
- ¢ or / | NTERFACE=CHARACTER CELL.

9.7 Using the Lookup Client Configuration Utility

If you install the Compaqg X.500 Lookup Client, then you need to run a
configuration utility before you can use it.

Run the Lookup Client configuration utility, as follows:

Tru64

UNIX # [usr/sbin/dxdlu_configure

¢

$ @YS$STARTUP: DXDSLUC_CONFI GURE. COM
OpenVMS .

Specify the name of the system that runs the DSA with a non-zero LDAP port.

The utility then prompts for a search base. Specify the name of an entry
within your organization’s DIT. For example, you could specify the name of
the highest entry in your organization’s DIT. Note that the Lookup Client uses
a different convention for naming directory entries, such that an entry called
/C=US/O=Abacus must be expressed as follows:

Configuring and Running Directory Applications 9-9

Configuring and Running Directory Applications
9.7 Using the Lookup Client Configuration Utility

O=Abacus, C=US

The utility asks whether you want to specify another search base. Multiple
search bases are supported by the Lookup Client windows interface. The search
bases are offered as a menu enabling users to select a particular search base.
The first search base you specify is the default search base, and is the only search
base available to users of the Lookup Client command line interface.

Every time you specify a search base, the utility asks whether you want to specify
another. When you have specified all of the search bases you require, type n, and
the utility will exit.

The utility writes a defaults file called:

Tru64
UNIX f/et ¢/ dxdl u. defaul ts

$ @YS$SYSTEM DXDLU. DEFAULTS

OpenVMS .

The defaults file is self documenting. The file defines what attributes the Lookup
Client can display and manage, which attributes are searchable, how the Lookup
Client handles search strings, what object class is searched for, what service
controls to apply, and what fonts to use. For details of all of the defaults, refer to
the defaults file. You can customize the file as described in the comments.

The defaults file applies to all users of the Lookup Client on the system, although
individual users can make a copy of the file in their local area if they want

a different set of defaults. When you invoke the Lookup Client, it checks for

a defaults file in the areas defined by the $SHOME environment variable, or
SYSS$SLOGIN.

9-10 Configuring and Running Directory Applications

Configuring and Running Directory Applications
9.8 Running the Lookup Client

9.8 Running the Lookup Client

You can run the Lookup Client graphical interface as follows:

Tru6a # dxdlu

UNIX
¢
$ RUN SYS$SYSTEM DXDSLOOKUP_MOTI F. EXE
OpenVMS .

You can run the command line interface as follows:

Tru64 _
UNIX ;if dxdlu-c

$ RUN SYS$SYSTEM DXDSLOOKUP_CLI . EXE

OpenVMS

On OpenVMS systems, you can define foreign commands for running the utility,
for example:

$ DXDLU : == RUN SYS$SYSTEM DXD$LOOKUP_MOTI F. EXE
$ DXDLUCLI : == RUN SYS$SYSTEM DXDSLOOKUP_CLI . EXE
¢

The online help for the utilities explains how to use them.

Configuring and Running Directory Applications 9-11

10

Creating Directory Entries

This chapter describes how to create entries in the directory (or how to populate
the directory).

Section 10.1 explains how to populate the directory using DXIM script files.
Using DXIM script files to populate the directory is most useful when you are
creating a DIT for the first time.

Section 10.2 explains how to create entries interactively, using the DXIM
command line interface. Creating entries interactively is most useful when you
want to add a small number of entries after the directory has been populated.

You can also create entries interactively using the DXIM windows interface. For
details of how to do this, see Section 10.2 or refer to the DXIM windows utility
online help.

Section 10.3 explains the DXIM facilities for managing multiple entries and
reading and writing entry information to and from files. These facilities are
useful if, for example, you want to make the same modification to a large number
of entries, you want to delete a large number of entries, or you want to create
entries based on information held in a text file.

Remember that you need to create entries to represent your Compaq DSAs (see
Section 4.5). You can create your DSA entries along with all other entries, or
create them as a separate task. However, you should certainly create them
before allowing end users to access the directory, because they support Enterprise
Directory security.

In all cases, before you start creating entries in the directory, it is important to
understand the following points:

= You cannot create entries unless you have configured the DSAs that are to
hold them (see Chapter 8).

= Compaq suggests that when you initially populate the directory, you should
do it one naming context at a time, using script files which you keep.

The most efficient way to populate the directory is to bind to the master DSA
for a given naming context and use a script file to create all of the entries for
that naming context, and then unbind.

Repeat this process for each master DSA until all naming contexts are
populated. The script should succeed even if you bind to some other DSA, but
you will be keeping two or more DSAs busy, rather than just the master DSA.

= If you are absolutely sure that a script file creates entries that conform to
the schema, then you can configure the DSA not to do schema checking.
Commands are executed faster if no schema checks are required, but at the
risk of creating invalid entries. Refer to the NCL Directory module help
for details of the DSA Schema Check On Modify attribute. You should only
disable schema checks for as long as it takes to run the script file.

Creating Directory Entries 10-1

Creating Directory Entries

= Use the DSA Volatile Modifications characteristic attribute to specify that the
DSA need not log the modifications immediately (see Section 8.3.3).

= Within a naming context, you cannot create an entry until after you create its
superior entry.

For example, you would create the entry called / ou=Sal es before creating the
entry / ou=Sal es/ cn="Jon Long".

= It does not matter what order you populate the naming contexts in.

= If access controls have already been implemented for the DSA that is to hold
the entries you create, then you might need to authenticate.

If you are using the command line interface, use the DXIM BIND command
with the NAME and PASSWORD arguments before creating the entries.

If you are using the windows interface, pull down the Directory menu and
select the Authenticate option. Specify your distinguished name and your
password, and click on OK.

10.1 Using a Script File to Populate a Naming Context

This section explains how to use a DXIM script file to populate a nhaming context.
You do not have to populate the directory one naming context at a time, but it

is a logical and efficient method. If you use script files, it may be useful to keep
them for reference purposes.

1. Check that the master DSA for the naming context is configured correctly.

— The master DSA requires a Naming Context entity. The name of the
Naming Context entity must be the same as the distinguished name of
the first entry that you create within that naming context.

Use the NCL SHOW command to verify the existence of the Naming
Context entity, as follows:

NCL> SHOWN DSA NAM NG CONTEXT <name> ALL ATTRI BUTES

where <nane> is the name of the naming context and also the
distinguished name of the first entry that you will create in that
naming context.

— Also, if the naming context you intend to populate is to be superior
to any other naming context, then you are advised to make sure that
Subordinate Reference entities have been created for each subordinate
naming context. This ensures that you cannot accidentally create entries
on one DSA that should be created on another.

Use the NCL SHOW command to verify the existence of each Subordinate
Reference entity, as follows:

NCL> SHOW DSA SUBCRDI NATE REFERENCE <nane>

where <nanme> is the name of a Subordinate Reference entity, and is also
the name of the naming context to which the Subordinate Reference
entity refers.

2. Create a DXIM script file containing a DXIM BIND command and a series of
CREATE commands:

— The BIND command specifies the presentation address of the master DSA
for the naming context you are going to populate. If access controls are

10-2 Creating Directory Entries

Creating Directory Entries
10.1 Using a Script File to Populate a Naming Context

implemented, you can specify your distinguished name and password in
the BIND command.

Binding to the master DSA for the naming context ensures optimal
performance.

Each CREATE command creates one directory entry.

The first command creates the entry that has the same name as the
Naming Context entity.

With the exception of that first command, each CREATE command creates
an entry as a subordinate of another entry. You cannot create an entry
unless its parent exists, unless, as in the case of the first command, the
entry is also the root of a naming context.

Each CREATE command specifies the class of the entry being created,
and includes a list of the entry’s attributes and values.

Make sure that each CREATE command specifies all of the mandatory
attributes for each entry. Also, make sure that each entry is created with
the planned name, using the appropriate attributes for naming.

Make sure that you do not attempt to create any entries that do not
belong in the particular naming context you are populating. For example,
do not create entries that belong in subordinate naming contexts. Such
commands might succeed, depending on how completely you have
configured your DSAs, but even if they do succeed, this is not an efficient
way to populate the DIT.

The following is an extract of a DXIM script file for a typical naming
context:

I bind to the DSA on node WANGLE
bind to address "DSA"/"DSA"/" DSA"/ NS+4900100363AB72002020, CLNS
I

| create the first entry in the namng context.
!

create /c=US/o=abacus/ou=sal es attributes -

obj ect 0 ass=or gani zational Unit, -
description="Sal es and Marketing G oup"

use the set current command to save some typing on further
creates, by specifying Sales to be the current entry

set current /c=us/ o=abacus/ ou=sal es

!

I popul ate the sales group with enpl oyees.
|

create ./cn="Janet Gold" attributes -

obj ect O ass=(person, or gani zati onal Person), -

surnanme=Gol d, tel ephoneNunber=899090, description="Sal esperson", -
title="Principal Sales Coordinator", faxno=899000, -
comonName=("Jan Gol d","Janet Goul d")

|

create ./cn="Bill Marx" attributes -

obj ect O ass=(person, organi zati onal Person), surname=Marx, -
commonName=("W I liam Marx","WIIl Mrx","WIIliam Marks"), -
t el ephoneNunber =898988

|

| create the Drugs organi zational unit underneath Sal es

!
create ./ou=drugs attributes objectC ass=organi zational Unit

Creating Directory Entries 10-3

Creating Directory Entries
10.1 Using a Script File to Populate a Naming Context

|

I use the set current comand to save sone t ypi ng.
|

set current /c=us/o=abacus/ou=sal es/ ou=drugs
|

! popul ate the Drugs group with enpl oyees
|

create ./cn="Justin Wells" attributes -

obj ect O ass=(per son, or gani zat i onal Person), -
surname=\l |'s, tel ephoneNunber=894545, -
description="Seni or Pharmacol ogist"

3. Invoke DXIM in such a way that output is directed to a file, and use the
DXIM do command to execute the DXIM script file. For example:

Tru64

UNIX $ /usr/bin/dxim-c'doscript.file >&output.lis

¢

$ DEFI NE / USER SYS$OUTPUT out put . i s
OpenVMS | ¢ DX| M/ | NTERFACE=CHARACTER CELL DO SCRI PT. FI LE
*

If the script file fails to create an entry, then it will also fail to create any
subordinates of that entry.

4. Refer to the output file to see whether there were any errors.

If any part of the naming context was not populated, amend the script file.
Discard or comment out any commands that succeeded the first time, and
amend the command(s) that failed as necessary. Run the script file again, and
repeat the process until the naming context is fully populated.

10.2 Creating Entries Interactively

This section explains how to create entries interactively using the DXIM
management utility. Interactive entry creation is most suitable if you have a
small number of entries to create.

When you create an entry interactively, it is less important that you bind directly
to the master DSA for that entry. A small number of modifications can be passed
to the relevant master DSA without inconveniencing the DSA to which you are
bound.

If you have configured your DSAs correctly (see Chapter 8) then whichever DSA
you bind to will pass the request to the master DSA automatically. If this fails,
then you need to find out which DSA has inaccurate or insufficient configuration,
and correct it. It is important that your DSAs are configured correctly because an
important part of the service they provide is the ability to pass requests to the
correct DSA automatically.

Invoke DXIM using the DXIM shell or DCL command (see Section 9.6). DXIM
displays the dxi m> prompt. If DXIM does not bind automatically using defaults
information (see Chapter 9), use the DXIM bind command, for example:

dxi m> bind to address <presentation_address>

where <present ation_address> is the network presentation address of a DSA.

10-4 Creating Directory Entries

Creating Directory Entries
10.2 Creating Entries Interactively

If access controls are implemented, then the bind command can include your
distinguished name and password. For example:

dxim> bind to address <presentation_address> -
_dxi m> nane /c=us/ o=abacus/ ou=sal es/cn="Jon Hunter" password
Passwor d>

Having bound successfully, type a DXIM command to create an entry:
dxinp create entry <distingui shed _name> attributes <attr>=<value> ...

If the command fails, DXIM displays an error message. Refer to the DXIM online
help for full details of the command syntax and of DXIM error messages.

To create an entry using the DXIM windows interface, use the Browse window
to find the parent of the entry that you want to create. If you cannot find the
parent entry using the Browse window, then you cannot create the new entry. If
the entry configured to be the Browse base is not yet created, you cannot create
any entries using the windows interface. The windows interface only allows you
to create a new entry if it can find the parent entry.

If access controls are implemented, pull down the Directory menu and select the
Authenticate option. Specify your distinguished name and password, and click on
OK.

Click on the parent of the entry you want to create, and select the Create option
from the Edit menu. Select a class of entry from the Create submenu. DXIM
displays a Create window for that class of entry. Add values to the various
attributes. Remember to supply values for all mandatory attributes, and to
specify naming attributes. When you have finished, click on the OK button.
DXIM attempts to create the entry. If it fails, DXIM displays an error message
explaining why. Amend the window to correct the errors, and click on OK again.

If you want to create several entries as subordinates of the same parent, all of
the same class, and with several attribute values in common, you can click on the
Apply button to create an entry. In this case, when DXIM creates the entry, it
leaves the Create window on your screen. Amend the window to suit the second
entry you want to create, and then click on Apply again. Remember to change
the naming attributes, otherwise DXIM displays an error stating that the entry
already exists. You can repeat this process for any number of new entries of the
same class with the same parent entry.

10.3 Managing Multiple Entries

One of the features of a very large Enterprise Directory can be that entry
administration becomes a very repetitive and time consuming activity. The DXIM
command line interface provides facilities for managing multiple entries much
more efficiently than the basic services allow.

Typical uses of these facilities are:

= Making the same modification to many entries at once

= Moving entire subtrees from one position in the DIT to another

< Renaming an entry that has other entries beneath it

= Creating entries based on information that DXIM reads from a file
= Writing entry information to a DXIM script file

= Writing entry information to a file whose format you define

Creating Directory Entries 10-5

Creating Directory Entries
10.3 Managing Multiple Entries

The key to many of these activities is the ability to select multiple entries based
on a search filter. Having made a selection, you can then apply a management
command to the selection. For example:

dxi m> sel ect /C=US/ O=Abacus where surname=Smith
Nunmber of entries selected is 14.

dxim> nodi fy sel ected add val ue surname=Snyth

The first command selects a number of entries that match the specified search
filter, and the second command applies a modification to all of those entries. This
is clearly a lot easier than modifying each of the entries individually.

For full details of the activities listed above, see the online help for the DXIM
command line interface.

10-6 Creating Directory Entries

11

Using the Access Control Template File

This chapter describes how to use the access control template file to set up access
controls for a naming context. See Chapter 7 for details of how to plan access
controls for your DIT.

The access control template file is called:

6t | Jvar/ dxd/ scripts/ dxd_aci _tenpl ate. dxi m
N
DXD$DI RECTORY: DXD$SACI _ TEMPLATE. DXI M
OpenVMS .

The template file contains two incomplete DXIM commands. The first command
creates an entry of the accessControl Subentry class. This entry will contain
the access control information. This command only has any effect the first

time you use the template file. The second command sets the value of the
prescriptiveACH attribute of that entry. Every time you execute the template
file, the command deletes and replaces any existing value of the prescri ptiveAC
attribute.

To use the template file, complete the following steps:

1. Edit the CREATE ENTRY command line to specify the distinguished name of
the accessControl Subentry.

For example:

create entry
attribute objectclass=(accessControl Subentry, subentry)

becomes:

create entry /c=us/o=abacus/ cn="access control"
attribute objectclass=(accessControl Subentry, subentry)

2. Edit the SET ENTRY command line to specify the distinguished name of the
accessControl Subentry that is to hold the access control information. For
example:
set entry

becomes:

set entry /c=us/o=abacus/cn="access control"

3. Edit the "Directory Managers" AClitem to specify the name of at least one
user who is to have full access to all directory information.

Using the Access Control Template File 11-1

Using the Access Control Template File

Specify the distinguished name of at least one user. Use the DXIM SHOW
command to verify that the distinguished name exists. At least one of the
names you specify must already exist when you execute the template file.

4. Use DXIM to make sure that the immediate superior entry of the
accessControl Subentry already exists.

For example, the Abacus manager checks the existence of the organization
entry, as follows:

dxi m> show / c=us/ o=abacus

5. Use DXIM to execute the template file, as follows:

Tru64 | dgxi n> do / var/ dxd/ scripts/dxd_aci _tenplate

UNIX
L4
dxi m> DO DXD$DI RECTORY: DXD$SACI _TEMPLATE. DXI M
OpenVMS .

Once you have completed these tasks, access control is implemented for the
naming context that contains the accessCont r ol Subentry entry. The controls
may also be inherited by one or more subordinate naming contexts on the same
DSA.

To ensure that all shadow copies of the naming context have the same access
controls, update all shadow copies of the relevant naming context. See
Section 8.10 for details of the UPDATE DSA command.

Keep the template file for future reference. If you ever need to change access
controls, edit and execute the template file again (see Section 7.5.1 for notes

on customizing the access control template file). The CREATE ENTRY
command fails, but the SET ENTRY command replaces the existing value of the
prescriptiveACl attribute. You can comment out or delete the CREATE ENTRY
command if you prefer.

11-2 Using the Access Control Template File

A

Default Schema Definitions

OpenVMS Enterprise Directory for eBusiness provides a default schema which
includes definitions agreed by the international standards organizations. The
default schema also includes many definitions required by Compaq applications,
including the DSA itself. Do not modify any of these definitions. If you modify
these definitions you may have problems interworking with other Directory
Services, or problems running Compaq’s applications. You might even prevent
Compagqg’'s DSA from working properly. In particular, do not modify definitions in
DEC.SC. Also, MTS.SC contains definitions required by the MAILbus 400 MTA
product, and must not be edited.

You can, however, define extra definitions for your own use, or for use by specific
applications. See Chapter 6 for details of customizing the schema.

This appendix describes the classes, attributes, attribute sets, and syntaxes of
the default schema. Wherever possible you should use these definitions when
planning entries, rather than specify new definitions of your own.

A.1l Object Classes

The following sections give details of object classes defined in Compaq's default
schema for use in a typical organization’s directory information tree (DIT).

The default schema also includes many definitions for application use. Those
definitions are not documented here. This section documents the definitions that
you are most likely to want to use or refer to.

A.1.1 accessControlSubentry

This object class is used for entries that contain access control information. The
DSA uses this information to determine what access is permitted to a given part
of the directory information tree.

Note that commands that affect multiple entries, such as DXIM SHOW
SUBORDINATES and SEARCH commands, do not normally display subentries.
These commands provide a control that indicates whether subentries should be
displayed. This prevents subentries from being seen by end users.

See Chapter 7 for details of how to plan your use of this class if you want to
implement access controls.

Mandatory Attributes

obj ect d ass
commonNane

Default Schema Definitions A-1

Default Schema Definitions
A.1 Object Classes

A.1.2 alias

Optional Attributes

prescriptiveAC

Naming Rules
You must use the commonNanme attribute for naming.

Structure Rules

The accessControl Subentry is a special case. It does not have a structure rule
like other classes. You can only create an entry of this class beneath an entry
that is at the top of a naming context. The information in the entry defines the
access controls to be applied to all entries in that naming context, and to any
subordinate naming contexts that do not have an accessCont r ol Subentry of their
own.

This object class is used as the basis of schema definitions for specific alias
classes. You cannot create entries of the alias class.

When you want to create an alias entry, use one of the subclasses of the al i as
class. For example, to create an alias for a device, use the devi ceAl i as class.

Each of the subclasses of al i as permits the use of an appropriate naming
attribute so that you can create aliases that have names similar to those of other
classes.

Mandatory Attributes

obj ect d ass
al i asedQbj ect Name

Optional Attributes
This object class has no optional attributes.

Naming Rules

You cannot create an entry of the al i as class itself. Therefore, there are no
naming rules for this object class. Each subclass of the al i as class specifies a
naming rule.

Structure Rules

You cannot create an entry of the al i as class itself. Therefore, there are no
structure rules for this object class. Each subclass of the al i as class specifies a
structure rule.

A.1.3 applicationEntity

applicationEntity entries represent software application entities.

An application entity is an entity within an OSI network that performs some task
for an application process, for example, routing messages, locating and returning
requested information. Such an application entity could be an X.400 Message
Transfer Agent.

See also appl i cati onProcess.

A-2 Default Schema Definitions

Default Schema Definitions
A.1 Object Classes

Mandatory Attributes

obj ect d ass
comonNane
present ati onAddr ess

Optional Attributes

description

or gani zat i onal Uni t Nane
organi zat i onName

| ocal i t yName

seeAl so
support edAppl i cat i onCont ext

Naming Rules
The commonName attribute must be used for naming.

Structure Rules

applicationEntity entries must have an immediately superior entry of the object
class appl i cationProcess.

This is defined in the schema file DIT.SC as
applicationEntityStructureRule.

An applicationEntity entry is not permitted immediately beneath the root of
the directory information tree.

A.1.4 applicationEntityAlias

applicationEntityAlias entries represent aliases for software application
entities.

Mandatory Attributes

obj ect ass
comonNane
al i asednj ect Nane

Optional Attributes
There are no optional attributes for this class.

Naming Rules
The cormonNane attribute must be used for naming.

Structure Rules

A directory entry of the object class appl i cationEntityAlias must have an
immediately superior entry of the following object class:
appl i cationProcess

This is defined in the schema file DIT.SC as
applicationEntityAiasStructureRule.

An applicationEntityAlias entry is not permitted immediately beneath the root
of the directory information tree.

Default Schema Definitions A-3

Default Schema Definitions
A.1 Object Classes

A.1.5 applicationProcess
appl i cationProcess entries represent software application processes.

An application process is an element within an open system that performs the
information processing for a particular application, as defined in the ITU-T X.200
Series of Recommendations.

See also appl i cationEntity.

Mandatory Attributes

obj ect d ass
comonNane

Optional Attributes

description

| ocal i t yName

or gani zat i onal Uni t Nanme
seeAl so

Naming Rules
The commonNane attribute must be used for naming.

Structure Rules

A directory entry of the object class applicationProcess must have an
immediately superior entry of one of the object classes:

or gani zati on

organi zati onal Uni t

locality

This is defined in the schema file DIT.SC as
applicationProcessStructureRul e.

An appl i cationProcess entry is not permitted immediately beneath the root of
the directory information tree.

A.1.6 applicationProcessAlias
applicationProcessAlias entries represent aliases for software application
processes.
Mandatory Attributes

obj ect d ass
conmonNane
al i asedQbj ect Name

Optional Attributes
There are no optional attributes for this class.

Naming Rules
The cormmonName attribute must be used for naming.

A—4 Default Schema Definitions

Default Schema Definitions
A.1 Object Classes

Structure Rules

A directory entry of the object class appl i cati onProcessAl i as must have an
immediately superior entry of one of the object classes:

organi zation

or gani zat i onal Uni t

locality

This is defined in the schema file DIT.SC as
applicationProcessAliasStructureRule.

An appl i cationProcessAl ias entry is not permitted immediately beneath the
root of the directory information tree.

A.1.7 country

This structural object class is used to define entries in the DIT that represent
countries.

Note that you should only create an entry to represent a country if your
organization is the Directory Administration Authority for that country. If

you create a country entry without authority, you may have problems connecting
to a global Enterprise Directory in the future. You should only represent objects
that are part of your organization. See Chapter 4 for advice on what classes to
use in your organization’s DIT.

Mandatory Attributes
obj ect O ass

count r yName
Optional Attributes
description

sear chGui de

Naming Rules
Attribute count r yNane must be used for naming.

Structure Rules
A country entry must be immediately beneath the logical root of the DIT, it
cannot be subordinate to an entry of any other class.

This rule is defined in the schema file DIT.SC, and is called
countryStructureRul e.

A.1.8 countryAlias
This alias object class is used to define alias entries that represent countries.

Mandatory Attributes

obj ect O ass
count r yName
al i asednj ect Nane

Optional Attributes
This class has no optional attributes.

Naming Rules
Attribute count r yNane must be used for naming.

Default Schema Definitions A-5

Default Schema Definitions
A.1 Object Classes

Structure Rules

A countryAl i as entry must be immediately beneath the logical root of the DIT, it
cannot be subordinate to an entry of any other class.

This rule is defined in the schema file DIT.SC, and is called
countryAliasStructureRul e.

A.1.9 decDSA

This object class is used to represent Compaq DSAs in the DIT. Entries of this
class are required for security and optimal performance of a Enterprise Directory
that uses Compaq DSAs. Chapter 4 explains how to plan decDSA entries.

This object class is a subclass of dSA and appl i cationEntity. When you create
an entry of this class using the DXIM command line interface, you must specify
the obj ect O ass as follows:

. object d ass=(decDSA, dSA, applicationEntity)
See also appl i cationEntity and dSA.

Mandatory Attributes

obj ect d ass
comonNane
present ati onAddr ess

Optional Attributes

t rust edDSANanme

support edAppl i cati onCont ext
protocol | nformation

user Passwor d

description

know edgel nf ormati on

| ocal i t yName

or gani zati onName

or gani zat i onal Uni t Narme
seeAl so

Naming Rules
The commonNane attribute must be used for naming.

Structure Rules

A directory entry of the object class decDSA must have an immediately superior
entry of one of the following object classes:

country

locality

organi zation

organi zati onal Uni t

This is defined in the schema file DIT.SC as decDSASt r uct ur eRul e.

A decDSA entry is not permitted immediately beneath the root of the directory
information tree.

A—6 Default Schema Definitions

Default Schema Definitions
A.1 Object Classes

A.1.10 decDSAAlias
This object class is used to represent aliases for Compaq DSAs in the DIT.

Mandatory Attributes
obj ect O ass
commonNane

al i asednj ect Nane

Optional Attributes
There are no optional attributes for this class.

Naming Rules
The commonNane attribute must be used for naming.

Structure Rules

A directory entry of the object class decDSAAl i as must have an immediately
superior entry of one of the following object classes:

country

locality

organi zation

or gani zati onal Uni t

This is defined in the schema file DIT.SC as decDSAAl i asSt ruct ur eRul e.

A decDSAAl i as entry is not permitted immediately beneath the root of the
directory information tree.

A.1.11 decALL-IN-1UA

This class represents an ALL-IN-1 user agent. Entries of this class are normally
created automatically as a result of a messaging configuration task. This class
of entry may have a large number of attributes, but these are normally added as
required by messaging configuration. This section does not attempt to document
the class fully because you should never need to create such entries manually.
Use the DXIM SHOW SCHEMA CLASS decALL-IN-1UA command if you need
more information, or refer to the schema directly.

A.1.12 decMailUA

This class represents a mail user agent. Entries of this class are normally
created automatically as a result of a messaging configuration task. This class
of entry may have a large number of attributes, but these are normally added as
required by messaging configuration. This section does not attempt to document
the class fully because you should never need to create such entries manually.
Use the DXIM SHOW SCHEMA CLASS decMailUA command if you need more
information, or refer to the schema directly.

A.1.13 decMailUser

This auxiliary class can be used to enable any entry to have the attributes
that support messaging applications such as ALL-IN-1, Office Server, and the
MAILbus 400 MTA. Normally this class is added to such entries as a result of
messaging configuration tasks, but it can be added manually also.

The attributes permitted for this auxiliary class are usually added as a result
of messaging configuration tasks. This section does not attempt to document
the class fully because you should never need to use the class manually. Use

Default Schema Definitions A-7

Default Schema Definitions
A.1 Object Classes

the DXIM SHOW SCHEMA CLASS decMailUser command if you need more
information, or refer to the schema directly.

A.1.14 decX400Gateway

This class can be used to represent a MAILbus 400 Message Router Gateway.
Normally this class of entry is created as a part of messaging configuration
tasks, as documented by the relevant product documentation. This section does
not attempt to document the class fully for this reason. Use the DXIM SHOW
SCHEMA CLASS decX400Gateway command if you need more information, or
refer to the schema directly.

A.1.15 device

devi ce entries represent hardware devices.

Mandatory Attributes

obj ect d ass
comonNane

Optional Attributes

description

| ocal i t yName
organi zat i onNane

or gani zat i onal Uni t Nare
owner

seeAl so

seri al Nunber

Naming Rules
The comonNane attribute must be used for naming.

Structure Rules

devi ce entries must have an immediately superior entry of one of the following
object classes:

or gani zati on

organi zati onal Uni t

locality

This is defined in the schema file DIT.SC as devi ceStruct ur eRul e.

A devi ce entry is not permitted immediately beneath the root of the directory
information tree.

A.1.16 deviceAlias

devi ceAl i as entries represent aliases for hardware devices, such as modems or
disk drives.

Mandatory Attributes

obj ect d ass
commonNane
al i asednj ect Nane

Optional Attributes
There are no optional attributes for this class.

A-8 Default Schema Definitions

Default Schema Definitions
A.1 Object Classes

Naming Rules
The commonName attribute must be used for naming.

Structure Rules

devi ceAl i as entries must have an immediately superior entry of one of the
following object classes:

organi zation

or gani zati onal Uni t

locality.

This is defined in the schema file DIT.SC as devi ceAl i asStruct ur eRul e.

A devi ceAl i as entry is not permitted immediately beneath the root of the
directory information tree.

A.1.17 dSA

This object class is used to define entries in the DIT that represent Directory
System Agents, as defined in ITU-T Recommendation X.501.

Note

Compaq DSAs should be represented using the decDSA class. Use the dSA
class to represent non-Compaq DSAs.

This object class is a subclass of appl i cati onEntity as well as t op. When you
create an entry of this class using the DXIM command line interface, you must
specify the obj ect O ass as follows:

. obj ect O ass=(dSA applicationEntity)
See also appl i cationEntity and decDSA.

Mandatory Attributes
obj ect O ass
comonNane
present ati onAddr ess

Optional Attributes
description

know edgel nf or mati on

| ocal i t yName

or gani zat i onNane

organi zat i onal Uni t Name
seeAl so

support edAppl i cat i onCont ext

Naming Rules
The commonName attribute must be used for naming.

Default Schema Definitions A-9

Default Schema Definitions
A.1 Object Classes

Structure Rules

A directory entry of the object class dSA must have an immediately superior entry
of one of the following object classes:

country

locality

organi zati on

organi zati onal Uni t

This is defined in the schema file DIT.SC as dSASt r uct ur eRul e.

A dSA entry is not permitted immediately beneath the root of the directory
information tree.

A.1.18 dSAAlias

This object class is used to define aliases for entries in the DIT that represent
Directory System Agents, as defined in ITU-T Recommendation X.501.

Mandatory Attributes
obj ect d ass
commonNane

al i asednj ect Nane

Optional Attributes
There are no optional attributes for this class.

Naming Rules
The commonName attribute must be used for naming.

Structure Rules

A directory entry of the object class dSAAl i as must have an immediately superior
entry of one of the following object classes:

country

locality

or gani zati on

organi zati onal Uni t

This is defined in the schema file DIT.SC as dSAAl i asStruct ur eRul e.

A dSAAl i as entry is not permitted immediately beneath the root of the directory
information tree.

A.1.19 groupOfNames

groupOf Nanmes entries represent an unordered set of directory names that are
grouped for some purpose. Each name represents either an individual entry or is
the name of another group.

The group of names can be reduced to a set of individual entry names by
replacing each group with its membership. This can be carried out recursively
until all constituent group names have been eliminated, and just the names of
individual entries remain.

You would create an entry of this object class to describe any set or group of
objects that is connected in a significant way, for example, committees, teams,
distribution lists, or categories of devices.

A-10 Default Schema Definitions

Default Schema Definitions
A.1 Object Classes

Mandatory Attributes

obj ect d ass
conmonNane
menber

Optional Attributes

busi nessCat egory
description
organi zat i onName

or gani zat i onal Uni t Name
owner

seeAl so

Naming Rules
The commonName attribute must be used for naming.

Structure Rules

A directory entry of the object class gr oupOf Nanes must have an immediately
superior entry of one of the following object classes:

locality

organi zation

organi zati onal Uni t

This is defined in the schema file DIT.SC as gr oupOf NanesSt ruct ur eRul e.

A groupO Nanes entry is not permitted immediately beneath the root of the
directory information tree.

A.1.20 groupOfNamesAlias
groupOf NanmesAl i as entries represent aliases for gr oupOf Nanes entries.

Mandatory Attributes

obj ect d ass
comonNane
al i asedj ect Nane

Optional Attributes
There are no optional attributes for this class.

Naming Rules
The commonName attribute must be used for naming.

Structure Rules

A directory entry of the object class gr oupOf NanesAl i as must have an
immediately superior entry of one of the following object classes:
locality

organi zation

organi zati onal Uni t

This is defined in the schema file DIT.SC as
groupOf NamesAl i asStruct ureRul e.

A groupOf NamesAl i as entry is not permitted immediately beneath the root of the
directory information tree.

Default Schema Definitions A-11

Default Schema Definitions
A.1 Object Classes

A.1.21 locality

| ocal i ty entries represent a geographical locality, such as a state, a province,
a city, or a building. You can use locality entries to represent the geographical
subdivisions of your organization.

Mandatory Attributes
obj ect d ass

Optional Attributes
description

| ocal i t yName

stat eOr Provi nceName
sear chQui de

seeAl so

street Addr ess

Naming Rules

| ocal i t yName must be used for naming. Therefore, although this attribute is
optional according to the class definition, it is in effect mandatory.

Structure Rules

A local ity entry must have an immediately superior entry that is one of the
following object classes:

country

locality

organi zation

organi zati onal Uni t

This is defined in the schema file DIT.SC as | ocal i t yStruct ureRul e.

Alocality entry is also permitted immediately beneath the root of the directory
information tree. This rule is defined in the schema file DIT.SC, and is called
| ocal i tyRoot StructureRul e.

A.1.22 localityAlias

This alias object class is used to define alias entries that represent localities or
regions.

Mandatory Attributes

obj ect d ass

al i asedvj ect Nane

Optional Attributes

| ocal i tyNane

stat eOr Provi nceNane

Naming Rules

Attribute | ocal i t yName must be used for naming.

Structure Rules

A localityAias entry must have an immediately superior entry that is one of
the following object classes:

country

locality

organi zati on

organi zati onal Uni t

A-12 Default Schema Definitions

Default Schema Definitions
A.1 Object Classes

This is defined in DIT.SC as
localityAiasStructureRule.

A localityAlias entry can also be immediately beneath the logical root
of the DIT. This rule is defined in the schema file DIT.SC, and is called
| ocal i tyRoot Ali asStructureRul e.

A.1.23 mhs-user

This auxiliary object class can be used with directory entries to enable them to
contain X.400 messaging information.

You can modify any directory entry to add this auxiliary object class. The
mandatory attribute of this class then becomes mandatory for the entry.

Mandatory Attributes

mhs- or - addr esses

Optional Attributes

This class has no optional attributes.

Naming Rules

Auxiliary object classes do not have naming rules. The naming rule of the entry’s
structural class applies.

Structure Rules

Auxiliary object classes do not have structure rules. The structure rules of
the entry’s structural class apply. The nhs- user auxiliary class can be added
to an entry in any position in the DIT. For example, you can modify an
organizationalPerson entry to make it a member of the mhs-user class. The
mandatory attribute of the nmhs- user class becomes mandatory for the entry.

A.1.24 organization
organi zati on entries represent organizations.

Compag recommends that you create an or gani zati on entry as the highest entry
within your organization’'s DIT. See Chapter 4 for advice about what classes of
entry to use in your organization’s DIT.

See also organi zati onal Uni t.

Mandatory Attributes

obj ect d ass
organi zat i onName

Optional Attributes

busi nessCat egory
description
seeAl so

sear chQui de

user Passwor d

| ocal i t yName
st at eOr Provi nceNane
street Address

physi cal Del i veryCf fi ceNanme

post al Addr ess
post al Code

Default Schema Definitions A-13

Default Schema Definitions
A.1 Object Classes

post O f i ceBox
street Addr ess

desti nationl ndi cat or
facsim | eTel ephoneNunber
i nternational | SDNNunber
preferredDeliveryMet hod
regi st er edAddr ess

t el ephoneNunber

tel etexTerm nal I dentifier
t el exNunber

x121Addr ess

Naming Rules
or gani zati onName must be used for naming.

Structure Rules

An or gani zat i on entry does not need to have any superior entry. However, if it
does, then the immediately superior entry must be of one of the following classes:
country

locality

This is defined in the schema file DIT.SC as or gani zati onSt ruct ur eRul e.

An organi zati on entry is also permitted immediately beneath the root of the
directory information tree. This rule is defined in the schema file DIT.SC, and is
called or gani zat i onRoot St ruct ureRul e.

A.1.25 organizationAlias
This alias object class is used to define alias entries that represent organizations.

Mandatory Attributes

or gani zati onName
obj ect d ass
al i asednj ect Nane

Optional Attributes
There are no optional attributes for this class.

Naming Rules
Attribute or gani zat i onName must be used for naming.

Structure Rules

An or gani zati onAl i as entry can have an immediately superior entry that is one
of the following object classes:

country

locality

or gani zati on

organi zati onal Uni t

This is defined in DIT.SC as or gani zati onAl i asSt ruct ureRul e.

An or gani zati onAl i as entry can also be immediately beneath the logical
root of the DIT. This rule is defined in the schema file DIT.SC, and is called
or gani zati onRoot Al i asSt ruct ur eRul e.

A-14 Default Schema Definitions

Default Schema Definitions
A.1 Object Classes

A.1.26 organizationalPerson

organi zati onal Per son entries represent people employed by, or associated with,
an organization. Compaq recommends that you use the
organi zati onal Person class as the basis of entries representing your employees.

organi zati onal Person is a subclass of person. When you create an entry of this
class using the DXIM command line interface, you must specify the obj ect 0 ass
as follows:

. obj ect O ass=(organi zat i onal Per son, person)

Mandatory Attributes
obj ect O ass
comonNane

sur name

Optional Attributes

description

organi zat i onal Uni t Nane
seeAl so

t el ephoneNunber

title

user Passwor d

| ocal i t yName
st at eOr Provi nceNane
street Address

physi cal Del i veryCOf fi ceName
post al Addr ess

post al Code

post O f i ceBox

street Address

destinationl ndi cat or
facsi m | eTel ephoneNunber
i nternational | SDNNurmber
preferredDel i veryMet hod
regi st eredAddr ess

tel etexTerm nal I dentifier
t el exNumber

x121Addr ess

Naming Rules
The commonName attribute is used for naming.

Structure Rules

organi zati onal Per son entries must have an immediately superior entry of one of
the following object classes:

organi zation

or gani zati onal Uni t

locality

This is defined in the schema file DIT.SC as
organi zati onal PersonSt ruct ureRul e.

Default Schema Definitions A-15

Default Schema Definitions
A.1 Object Classes

An organi zat i onal Per son entry is not permitted immediately beneath the root of
the directory information tree.

A.1.27 organizationalPersonAlias

This alias object class is used to define alias entries that represent people within
an organization.

Mandatory Attributes
commonNane

obj ect d ass

al i asednj ect Nane

Optional Attributes
There are no optional attributes for this class.

Naming Rules
Attribute cormonName must be used for naming.

Structure Rules

An organi zati onal Per sonAl i as entry must have an immediately superior entry
that is one of the following object classes:

locality

or gani zati on

organi zati onal Uni t

This is defined in DIT.SC as
organi zati onal PersonAl i asStruct ureRul e.

An or gani zat i onal PersonAl i as entry cannot be immediately beneath the logical
root of the DIT.

A.1.28 organizationalRole

This object class is used to define entries in the DIT that represent a position or
a role within an organization. An organizational role is normally considered to
be filled by a particular person or a software application, but over its lifetime the
role could be filled by many different people or applications in succession.

Mandatory Attributes

obj ect d ass
comonNane

Optional Attributes

description

seeAl so

or gani zat i onal Uni t Nanme
preferredDeliveryMethod
rol eCccupant

| ocal i t yName
st at eOr Provi nceName
street Addr ess

physi cal Del i veryOf fi ceName

post al Addr ess
post al Code

A-16 Default Schema Definitions

Default Schema Definitions
A.1 Object Classes

post O f i ceBox
street Address

desti nati onl ndi cat or
facsi m | eTel ephoneNunber
i nternational | SDNNunber
preferredDel i veryMet hod
regi st er edAddr ess

t el ephoneNunber
teletexTermnal | dentifier
t el exNumber

x121Addr ess

Naming Rules
The commonName attribute must be used for naming.

Structure Rules

A directory entry of the object class or gani zati onal Rol e must have an
immediately superior entry of one of the following object classes:

organi zation

or gani zati onal Uni t

This is defined in the schema file DIT.SC as
organi zati onal Rol eStruct ureRul e.

An or gani zati onal Rol e entry is not permitted immediately beneath the root of
the directory information tree.

A.1.29 organizationalRoleAlias

This alias object class is used to define alias entries that represent organizational
roles within an organization. For example, the entry might be used to provide an
alias for an entry representing a team leader or manager.

Mandatory Attributes

commonNane
obj ect d ass
al i asedvj ect Nane

Optional Attributes
There are no optional attributes for this class.

Naming Rules
Attribute conmonName must be used for naming.

Structure Rules

An organi zati onal Rol eAl i as entry must have an immediately superior entry
that is one of the following object classes:

locality

organi zation

or gani zat i onal Uni t

This is defined in DIT.SC as or gani zat i onal Rol eAl i asStruct ureRul e.

An or gani zati onal Rol eAl i as entry cannot be immediately beneath the logical
root of the DIT.

Default Schema Definitions A-17

Default Schema Definitions
A.1 Object Classes

A.1.30 organizationalUnit

organi zati onal Unit entries represent subdivisions of organizations, such as
departments, offices, or branches.

See also organi zati on.

Mandatory Attributes

obj ect d ass
or gani zat i onal Uni t Nanme

Optional Attributes

busi nessCat egory
description
seeAl so

sear chQui de

user Passwor d

| ocal i tyNane
st at eOr Provi nceName
street Address

physi cal Del i veryCF fi ceNane
post al Addr ess

post al Code

post O f i ceBox

street Address

destinati onl ndi cat or
facsi m | eTel ephoneNunber
i nternational | SDNNunmber
preferredDeliveryMethod
regi st er edAddr ess

t el ephoneNunber

tel etexTerm nal [dentifier
t el exNumber

x121Addr ess

Naming Rules
The or gani zat i onal Uni t Name attribute must be used for naming.

Structure Rules

A directory entry of the object class or gani zati onal Unit must have an
immediately superior entry of one of the following object classes:

organi zati on

organi zati onal Uni t

locality

This is defined in the schema file DIT.SC as
organi zational Unit StructureRul e.

An organi zational Unit entry is not permitted as an immediate subordinate of
the root of the directory information tree.

A-18 Default Schema Definitions

Default Schema Definitions
A.1 Object Classes

A.1.31 organizationalUnitAlias

This alias object class is used to define alias entries that represent organizational
units within an organization.

Mandatory Attributes
organi zat i onal Uni t Nane
obj ect O ass

al i asednj ect Nane

Optional Attributes
There are no optional attributes for this class.

Naming Rules
Attribute or gani zat i onal Uni t Name must be used for naming.

Structure Rules

An organi zational Unit Al i as entry must have an immediately superior entry
that is one of the following object classes:

locality

organi zation

or gani zati onal Uni t

This is defined in DIT.SC as or gani zati onal Uni t Al i asStruct ureRul e.

An organi zati onal Unit Ali as entry cannot be immediately beneath the logical
root of the DIT.

A.1.32 person

person entries represent people. However, note that the default schema does not
contain structure rules or a name form for this class, so by default you cannot
create entries of this class.

The person class is a superclass of the organi zati onal Person and

resi denti al Person classes. Those two subclasses provide more attributes than
the per son class, and have structure rules and name forms. Compaq recommends
that you do not use the per son class itself.

See also organi zat i onal Person, and resi denti al Person.

Mandatory Attributes

obj ect d ass
comonNane

sur name

Optional Attributes
description

seeAl so

t el ephoneNunber
user Passwor d
Naming Rules

The person class has no name form and therefore per son entries cannot be
created in the DIT.

See or gani zat i onal Person and resi denti al Person for details of two subclasses
of person. See Chapter 6 for details of how to define a name form if you want to
use the person class.

Default Schema Definitions A-19

Default Schema Definitions
A.1 Object Classes

Structure Rules

person has no structure rules, and therefore per son entries cannot be created
anywhere in the DIT.

See or gani zat i onal Person and resi denti al Person for details of two structural
subclasses of person. See Chapter 6 for details of how to define structure rules if
you want to use the person class.

A.1.33 residentialPerson

resi dential Person entries represent people in the residential environment, such
as the resident of a particular address.

resi dential Person is a subclass of person. When you create an entry of this
class using the DXIM command line interface, you must specify the obj ect C ass
as follows:

. objectd ass=(residential Person, person)
See also organi zat i onal Person and person.

Mandatory Attributes

obj ect d ass
comonNane
sur name

| ocal i t yName

Optional Attributes

busi nessCat egory
description
preferredDeliveryMet hod
seeAl so

t el ephoneNunber

user Passwor d

| ocal i t yName

stat eOr Provi nceNanme

street Address

physi cal Del i veryCf fi ceName
post al Addr ess

post al Code

post O f i ceBox

street Address

destinationl ndi cator
facsim | eTel ephoneNunber
i nternational | SDNNurber
regi st er edAddr ess

t el ephoneNunber
teletexTerm nal | dentifier
t el exNurber
preferredDeliveryMet hod
x121Addr ess

A-20 Default Schema Definitions

Default Schema Definitions
A.1 Object Classes

Naming Rules

The conmonNane attribute must be used for naming. You can also use the
street Address.

Structure Rules

resi denti al Person entries must have an immediately superior entry of object
class | ocal ity.

This is defined in the schema file DIT.SC as r esi dent i al PersonStruct ur eRul e.

A residential Person entry is not permitted immediately beneath the root of the
directory information tree.

A.1.34 residentialPersonAlias

This alias object class is used to define alias entries that represent people in a
residential or domestic context as the residents of a locality.

Mandatory Attributes

comonNane
obj ect d ass
al i asednj ect Nane

Optional Attributes
seeAl so

Naming Rules

Attribute conmonName must be used for naming. The street Addr ess attribute can
be used as an optional second naming attribute.

Structure Rules

A residential PersonAlias entry must have an immediately superior entry of
the following object class:

locality

This is defined in DIT.SC as
resi dential PersonAliasStructureRul e.

A residential PersonAlias entry cannot be immediately beneath the logical root
of the DIT.

A.1.35 shadowingAgreement

This object class is used by Compag DSAs to represent an agreement to replicate
directory information to or from another Compag DSA. The shadowing agreement
defines the frequency and terms of replication, and enables Compaq DSAs to
provide automatic replication, instead of requiring manual intervention.

Note that shadowing agreements are created and managed automatically by
Compaq DSAs. Some manual management of these subentries is supported; see
Section 8.10.1 for details.

Mandatory Attributes

obj ect O ass
comonNane

Default Schema Definitions A-21

Default Schema Definitions
A.1 Object Classes

Optional Attributes

shadowi ngAttributes
shadow ngBegi nTi nme
shadowi ngEndTi ne
shadowi ngFl ags
shadow ngl d

shadowi ngKnow edgeType
shadow ngLast Updat e
shadowi ngMast er
shadowi ngNext Updat e
shadow ngPeer

shadow ngRef erence
shadowi ngSt at e
shadowi ngUPDFi | e
shadowi ngUPDCF f set
shadowi ngVer si on
subt reeSpeci fication

Of these, the only attribute that you should consider managing manually is
the shadowi ngFl ags attribute. Do not attempt to manage the shadow ngFl ags
attribute without referring to Section 8.10.1. Do not modify any of the other
attributes of the shadowing agreement.

Naming Rules

You must use the conmonNane attribute for naming. Compaq DSAs assign the
name of shadowing agreements automatically; do not rename a shadowing
agreement subentry.

Structure Rules

The shadowi ngAgr eenent class is a special case. It is created automatically by
a Compag DSA immediately beneath the entry at the top of the naming context
to which this shadowing agreement applies. You should not attempt to create
these entries manually. If you delete them, replication may fail, or the DSA may
automatically recreate the agreement. It is unwise to delete them.

A.1.36 subentry

This object class is used as the basis of entries that contain information that the
DSA uses to determine how it manages a given part of the DIT.

Further classes are defined as subclasses of subentry, to enable the storage of
information about one aspect of information management. For example, the
accessControl Subentry subclass allows for information regarding the control of
access to directory information, and the shadow ngAgr eenent subclass allows for
information about replication agreements.

Note that user requests that can return multiple entries, such as searches,
usually exclude subentries. Such commands provide a control that enables you to
specify whether you want to see subentries, which are generally of no interest to
end users.

Mandatory Attributes

obj ect d ass
comonNane

A-22 Default Schema Definitions

A.1.37 top

Default Schema Definitions
A.1 Object Classes

Optional Attributes

subt reeSpeci fication

Naming Rules
You must use the conmmonNane attribute for naming.

Structure Rules

The subentry class is a special case. It does not have a structure rule like other
classes. You can only create an entry of this class beneath an entry that is at
the top of a naming context. In practice, you would create an entry based on a
subclass of subent ry, rather than of subentry itself.

t op is an abstract object class.

You do not create entries of class t op itself. It is a superclass of other object class
definitions. This means that other object classes inherit the mandatory attribute
obj ect ass.

Mandatory Attributes
obj ect ass

A.2 Structure Rules Quick Reference

The illustrations in this section show the structure rules defined in the schema
for the structural object classes defined in the schema provided with Compagq
Enterprise Directory for eBusiness. (All of these definitions are customizable.)

Figure A-1 shows the permitted relationships between object classes that
represent your organization, and its geographical and organizational subdivisions.
The illustration also shows that DSA entries can be created as subordinates of a
country entry.

Default Schema Definitions A-23

Default Schema Definitions
A.2 Structure Rules Quick Reference

Figure A-1 Structure Rules for Classes: Part |

organizationalUnit

MIG0498

Each arrow represents the ability of an entry of one class to be created as the
immediate subordinate of an entry of another class, or beneath the root. For
example, a country entry can be created immediately beneath the root of the DIT.
An or gani zati on entry can be created beneath the root of the DIT, or beneath a
country or | ocal ity entry. Using these classes, you should be able to represent
the structure of your organization. Chapter 4 describes in detail how to plan a
DIT. Chapter 6 describes how to customize the schema if the default classes and
structure rules are not suitable for your organization.

Note

The dSA and decDSA class are shown as permitted subordinates of
country. However, you should only represent a DSA as an immediate
subordinate of a country if you are responsible for a national directory
service.

For example, a national PTT might be responsible for providing a
directory service, and therefore decide to represent one or more DSAS in
such a position. Most organizations will only be providing a service for
their own users, and should therefore create DSA entries as subordinates
of the organization entry, as shown in Figure A-2.

You are recommended to use the decDSA class to represent Compaq DSAs.
You can use this class to represent other vendor’s DSAs also. The only
reason you might use the dSA class is if you have other vendors’ DSAs

in your network, and those DSAs advise or require that you use the
standard dSA class to represent them.

Chapter 4 describes in detail the planning of DSA entries.

Figure A—2 shows the permitted relationships between the classes that
represent your organization, and the classes that represent resources within
your organization.

A-24 Default Schema Definitions

Default Schema Definitions
A.2 Structure Rules Quick Reference

Figure A-2 Structure Rules for Classes: Part Il

@ @ organizationalUnit

organizational
Person

decDSA
A
device

organizational

group
OfNames

application
Role ke

Process

MIG0500

The default schema provided with the product specifies that all of the classes
that represent resources are permitted beneath any of the classes that you use
to represent your organizational structure. If you define a class to represent a
resource for which none of the default classes are suitable, then you probably need
to make it a permitted subordinate of all three of | ocal i ty, organi zati on, and
organi zational Unit, like all of the classes shown at the bottom of Figure A-2.

The schema provided with the product also contains several alias classes. Each
alias class is designed to mimic one of the structural classes. Therefore, each
alias class has structure rules that permit entries to be created in the same DIT
positions as the entries they mimic. For example, a countryAl i as entry can be
created beneath the root of the DIT, just as a country entry can. Similarly, an
organi zati onAl i as entry can be created beneath the root, or beneath a country
or | ocal ity entry.

Note that an alias entry cannot have subordinate entries. For example, you
cannot create a | ocal i t yAl i as entry beneath a count ryAl i as entry, because a
countryAl i as entry cannot have subordinates.

A.3 Attributes

The following topics each describe an attribute defined in the default schema.
Each attribute definition specifies an attribute syntax, and may specify that the
attribute can have more than one value. The schema also contains labels for each
attribute. A label specifies permitted abbreviations or user-friendly alternatives
for an attribute. These labels are used by DXIM to improve the usability of the
utility.

Not all of the attributes in the default schema are documented. Specifically,
attributes defined in COSINE.SC and QUIPU.SC are only likely to be
relevant if you interwork with those implementations. In that case, refer to
the documentation provided with those implementations.

Default Schema Definitions A-25

Default Schema Definitions
A.3 Attributes

Some of the attributes described are operational attributes. An operational
attribute is usually hidden from users, and is often managed automatically by the
DSA. A small number of operational attributes are managed manually, such as
the trust edDSANanme and prescri ptiveACl attributes. However, most operational
attributes are read-only.

To display operational attributes, you can use the DXIM command line interface
with the al | operational attributes control, or request an attribute specifically.
For example:

dxi m> show / C=US/ O=Abacus/ OU=Sal es al | operational attributes

The DXIM windows interface does not support the display or management of
operational attributes.

Because most operational attributes are read-only, the sections describing those
attributes may be less detailed than the descriptions of other attributes.

A.3.1 administrativeRole
This is an operational attribute. Compaq DSAs do not use this attribute.
The attribute is intended to be created on an entry that represents the root
of an administrative area of the DIT. The values of the attribute are intended
to indicate what classes of subentry may be created beneath the entry. The

subentries would specify information about the administrative area. Do not use
this attribute unless you have DSAs that support it.

The syntax for this attribute is obj ect | denti fi er Synt ax.

A.3.2 aliasedObjectName

Every alias entry has an al i asedQbj ect Nane attribute. The attribute specifies
the name of the directory entry for which this alias entry provides an alias
name.

Attribute Syntax
The syntax for this attribute type is di sti ngui shedNameSynt ax.

For example:
al i asedObj ect Name="/ C=US/ O=Abacus/ OU=Sal es"

The value of this attribute should be the distinguished name of an entry in
the DIT. The Enterprise Directory does not verify that the distinguished name
actually exists in the DIT until a user tries to use the alias name. If the alias
name does not resolve to the distinguished name of an entry, the Enterprise
Directory returns an error.

Note

Do not specify the name of another alias entry as the value of
the al i asedQbj ect Nane attribute. If the name specified in the
al i asedoj ect Nane attribute is actually an alias name, then the
Enterprise Directory returns an error.

A-26 Default Schema Definitions

Default Schema Definitions
A.3 Attributes

Labels
al i asedOnj ect Nane

For example:
al i asedj ect Nanme=/ ¢=US/ 0=ACME

A.3.3 businessCategory
This specifies information concerning the occupation or field of interest of an
object such as a person or organization.
A business category can be up to 128 characters long.

Attribute Syntax

The syntax for this attribute type is stringSyntax, for example,

busi nessCat egory="Ret ai | ". This attribute specifies that it supports matching
rules that are not case sensitive.

Labels

busi nessCat egory

For example:

busi nessCat egor y=Ret ai |

A.3.4 commonName

This specifies a name by which an object is usually known. For example, the
common name of a person might be John Smith.

A common name should follow the conventions of the culture of the object
represented. For example, you can use characters such as 6, a, é, and B if they
usually form part of a name for an object. Similarly, a person’s family name
may be placed first or last, according to the conventions usually applied to that
person’s name.

A common name can be up to 64 characters long.

Attribute Syntax

The syntax for this attribute type is stringSynt ax, for example, commonName
="John Snith". This attribute specifies that it supports matching rules that are
not case sensitive.

For example, a search for commonName="John Smi t h" would succeed in finding an
entry called cormonNanme="j ohn smith".
Labels

cn
comon
nane
commonNane

For example:
cn="John Smi t h"

Default Schema Definitions A-27

Default Schema Definitions
A.3 Attributes

A.3.5 consumerKnowledge

This is an operational attribute. Compaq DSAs use this attribute to store
information about the replication of information.

Do not modify this attribute manually. The DSA manages the attribute
automatically.

A Compag DSA adds this operational attribute to the entry at the top of a naming
context that is replicated from this DSA to other DSAs.

You can use the DXIM command line interface to display this attribute if you
request the attribute specifically. However, it will not be displayed in a user-
friendly format. DXIM does not display operational attributes if you use the All
Attributes control.

You cannot display this attribute using the DXIM windows interface.

See also the suppl i er Know edge attribute. See Chapter 5 for details of consumer
DSAs and supplier DSAs.

A.3.6 countryName
This specifies the international code that represents a country’s name.

The list of codes supported by the Compaq DSA is as follows:
AD AE AF AG Al AL AM AN AO AQ AR AS AT AU AW AZ BA BB BD BE

BF BG BH Bl BJ BM BN BO BR BS BT BV BWBY BZ CA CC CF CG CH
a KCLCMCONCOCRCUCY CX Cy CZ DE DJ DK DM DO DZ EC EE
EGEHERESETFI FJ FKFMFOFRFXGA B D CE G GHA G
MNP QERC G QUOGNG HKHMHEHNHR HT HUID IEIL IN
[OIQIRISIT JIJMJIOJP KE KG KH KI KM KN KP KR KWKY KZ LA
LB LC LI LK LR LS LT LU LV LY MA MC M MG M\H MK M. MM MN MO
M MY MR MS MI MU W MVMX MY M2 NA NC NE NF NG N NL NO NP
NR NU NZ OM PA PE PF PG PH PK PL PM PN PR PT PWPY QA RE RO
RU RWSA SB SC SD SE SG SH SI SJ SK SL SM SN SO SR ST SV SY
SZTCTDTFTGTHTI TK TMTNTO TP TR TT TV TWTZ UA UG UM
US UY UZ VAVC VEVGVI W W W W5 YE YT YU ZA ZM ZR ZW

Attribute Syntax

The value of the count ryNane attribute must be a two-letter code chosen from
International Standard 3166. For example, the value US is the correct code for
the United States of America.

It does not matter whether the country code is specified in uppercase or
lowercase.
Labels

c

co

country
count rynane

For example:
c=US

A-28 Default Schema Definitions

Default Schema Definitions
A.3 Attributes

A.3.7 createTimeStamp

This is an operational attribute. Compaq DSAs use this attribute to record the
time that an entry was created.

Compaq DSAs add this operational attribute to each entry. Do not modify this
attribute manually. You can use the DXIM command line interface to display

this attribute if you request the attribute specifically. DXIM does not display

operational attributes if you use the All Attributes control.

You cannot display this attribute using the DXIM windows interface.
The syntax of this attribute is generalizedTimeSyntax.

See also nodi fyTi meSt anp.

A.3.8 decALL-IN-1UAName
This attribute represents the name of the ALL-IN-1 user agent for a user.

Attribute Syntax
The syntax for this attribute type is di stingui shedNameSynt ax.

Labels
decALL- | N- 1UANane

For example:
decALL- | N- 1TUANanme="/ C=US/ O=Abacus/ CN=A1"

A.3.9 decALL-IN-1UserName
This attribute represents the ALL-IN-1 user name of a user.

Attribute Syntax
The syntax for this attribute type is st ringSynt ax.

Labels
decALL- I N- 1User Nane
For example:

decALL- | N- 1User Name=HOLMESJ

A.3.10 decAltMRAddress

This attribute represents alternative Message Router addresses. The alternative
address might be used by a Message Router gateway when it needs to translate
from one style of address to another.

Attribute Syntax
The syntax for this attribute type is st ringSynt ax.

Labels
decAl t MRAddr ess

For example:
decAl t MRAddr ess="col i n j ones @ALES"

Default Schema Definitions A-29

Default Schema Definitions
A.3 Attributes

A.3.11 decAltRFC822Mailbox

This attribute represents alternative SMTP addresses. The attribute might
be used by a gateway when it needs to translate from one style of address to
another.

Attribute Syntax
The syntax for this attribute type is i A5St ri ngSynt ax.

Labels
decAl t RFC822Mai | box

For example:
decAl t RFC822Mai | box="] ones@bacus. conf

A.3.12 decDDSID

This attribute enables a MAILbus Directory Service entry to be synchronised
with an X.500 entry. Do not modify this attribute.

A.3.13 decDDSModificationTimestamp

This attribute enables a MAILbus Directory Service entry to be synchronised
with an X.500 entry. Do not modify this attribute.

A.3.14 decDDSNetworkID

This attribute enables a MAILbus Directory Service entry to be synchronised
with an X.500 entry. Do not modify this attribute.

A.3.15 decDECnetNodeName

This attribute represents the name of the DECnet node at which a user agent or
application services DECnet requests.

Attribute Syntax
The syntax for this attribute type is i A5St ri ngSynt ax.

Labels
decDECnet NodeNane

For example:
decDECnet NodeNanme=MYNODE

A.3.16 decGlobalSearchBase

This attribute defines a search base that might be supported by user agents.

A user agent might present its users with the options of "global" searches and
"local" searches. The user agent can determine what search base to use for global
searches by referring to this attribute.

Attribute Syntax
The syntax for this attribute type is di sti ngui shedNanmeSynt ax.

Labels
decd obal Sear chBase

For example:
decd obal Sear chBase="/ C=US/ O=Abacus"

A-30 Default Schema Definitions

Default Schema Definitions
A.3 Attributes

A.3.17 decLocalSearchBase

This attribute defines a search base that might be supported by user agents.

A user agent might present its users with the options of "global" searches and
"local" searches. The user agent can determine what search base to use for local
searches by referring to this attribute.

Attribute Syntax
The syntax for this attribute type is di stingui shedNameSynt ax.

Labels
decLocal Sear chBase

For example:
declLocal Sear chBase="/ C=US/ O=Abacus/ CN=Sal es"

A.3.18 decMailDestination
This attribute represents the name of a mail destination for a user.

Attribute Syntax
The syntax for this attribute type is di stingui shedNameSynt ax.

Labels
decMai | Dest i nation

For example:
decMi | Desti nation="/ C=US/ O=Abacus/ CN=A1"

A.3.19 decMailNonDeliver

This attribute indicates that mail for the user should be non-delivered. The value
of the attribute may be used as part of the non-delivery notification.

Attribute Syntax
The syntax for this attribute type is print abl eStringSynt ax.

Labels
decMai | NonDel i ver

For example:

decMai | NonDel i ver="Thi s user has | eft the conpany"

A.3.20 decMailworksUserName
This attribute represents the local user name for a DEC MAILworks user.

Attribute Syntax
The syntax for this attribute type is St ringSynt ax.

Labels
decMAl Lwor ksUser Nanme

For example:
decMAl Lwor ksUser Name=Hubbar d

Default Schema Definitions A-31

Default Schema Definitions
A.3 Attributes

A.3.21 decMRAddress
This attribute represents the Message Router address of a user.

Attribute Syntax
The syntax for this attribute type is st ri ngSynt ax.

Labels
decMRAddr ess

For example:
decMRAddr ess="col i n j ones @ALES"

A.3.22 decMTSAItForeignAddressAttr

Attribute Syntax
The syntax for this attribute type is obj ect | denti fier Synt ax.

Labels
decMTSAl t For ei gnAddr

For example:
decMTSAl t For ei gnAddr={2 5 10}

A.3.23 decMTSDDAType

Attribute Syntax

The syntax for this attribute type is print abl eStringSynt ax. The value length is
limited to eight characters.

Labels
decMTSDDAType

For example:
decMTSDDATy pe="XMRROUTE

A.3.24 decMTSForeignAddressAttr

This attribute identifies an attribute type that a mail gateway might use when
mapping between different styles of address. The attribute is identified by its
object identifier.

Attribute Syntax
The syntax for this attribute type is obj ect | dentifier Synt ax.

Labels
decMISFor ei gnAddr essAttr

For example:
decMTSFor ei gnAddr essAttr={2 5 98}

A-32 Default Schema Definitions

Default Schema Definitions
A.3 Attributes

A.3.25 dec-mts-admd-name

This attribute is used in the MAILbus 400 MTA's routing information subtree to
name an administration domain.

A.3.26 dec-mts-prmd-name

This attribute is used in the MAILbus 400 MTA's routing information subtree to
name a private administration domain.

A.3.27 dec-mts-talk-other-CCITT-domain

This attribute is used in the MAILbus 400 MTA's routing information subtree to
indicate whether a user is permitted to send mail across domain boundaries.

A.3.28 decNumericUserld

This attribute represents a numeric identifier for a user. The identifier may form
part of a numeric OR address for the user.

Attribute Syntax
The syntax for this attribute type is numeri cStringSynt ax.

Labels
decNunericlD

For example:
decNuneri cl D=2328461

A.3.29 decOVVMAddress

This attribute represents the IBM OfficeVision address of a user. It should be in
the form LOCATION.USERNAME.

Attribute Syntax
The syntax for this attribute type is st ringSynt ax.

Labels
decOVWMAddr ess

For example:
decOWMAddr ess="LONDON. SM TH'

A.3.30 decPMAddress
This attribute represents a MAILbus Postmaster address.

Attribute Syntax
The syntax for this attribute type is st ringSynt ax.

Labels
decPMAddr ess

For example:
decPMAddr ess="post nast er @\L"

Default Schema Definitions A-33

Default Schema Definitions
A.3 Attributes

A.3.31 decPreferredMailAddress

This attributes identifies the type of attribute that contains the preferred mail
address of a user. For example, it might indicate that the mhs-or-address
attribute contains the preferred address. The attribute is identified by is object
identifier.

Attribute Syntax
The syntax for this attribute type is obj ect | denti fi er Synt ax.

Labels
decPref erredMhi | Addr ess

For example:
decPref erredMai | Address={2 5 28}

A.3.32 decSNADSAddress

This attribute represents the IBM SNADS address of a user. It should be in the
form LOCATION.USER.

Attribute Syntax
The syntax for this attribute type is st ri ngSynt ax.

Labels
dec SNADSAddr ess

For example:
decSNADSAddr ess="LONDON. JONES

A.3.33 decX400DDA

This attribute represents the domain-defined attribute of a user’s X.400 OR
address. The attribute is a string list, with the first list item indicating the DDA
attribute type, and the second list item specifying the value.

Attribute Syntax
The syntax for this attribute type is st ringLi st Synt ax.

Labels
decX400DDA

For example:
decX400DDA="sni t h(a) Al(a) node6"

A.3.34 decX400MRGatewayName

This attribute represents the name of a MAILbus 400 Message Router Gateway
used by a user agent.

Attribute Syntax
The syntax for this attribute type is di sti ngui shedNameSynt ax.

Labels
decX400MRGat eway Nane

For example:
decX400MRGat ewayName="/ C=US/ O=Abacus/ CN=XMR'

A-34 Default Schema Definitions

Default Schema Definitions
A.3 Attributes

A.3.35 decX400SMTPGatewayName

This attribute represents the name of the MAILbus 400 SMTP Gateway used by
a user agent.

Attribute Syntax
The syntax for this attribute type is di stingui shedNameSynt ax.

Labels
decX400SMIPGat ewayNarme

For example:
decX400SMIPGat ewayName="/ C=US/ O=Abacus/ CN=STMP

A.3.36 decX400Redirect

This attribute represents the X.400 OR address to which messages should be
redirected.

Attribute Syntax
The syntax for this attribute type is nhs- or - name- synt ax.

Labels
decX400Redi r ect

For example:
decX400Redi r ect =" C=US; A=XYZ; P=Abacus; O=Abacus; QUl=Sal es; CN=John Smi th

A.3.37 description

Use the descri ption attribute to provide descriptive information about an object.
The description can be up to 1024 characters long.

Attribute Syntax

The syntax for this attribute type is stringSyntax. For example, an entry
representing a distribution list could have the associated description, "distribution
list for sales figures, forecasts, and quarterly reports".

This attribute specifies it supports matching rules that are not case sensitive. For
example, descri pti on=Bl G matches descri ption=Big.

Labels
description

For example:

description=Big

A.3.38 destinationIndicator

Specifies the country and city associated with the named object, the addressee,
required to provide the Public Telegram Service, according to CCITT
Recommendations F.1 and F.3.

Attribute Syntax

The syntax for this attribute type is a string of alphabetical characters from the
printabl eString character set.

Default Schema Definitions A-35

Default Schema Definitions
A.3 Attributes

Labels

dest
desti nati onl ndi cat or
dest | ndi cat or

For example:

dest =abc

A.3.39 dseType

This is an operational attribute. Compaq DSAs use this attribute on every entry
to record the type of each entry.

For example, the dseType attribute indicates whether an entry is an alias entry,
and whether it is a shadow copy of an entry held by another DSA. The attribute
also indicates whether an entry is at the top of a naming context, or contains
subordinate reference information.

The DSA adds this operational attribute to every entry. Do not modify this
attribute manually.

You can use the DXIM command line interface to display this attribute if you
request the attribute specifically. DXIM does not display operational attributes if
you use the All Attributes control.

You cannot display this attribute using the DXIM windows interface.

A.3.40 dxdUid

This is an operational attribute. Compaq DSAs use this attribute to uniquely
identify each entry.

The DSA adds this operational attribute to every entry. Do not modify this
attribute manually.

You can use the DXIM command line interface to display this attribute if you
request the attribute specifically. DXIM does not display operational attributes if
you use the All Attributes control.

You cannot display this attribute using the DXIM windows interface.

A.3.41 facsimileTelephoneNumber

Specifies a telephone number for a facsimile terminal associated with the named
object.

Attribute Syntax

The syntax for this attribute type is a string of numeric characters from the
printabl eString character set. The standard format for facsimile telephone
numbers should include some optional G3 Facsimiletex Non Basic Parameters.
However, Compag DSAs do not support the optional parameters, so in effect, this
attribute is the same as the telephoneNumber attribute, if you are using Compagq
DSAs.

Labels

faxno

faxt el ephoneno

facsim | et el ephonenunber
fax

For example:

A-36 Default Schema Definitions

Default Schema Definitions
A.3 Attributes

faxno="+81 3 347 9999"

A.3.42 generationQualifier

Specifies the generation qualifier of a person. For example, you could use this
attribute to specify "Senior", "Junior", or "I11".

A generation qualifier can be up to 64 characters long.

Attribute Syntax

The syntax for this attribute type is stringSyntax, for example,
generationQualifier=Junior. This attribute specifies that it supports matching
rules that are not case sensitive.

For example, a search for generati onQual i fi er=Juni or would succeed in finding
an entry with generati onQual i fi er=junior.

Labels
generationQualifier

For example:

generationQualifier=Junior

A.3.43 givenName

Specifies a given name.

A given name should follow the conventions of the culture of the object
represented. For example, you can use characters such as 6, a, é, and B if
they usually form part of a name for an object.

A common name can be up to 64 characters long.

Attribute Syntax

The syntax for this attribute type is stringSynt ax, for example, gi venNane=John.
This attribute specifies that it supports matching rules that are not case sensitive.
For example, a search for gi venName=John would succeed in finding an entry with
gi venNane=j ohn.

Labels

gi venNane

For example:

gi venName=John

A.3.44 governingStructureRule

This is an operational attribute. Compag DSAs use this attribute to specify which
structure rule was used when an entry was created. For example, if you create
alocality entry beneath a country entry, the DSA automatically specifies a
different value than if you create a | ocal i ty entry beneath an or gani zati on
entry.

The DSA adds this operational attribute to every entry. Do not modify this
attribute manually.

You can use the DXIM command line interface to display this attribute if you
request the attribute specifically. DXIM does not display operational attributes if
you use the All Attributes control.

You cannot display this attribute using the DXIM windows interface.

Default Schema Definitions A-37

Default Schema Definitions
A.3 Attributes

A.3.45 initials
Specifies the initials of a person’s names.

For example, a person called John Irvin Scott might have an initials attribute
with the value J.1. If you use periods (.) to punctuate the initials, you must quote
the value. For example, initials="J.l.".

Attribute Syntax

The syntax for this attribute type is stringSynt ax. This attribute specifies that
it supports matching rules that are not case sensitive.

Labels

initials

For example:
initials="J.1."

A.3.46 internationallSDNNumber
Specifies an International ISDN Number associated with the named object.
An international ISDN number can be up to 16 characters long.

Attribute Syntax

The syntax for this attribute type is nunericStringSynt ax, and should
comply with the internationally agreed format for ISDN addresses, CCITT
Recommendation E.164.

Labels

| SDNno
i nt ernational | SDNnunber

For example:
| SDNn0=12344321

A.3.47 knowledgelnformation

Specifies a human-readable description of knowledge contained in a specific DSA.
This knowledge relates to the location of DSAs and the information they contain.

Note that Compaqg DSAs do not use this attribute for any operations.

Attribute Syntax

The syntax for this attribute type is stringSynt ax. This attribute specifies that
it supports matching rules that are not case sensitive.

Labels
ki
know edgel nf or mati on

For example:

ki ="/ c=FR/ 0=Reveco"

A-38 Default Schema Definitions

Default Schema Definitions
A.3 Attributes

A.3.48 lastUpdateReceived

This is an operational attribute. Compaq DSAs use this attribute to record the
time that a given naming context was most recently updated by replication.

The DSA adds this operational attribute to the entry at the top of a replicated
naming context. Do not modify this attribute manually.

You can use the DXIM command line interface to display this attribute if you
request the attribute specifically. DXIM does not display operational attributes if
you use the All Attributes control.

You cannot display this attribute using the DXIM windows interface.

A.3.49 localityName
Specifies the name of a locality or region, such as a city or county. A locality
name can be up to 128 characters long.
Attribute Syntax

The syntax for this attribute type is stringSyntax, for example,

[ocal i t yName="New York". This attribute specifies that it supports matching
rules that are not case sensitive. For example, | ocal i t yName="New Yor k" matches
| ocal i t yName="newyork".

Labels

I

| oc
locality

| ocal i t yName

For example:
[=" New Yor k"

A.3.50 member

Specifies a name or names associated with the entry of which this is an attribute.
For example, an entry representing a committee could have a nenber attribute
containing the names of the committee members.

Note that there is no connection between a directory entry and any nenber
attributes that specify that entry’s distinguished name. For example, if you
delete an entry or rename it, the menber attribute is not updated.

Attribute Syntax

The syntax for this attribute type is di stingui shedNaneSynt ax. Each
distinguished name should be the name of a directory entry.

Labels
menber

For example:

menber ="/ ¢c=FR/ o=Reco/ cn="Per Lebrun"

A.3.51 mhs-or-addresses
Specifies an X.400 messaging originator/recipient address.

Default Schema Definitions A-39

Default Schema Definitions
A.3 Attributes

Attribute Syntax
The syntax for this attribute type is mhs- or - addr ess- synt ax.

For example:
mhs- or - addr ess="C=US; A=Adm n; P=Abacus; G=David; S=Townsend; QU1=Sal es"

Labels

mhs- or - addr esses
ORAddr ess
X400addr ess

mhs ORAddr esses

For example:
ORAddr ess="C=US; A=Admi n; P=Abacus; G=David; S=Townsend; QU1=Sal es"

A.3.52 modifyTimeStamp

This is an operational attribute. Compaq DSAs use this attribute to record the
time that an entry was most recently modified.

The DSA adds this operational attribute to each entry that is modified. Do not
modify this attribute manually.

You can use the DXIM command line interface to display this attribute if you
request the attribute specifically. DXIM does not display operational attributes if
you use the All Attributes control.

You cannot display this attribute using the DXIM windows interface.

See also creat eTi meSt anp.

A.3.53 myAccessPoint
This is an operational attribute. Compaq DSAs use this attribute to store their
own network access points.
Do not modify this attribute manually

You can use the DXIM command line interface to display this attribute if you
request the attribute specifically. DXIM does not display operational attributes if
you use the All Attributes control.

You cannot display this attribute using the DXIM windows interface.

A.3.54 objectClass

Specifies the object class and superclasses of the entry of which this is an
attribute. This attribute must be present in every directory entry so that the
Enterprise Directory knows what rules to apply to an entry.

Attribute Syntax

The syntax for this attribute type is obj ect | denti fi er Synt ax, for example,

{2 5 6 1}. DXIM uses user-friendly labels for input and output purposes, rather
than object identifiers. For example, DXIM displays and allows you to use the
label or gani zat i on rather than its object identifier.

A-40 Default Schema Definitions

Default Schema Definitions
A.3 Attributes

Labels

cl ass
obj ect O ass

For example:

cl ass=or gani zati on

A.3.55 organizationName
Specifies the name of an organization.

Attribute values for the or gani zati onNanme attribute are strings chosen by the
organization.

An organization name can be up to 64 characters long.

Attribute Syntax

The syntax for this attribute type is stringSyntax, for example,

organi zat i onName="Acne Shoe Conpany". This attribute specifies that

it supports matching rules that are not case sensitive. For example,
organi zat i onName="Acme Shoe Conpany" matches or gani zat i onName="ACME
shoe conpany".

Labels

0

or gnane

or gani zat i onNanme
or gani sati onNanme

For example:
0="ACME Shoe Company".

A.3.56 organizationalUnitName

Specifies the name of an organizational unit, such as a team, group, department,
or committee.

This attribute can be used to name an entry, for example, an entry

that represents a committee. It can also be used within an entry as
background information, for example, a person entry could include an

or gani zat i onal Uni t Name attribute that specifies what team they work for.

An organizational unit name can be up to 64 characters long.

Attribute Syntax

The syntax for this attribute type is stringSyntax, for example,

organi zati onal Uni t Name=Sal es. This attribute specifies that it
supports matching rules that are not case sensitive. For example,
organi zat i onal Uni t Name=Sal es matches or gani zat i onal Uni t Nane=sal es.

Labels

ou

or guni t name

organi zat i onal Uni t Name
organi sati onal Uni t Nane
ounane

For example:

ou=sal es

Default Schema Definitions A-41

Default Schema Definitions
A.3 Attributes

A.3.57 owner

Specifies the name of the owner of the object represented by the entry that
contains this attribute.

For example, an entry representing a computer could have an owner attribute
which specifies the name of its system manager.

Attribute Syntax

The syntax for this attribute type is di stingui shedNameSynt ax. The
distinguished name should be the name of a directory entry.

Labels

owner

For example:

owner ="/ ¢=Nz/ 0=THKS/ cn=Jerry Thonson"

A.3.58 physicalDeliveryOfficeName

Specifies the name of the city, town, or village where the physical delivery office
is situated.

An office name can be up to 128 characters long.

Attribute Syntax

The syntax for this attribute type is stringSyntax. For example,

physi cal Del i veryCf fi ceNane="Har t man House". This attribute specifies
that it supports matching rules that are not case sensitive. For example,
physi cal Del i veryOF fi ceName="Hart man House" matches

physi cal Del i veryCOf fi ceName="har t man house".

Labels

pdof f
physi cal Del i veryOf fi ceName
pdof f name

For example:
pdof f =Auckl and
See also post al Addr ess, post al Code, and post O f i ceBox.

A.3.59 postalAddress

Specifies the address information required for the physical delivery of postal
messages by the postal authority of the named object.

An attribute value is limited to a maximum of 6 lines with no more than 30
characters each. The information contained in this address normally includes an
addressee’s name, street address, city, state or province name, and a postal code.
A Post Office Box number could also be included.

Attribute Syntax

The syntax for this attribute type is post al Addr essSynt ax. Each line of the
postal address is either a printable string or a T.61 string. Each line of the
address ends with a comma.

If you want a particular line to actually contain a comma, then use the single
guotation marks to enclose that particular line.

A-42 Default Schema Definitions

Default Schema Definitions
A.3 Attributes

Labels

post addr
post al addr ess
post addr ess

For example: postaddr="F.Burn, 3 Cak St, Bram CH O'

The above example is an address containing four lines. The value is quoted, to
clarify that this is one value. The following example is an address containing four
lines, where the second line contains a comma:

postaddr="F.Burn, '3, Cak St’, Bram OH O'

If '3, Oak St’ were not quoted, DXIM would treat the address as having five lines
because of the presence of the comma after the "3" character. The quotes clarify
that that comma is part of the value, rather than a separator between values.

See also post al Code, physi cal Del i very(f fi ceName, and post Of f i ceBox.

A.3.60 postalCode

Specifies a postal code or zip code. If this attribute value is present, then it forms
part of the object’s postal address.

A postal code can be up to 40 characters long.

Attribute Syntax

The syntax for this attribute type is stringSyntax, for example,

post al Code="PQ21 4TG'. This attribute specifies that it supports matching
rules that are not case sensitive. For example, post al Code="PQ21 4TG' matches
post al Code="po21 4tg".

Labels

post code

post al code

For example:

post code="PQ21 4TG'

See also post al Address, physi cal Del i veryOf fi ceName, and post O f i ceBox.

A.3.61 postOfficeBox
Specifies the Post Office Box by which the object receives physical postal delivery.
If this attribute value is present, then it is part of the object’'s postal address.
A post office box can be up to 40 characters long.

Attribute Syntax

The syntax for this attribute type is stringSyntax, for example,

post O fi ceBox="POBox 13". This attribute specifies that it supports matching
rules that are not case sensitive. For example, post Of fi ceBox="PO BOX 13"
matches post O f i ceBox="po box 13".

Labels

PCbox
post of f i cebox
post box

For example:
PCbox="PObox 13"

Default Schema Definitions A-43

Default Schema Definitions
A.3 Attributes

See also post al Addr ess, post al Code, and physi cal Del i veryOf fi ceNane.

A.3.62 preferredDeliveryMethod

Specifies preferred methods of physical message delivery. The attribute can be
multivalued, with the most preferred method of delivery being the first value.

A preferred delivery method value can be up to 9 characters long.

Attribute Syntax

The syntax for this attribute type is a sequence of single-digit integer values, for
example, "3, 4, 1, 8". These values correspond to the different delivery methods
as follows:

0 refers to any-delivery-method.
1 refers to mhs-delivery.

2 refers to physical-delivery.

3 refers to telex-delivery.

4 refers to teletex-delivery.

5 refers to g3-facsimile-delivery.
6 refers to g4-facsimile-delivery.
7 refers to iab-terminal-delivery.
8 refers to videotex-delivery.

9 refers to telephone-delivery.

Labels

pref del
preferredDeliveryMethod
pdm

For example:

prefdel =0

See also facsi n | eTel ephoneNunber, postal Address, tel ephoneNunber,
t el exNunber, and tel et exTerminal I dentifier.

A.3.63 prescriptiveACI
Specifies the access controls to be applied to all entries in a given naming context.
See Chapter 7 for further details of Compaq’s support of prescriptive access
controls.
Labels
paci
prescriptiveAC
Attribute Syntax
The syntax for this attribute type is the aciSyntax.

A.3.64 presentationAddress
Specifies a network presentation address.

Attribute Syntax

The syntax for this attribute type is four strings which correspond to the following
elements of the presentation address:

A presentation selector
A session selector
A transport selector

A-44 Default Schema Definitions

Default Schema Definitions
A.3 Attributes

A network address
For full details of the syntax of a presentation address see Section A.3.64.1.

Labels

present ati onaddr ess

paddr

For example:

present ationaddress=""A"/"B"/"C"'/ NS+49000000000000000000

where "A" is the presentation selector, "B" is the session selector, "C" is the
transport selector, and NS+49000000000000000000 is the network address.

A.3.64.1 Further Syntax Details
The full syntax of the present ati onAddr ess attribute is as follows.
Note that the numbers 1 to 12 shown to the right of this syntax description are

not part of the syntax. They refer to explanations which are provided at the end
of this syntax description.

"X, 25(80)" "+ <prefix> "+ <dte>

<presentation-address> ::= [[[< seI> "M] <ssel> []
<tsel> "/"] <netmork address-1ist>
<psel > .= <sel ector>
<ssel > .= <sel ector>
<tsel > .= <sel ector>
<sel ector> ;.= """ <otherstring> "’ 1
| "#" <digitstring> 2
| """ <hexstring> "'H'
| nn
<networ k- address-list> ::= <network-addr> ["|" <network-addr>]
| <network-addr>
<network-addr> ::= <network-address> ["," <network-type>]
<network-type> ::= "CLNS" | "CONS' | "RFCL006" 3
<net wor k- addr ess> ;= "NS' "+" <dothexstring> 4
| <afi>"+" <idi>["+" <dsp>]
| <idp> "+" <hexstring> 5
| RFCL006 "+" <ip> ["+" <port>] 6
<i dp> ;o= <digitstring>
<dsp> Do = "d" <digitstring> 7
| "x" <dothexstring> 8
| "I" <otherstring> 9
| "RFC1006" "+ <prefix> "+ <ip> ["+" <port>
["+" <tset>]]
|
[

+" <cudf-or-pid> "+" <hexstring>]
| "ECMA-117-Binary"

"+" <hexstring> "+" <hexstring>

"+" <hexstring>

| "ECMA-117- Deci mal "

"+" <digitstring> "+" <digitstring>
"+" <digitstring>

Default Schema Definitions A-45

Default Schema Definitions
A.3 Attributes

<idi>

<afi> N
<prefix> =
<ip> -

<port> =

<tset>

<dte>
<cudf - or - pi d>

<deci mal octet> ::=
<digit> crz

<digitstring> ::=

<dommi nchar> ::=

<domai nstring> ::=

<dot string> =

<dot hexstring> ::=

<hexdigit>: ::=
<hexoct et > =

<hexstring> =

<ot her> D=

<otherstring> ::=

<digitstring>

"X121" | "DCC' | "TELEX" | "PSTN'
| "I'SDN' | "ICD" | "LOCAL"

<digit> <digit>

<domai nstring> 10
<digitstring> 11
"TCP" | "IP" | <digitstring> 12

<digitstring>
"CUDF" | "PID'

<digit> | <digit> <digit>
| <digit> <digit> <digit>
[0-9]

<di git> <digitstring>
| <digit>
[0-9a-zA-Z-.]

<domai nchar > <ot herstring>
| <domai nchar >
<deci mal octet> "."
| <deci mal oct et >

<dot string>
"." <deci mal octet>

<dotstring>
| <hexstring>

[0-9a-fA-F]
<hexdi gi t> <hexdi git>

<hexoct et > <hexstring>
| <hexoctet>

[0-9a- zA- Z+-]

<ot her> <ot herstring>
| <other>

1 Value restricted to printed characters
2 US GOSIP requirement
3 Network type identifier (the default is CLNS)

4 Concrete binary representation of network (NSAP) address value
5 1SO 8348 compatibility
6 RFC 1006 preferred format

7 Abstract decimal format for domain specific part (DSP)

8 Abstract binary for DSP

9 Printable character format for DSP (for local use only)

A-46 Default Schema Definitions

Default Schema Definitions
A.3 Attributes

10 Dotted decimal notation (e.g. 10.0.0.6) or domain name (e.g. twg.com)
11 TCP port number (the default is 102)
12 Internet transport protocol identifier (1 = TCP and 2 = UDP)

Keywords can be specified in either upper case or lower case. However, selector
values are case sensitive. Spaces are significant.

A.3.64.1.1 Examples The following examples illustrate the use of this data
type. Note that some types of presentation address are applicable only to specific
operating systems:

1. "DSA"/"DSA"/"DSA"/ NS+4900012a000400d90621, CLNS
This is a typical presentation address for a Compag DSA.

2. "ny_psel"/"ny_ssel"/"ny_tsel"/LOCAL++x0001aa000400d90621
"ny_psel "/ "ny_ssel "/"ny_tsel "/ NS+490001aa000400d90621, CLNS

These examples both specify the same presentation address. The first
example uses the LOCAL authority and format identifier (AFI), which does
not have an initial domain identifier (IDI). The two plus signs (++) indicate
that the IDI is missing. By default, the network type is CLNS. The second
example uses the value of the LOCAL AFI, which is 49.

3. "256"/ NSt+a433bb93c1, CLNS| NS+aa3106, CONS

This is a presentation address which has a transport selector, (no presentation
or session selector), and two network addresses. The first network address

is CLNS (for a connectionless network) and the second is CONS (for a
connection-oriented network). These network addresses are specified in
concrete binary form. This form can be used only when the concrete binary
representation of the network address is known.

4. #63/#41/ #12/ X121+234219200300, CONS

This presentation address has presentation, session and transport selectors,
and a single network address which consists of an AFI (X121) and an IDI
(234219200300). There is no domain specific part.

5. '3a' H TELEX+00728722+X. 25(80) +02+00002340555+CUDF+" 892796"
This is an network address for X.25. Note that, because CONS is not
specified, the network type defaults to CLNS.

6. RFC1006+10.0.0. 6519, RFC1006

This is an RFC1006 address. The address is not an 1SO network address but
the combination of an IP address and a TCP port number, which is 519 in

this example. The IP address can be specified as either a DNS domain name
or an IP address. For an RFC1006 address, the network type can be omitted.

A.3.65 protocolinformation

Compaq DSAs use this attribute in decDSA entries to specify which protocols they
support for a given network address. The attribute might also be used by other
OSI applications.

Compaq DSAs manage this attribute automatically, so there should never be
a requirement for you to manage it manually in decDSA entries. The external
representation of protocol information is not user-friendly.

Attribute Syntax
The syntax for this attribute type is protocol | nf or mati onSynt ax.

Default Schema Definitions A-47

Default Schema Definitions
A.3 Attributes

Labels
protocol I nformati on

For example:
protocol I nformation="30 16 04 aa 00 04 06 06 2b 10 02 03 01 01'v

A.3.66 registeredAddress

Specifies an address associated with an object at a particular city location.
The address is registered in the country in which the city is situated, and

is used in the provision of the Public Telegram Service, according to CCITT
Recommendation F.1.

Attribute Syntax

The syntax for this attribute type is post al Addr essSynt ax.

Each line of the registered address is either a printable string or a T.61 string,
up to 30 characters long. Each line of the address ends with a comma. If a
particular line of the address includes a comma character, quote that line. Refer
to post al Addr essSynt ax for further details.

Labels

regaddr
regi st eredaddr ess
regaddr ess

For example:
regaddr=(3 Park Road, Littletown, Downshire, LT5 6SP)

A.3.67 rfc822Mailbox
This attribute represents the RFC822 mailbox name of a user.

Attribute Syntax
The syntax for this attribute type is i A5St ri ngSynt ax.

Labels
RFCB22Mhi | box

For example:
RFC822Mai | box="] ones@bacus. conf

A.3.68 roleOccupant

Specifies the distinguished name of an entry that represents the occupant of an
organizational role. For example, an or gani zat i onal Rol e entry representing a
Sales Manager could have a rol eCccupant attribute which specifies the name of
the current sales manager.

Attribute Syntax

The syntax for this attribute type is di stingui shedNameSynt ax. The
distinguished name should be the name of a directory entry.

Labels

role

rol eoccupant

For example:

rol eCccupant =/ c=AU o=Schmessel / cn="WI f Bayer"

A-48 Default Schema Definitions

Default Schema Definitions
A.3 Attributes

A.3.69 searchGuide

Specifies information of suggested search criteria that could be included in
an entry expected to be a convenient base-object for the search operation, for
example, an organization entry.

Note that Compag Enterprise Directory for eBusiness applications do not use
search guide attributes for any operations. The attribute is supported in case
other vendor’s applications want to use it.

Attribute Syntax
The syntax for this attribute type is sear chQui deSynt ax.

Labels
sear chgui de

A.3.70 seeAlso

Specifies the names of other directory entries that are in some way related to the
entry of which this is an attribute. For example, an entry representing a team
could include a seeAl so attribute that specifies the names of related teams or
team leaders.

Attribute Syntax

The syntax for this attribute type is di stingui shedNameSynt ax. The
distinguished names should be the names of directory entries.

Labels
seeal so

For example:

seeal so=/ c=CH o=Heal th/ cn="G eta G een"

A.3.71 serialNumber

Specifies a serial number. For example, an entry representing a device such as a
modem could have a serial number.

A serial number can be up to 64 characters long.

Attribute Syntax

The syntax for this attribute type is printabl eStringSynt ax, for example,
seri al Nunber =BN315- 803.

Labels

serialno
seri al nunber

For example:

serial no=1342

A.3.72 shadowingBeginTime

This is an operational attribute. Compaq DSAs use this attribute in shadowing
agreement subentries.

The attribute specifies when replication is expected to start. Compag DSAs set
two values for this attribute, to cause replication every twelve hours.

There is no need to manage this attribute manually, although manual
management is possible. See Section 8.10.1 for further details.

Default Schema Definitions A-49

Default Schema Definitions
A.3 Attributes

A.3.73

A.3.74

A.3.75

A.3.76

A.3.77

A.3.78

A.3.79

A.3.80

Attribute Syntax
The syntax for this attribute type is del t aTi meSynt ax.

shadowingEndTime

This is an operational attribute. Compaq DSAs use this attribute in shadowing
agreement subentries.

There is no need to manage this attribute manually, although manual
management is possible. See Section 8.10.1 for further details.
shadowinglID

This is an operational attribute. Compag DSAs manage this attribute
automatically. Do not modify this attribute in any way.

The attribute specifies a unique identifier for the agreement. The same number
appears in the agreement’s relative distinguished name.
shadowingLastUpdate

This is an operational attribute. Compag DSAs manage this attribute
automatically. Do not modify this attribute in any way.

The attribute specifies the time of the last successful replication attempt.

shadowingNextUpdate

This is an operational attribute. Compag DSAs manage this attribute
automatically. Do not modify this attribute in any way.

The attribute indicates the time of the next scheduled replication attempt. This
is one of the two shadowing begin times.
shadowingState

This is an operational attribute. Compag DSAs manage this attribute
automatically. Do not modify this attribute in any way.

The attribute indicates the current state of the shadowing agreement. This is
usually Active.
shadowingMaster

This is an operational attribute. Compag DSAs manage this attribute
automatically. Do not modify this attribute in any way.

The attribute specifies the name of the master DSA for the naming context to
which the shadowing agreement applies.
shadowingPeer

This is an operational attribute. Compag DSAs manage this attribute
automatically. Do not modify this attribute in any way.

The attribute specifies the name and network address of the other DSA to which
this agreement applies.
shadowingKnowledgeType

This is an operational attribute. Compag DSAs manage this attribute
automatically. Do not modify this attribute in any way.

The attribute specifies what types of knowledge information, such as subordinate
references, are to be included in the copy of the naming context.

A-50 Default Schema Definitions

A.3.81

A.3.82

A.3.83

A.3.84

Default Schema Definitions
A.3 Attributes

shadowingUPDFile

This is an operational attribute. Compag DSAs manage this attribute
automatically. Do not modify this attribute in any way.

The attribute enables the DSA to identify the update log file that contain the
changes to the naming context to which this agreement applies.

shadowingUPDOffset

This is an operational attribute. Compag DSAs manage this attribute
automatically. Do not modify this attribute in any way.

The attribute enables the DSA to find the information it needs to replicate. It
specifies a position in an update log file.

shadowingVersion

This is an operational attribute. Compag DSAs manage this attribute
automatically. Do not modify this attribute in any way.

The attribute specifies the version of the agreement. This changes every time the
agreement is amended.

shadowingFlags

This attribute contains flags that indicate how a Compaq DSA should process a
shadowing agreement. For example, the attribute defines whether the agreement
should be processed according to a schedule, or processed whenever information
changes in the relevant naming context.

This is a single-valued attribute.

Attribute Syntax

The syntax for this attribute type is bit StringSynt ax. However, the DXIM
command line interface has a user friendly representation of the bit string. For
example, for a default agreement held by a supplier DSA, the shadowingFlags are
displayed as follows:

UseDOP+| sSuppl i er +Consuner | ni ti at ed+Q her Ti nes

Each of the keywords, such as UseDOP, represents one bit setting. The list of
keywords, punctuated by the + character, form a single attribute value. For
details of the extent to which you can manage this attribute manually, see
Section 8.10.1. Do not modify these flags without reading that advice.

Labels
shadowi ngFl ags

A.3.85 specificKnowledge

This is an operational attribute. Compag DSAs use this attribute to represent
knowledge information.

You can use the DXIM command line interface to display this attribute if you
request the attribute specifically. DXIM does not display operational attributes if
you use the All Attributes control.

You cannot display this attribute using the DXIM windows interface.

Default Schema Definitions A-51

Default Schema Definitions
A.3 Attributes

A.3.86 stateOrProvinceName

Specifies the name of a state or province. For example, an entry representing a
person can have a st at eOr Provi nceNane attribute indicating what state they live
or work in. A state or province name can be up to 128 characters long.

Attribute Syntax

The syntax for this attribute type is stringSyntax, for example,

st at eOr Provi nceName=Chi 0. This attribute specifies that it supports matching
rules that are not case sensitive. For example, st at eOr Provi nceNane=Chi o
matches st at eOr Provi nceNane=CHl O.

Labels

state
provi nce
st at eor provi ncenane

For example:

st at e=Al aska

A.3.87 streetAddress

Specifies a site for the local distribution and physical delivery in a postal address,
road name and house number.

A street address can be up to 128 characters long.

Attribute Syntax

The syntax for this attribute type is stringSyntax, for example, "32, The
Street". This attribute specifies that it supports matching rules that are not
case sensitive. For example, "32, The Street" matches "32, the street"”

Labels

addr
street address
addr ess

For example:
addr ="4 Nut hat ch, Banl ey"

A.3.88 subordinateDeleted TimeStamp

This is an operational attribute. The DSA uses this attribute to record the time
of the most recent deletion of a subordinate of a given entry.

Do not modify this attribute manually.

You can use the DXIM command line interface to display this attribute if you
request the attribute specifically. DXIM does not display operational attributes if
you use the All Attributes control.

You cannot display this attribute using the DXIM windows interface.

A.3.89 subtreeSpecification

This is an operational attribute. The Compaq DSA does not currently support
subtree specifications, so there is no reason to modify any instance of this
attribute. This attribute is used in shadowing agreement subentries, but always
has a value that specifies complete subtrees.

A-52 Default Schema Definitions

Default Schema Definitions
A.3 Attributes

A.3.90 superiorKnowledge

This is an operational attribute. The DSA uses this attribute to store information
about its superior reference.

Do not modify this attribute manually. You should never see this attribute,
because the DSA stores it in a part of the DIT that cannot be accessed by users.

A.3.91 supplierKnowledge

This is an operational attribute. Compaq DSAs use this attribute to store
information about the replication of information.

A Compag DSA adds this attribute to naming contexts that it holds, but for which
it is a shadow DSA rather than the master DSA.

You can use the DXIM command line interface to display this attribute if you
request the attribute specifically. However, the attribute is not displayed in a
user-friendly format. DXIM does not display operational attributes if you use the
All Attributes control.

You cannot display this attribute using the DXIM windows interface.
See also the consuner Know edge attribute.
See Chapter 5 for details of consumer DSAs and supplier DSAs.

A.3.92 supportedApplicationContext

Specifies the object identifier of an application context. For example, an
application entity could have a support edAppl i cati onCont ext attribute that
specifies the contexts that the application entity supports.

Attribute Syntax

The syntax for this attribute type is obj ect | denti fi er Synt ax, for example, {2 13
319}

Labels

cont ext

support edappl i cati oncont ext

For example:

context={25 32}

A.3.93 surname
Specifies the surname, or family name, of a person.

A surname can be up to 64 characters long.

Attribute Syntax

The syntax for this attribute type is stringSyntax, for example,

sur name=St evenson or surnane=Mil | er. This attribute specifies that it supports
matching rules that are not case sensitive. For example, sur nane=St evenson
matches sur nanme=STEVENSON.

Labels

sur nane
sn
| ast name

For example:

Default Schema Definitions A-53

Default Schema Definitions
A.3 Attributes

sur nanme=Bl oggs

A.3.94 trustedDSAName

This is an operational attribute. Compag DSAs use this attribute as part of
security. The presence of the attribute indicates that the DSA is part of a security
domain.

The syntax of this attribute is di sti ngui shedNameSynt ax.

This operational attribute does require some manual management, for which you
must use the DXIM command line interface.

You cannot display or manage this attribute using the DXIM windows interface.
See Section 4.5 for information about managing this attribute.

Attribute Syntax
The syntax for this attribute type is di sti ngui shedNameSynt ax.

Labels
t rust edDSAName

For example:
t r ust edDSAName=/ c=us/ o=abacus/ cn=DSAl

A.3.95 telephoneNumber
Specifies a telephone number.

Attribute Syntax

The syntax for this attribute type is t el ephoneNunber Synt ax, for example,
t el ephoneNunber =" +44 582 10101".

The string should comply with the internationally agreed format for showing
international telephone numbers.

Labels

tel
t el ephonenunber

For example:
tel ="+44 583 10101"

A.3.96 teletexTerminalldentifier

Specifies the teletex terminal identifier for a teletex terminal. Optionally, this
attribute type can also specify the teletex terminal parameters.

Attribute Syntax
The syntax for this attribute type is t el et exTerni nal I denti fi er Synt ax.

An attribute value for TeletexTerminalldentifier is a string that complies with
CCITT Recommendation F.200, and an optional set that complies with CCITT
Recommendation T.62.

A-54 Default Schema Definitions

Default Schema Definitions
A.3 Attributes

Labels

TTXi d
tel etexTerm nal | dentifier
ttxTermnal | dentifier

For example:
TTX d="12345"

A.3.97 telexNumber

A.3.98 title

Specifies the telex number, country code, and answerback code of a telex
terminal.

Attribute Syntax

The syntax for this attribute type is a sequence of three strings of characters from
the printable string character set. The strings correspond to the following:

Telex number
Answerback
Country code

For example, "12434 ABACUS US".

Note that Compaq DSAs do not verify that the strings are specified in the correct
order.
Labels

tel exno
t el exnunber
tel ex

For example:
t el exno="12434 ABACUS US"

Specifies a position, function, or occupational qualification of an object. For
example, a person could have a title of "manager" or "chief designer”, and a device
could have a title such as "disk drive".

A title can be up to 64 characters long.

Attribute Syntax

The syntax for this attribute type is stringSynt ax, for example, title="Sal es
Manager". This attribute specifies that it supports matching rules that are not
case sensitive. For example, title="Sal es Manager" matches title="SALES
MANAGER' .

Labels
title

For example:

title=Boss

Default Schema Definitions A-55

Default Schema Definitions
A.3 Attributes

A.3.99 userPassword
Specifies a password.

Directory applications use the user Passwor d attribute to authenticate users to
DSAs, and DSAs use passwords to verify each other’s identities.

A user password can be up to 128 characters long, and is case sensitive.

Attribute Syntax

The syntax for this attribute type is user Passwor dSynt ax. User passwords are
stored as octet strings. A password can be up to 128 characters long.

Usually, passwords are protected by access controls, so that values are not
displayed. However, if there are no such controls, passwords can be displayed as
text or as an octet string, depending on the application that is displaying them.

Labels
passwor d
user passwor d
pwd

user pwd

For example:

passwor d=tri bbl et

A.3.100 x121Address
Specifies a network address of the named object.
An X.121 address can be up to 15 characters long.

Attribute Syntax

The syntax for this attribute type is a string of numeric characters that complies
with CCITT Recommendation X.121.

Labels

x121address

For example:

x121addr ess="234273412345"

A.4 Syntaxes

This section describes the attribute value syntaxes that define the permitted
format of values for the selected attribute types.

A.4.1 aciSyntax

The aci Synt ax is an example of a complex syntax. It is used as the value syntax
for prescriptiveACI attributes to specify the access controls to be applied to
directory information.

Appendix B describes the syntax in detail, and documents what keywords to

use in DXIM command lines. Other vendors’ utilities are likely to support a
different set of keywords. Chapter 7 describes how to plan access controls for
your organization’s directory information tree. The DXIM windows interface does
not support the management of attributes that have this complex syntax.

The equality matching rule supported for this syntax is:
aci | temvat ch

A-56 Default Schema Definitions

Default Schema Definitions
A.4 Syntaxes

No other types of matching are supported for this syntax.

A.4.2 bitStringSyntax
This syntax allows you to store attribute values as bit strings.

There is no matching rule defined for this syntax. If you attempt to match a bit
string value, the DSA only checks whether the encoding is the same. An example
of a bit string value is '010101'b.

A.4.3 booleanSyntax

This allows the attribute value to have the syntax of a boolean value, for example,
0 to represent false and 1 to represent true.

The equality matching rule for this syntax is:
bool eanMat ch

No other types of matching are supported.

A.4.4 countryNameSyntax

Values of this syntax must be alphabetic country codes defined in 1SO 3166.
Each country code is two letters long. For example, GB and US. I1SO 3166 is
sometimes revised to reflect political changes. The syntax reflects the revision of
the standard published in February 1994,

The list of codes supported by the Compaqg DSA is as follows:
AD AE AF AG Al AL AM AN AO AQ AR AS AT AU AW AZ BA BB BD BE

BF BG BH Bl BJ BM BN BO BR BS BT BV BWBY BZ CA CC CF CG CH
a CKCLCMCNCOCRCUCY CXCY CZDEDI DKDMDO DZ EC EE
EGEHERESET Fl FI FKFMFOFRFXGRA B @D GE G GHGE &
GMGONGP GQGER G GI GUGNGY HK HMHN HR HT HUID IE IL IN
[OIQIRISIT IJMJO JP KE KG KH KI KM KN KP KR KWKY KZ LA
LB LCLI LKLRLSLTLULVLYMMMM MMM MW MW M
MW MQMRMS M MU W MVMXK MY MZ NA NC NE NF NGN NL NO NP
NR NU NZ OM PA PE PF PG PH PK PL PM PN PR PT PWPY QA RE RO
RU RWSA SB SC SD SE SG SH SI SJ SK SL SM SN SO SR ST SV §Y
SZTCTDTFTGTHTI TK TMTN TO TP TR TT TV TWTZ UA UG UM

US UY UZ VAVC VE VG VI VN VUW WS YE YT YU ZA ZM ZR ZW
Refer to 1SO 3166 for details of what each code stands for.

The equality matching rule supported for this syntax is:
casel gnoreStringhat ch

The ordering matching rule supported for this syntax is:
casel gnoreStringhat ch

The substring matching rule supported for this syntax is:
casel gnoreSubstringhat ch

This means that the value GB matches gb, and that you can request a substring
match. For example, you can search for countryName=u* to find all country codes
beginning with the letter u.

Default Schema Definitions A-57

Default Schema Definitions
A.4 Syntaxes

A.4.5 deltaTimeSyntax

This syntax represents a time of day, and can indicate a specific day of the week.
For example:

0 123500

This represents 12:35.00 every day. The leading zero can be replaced by an
integer in the range 1 to 7, where 1 is Monday, to represent a specific day of the
week.

This syntax is used by the DSA in the shadowi ngBegi nTi e and
shadowi ngEndTi ne attributes to represent a replication schedule in a shadowing
agreement subentry. See Section 8.10.1 for further details.

The equality matching rule supported for this syntax is:
del taTi meMat ch
A.4.6 directoryStringSyntax
The X.500 schema does not use the name directoryStingSyntax for this syntax.
The X.500 schema uses the CCITT 1988 name stringSyntax. See Section A.4.23.
A.4.7 distinguishedNameSyntax

This allows the attribute value to have the syntax of a distinguished name. For
example:

/ count r yNane=US/ or gani zat i onNane=ACME/ or gani zat i onal Uni t Nane=Sal es

See Chapter 1 or the DXIM online help for a description of the format of a
distinguished name.

The equality matching rule supported for this syntax is:
di sti ngui shedNaneMat ch

The ordering matching rule supported for this syntax is:
di stingui shedNameMat ch
A.4.8 facsimileTelephoneNumberSyntax

This syntax allows the representation of facsimile telephone numbers, formatted
according to the international agreement. Currently, Compaq DSAs do not
support the optional G3FacsimiletexNonBasicParameters.

The only matching rule supported for this syntax is exact Encodi ngMat ch. This
means that the DSA can only check whether the encoding of the value matches.
Substring, ordering, and approximate matches are not possible.

A.4.9 generalizedTimeSyntax
This syntax allows the representation of a time, as follows:
19931201140545. 1232

The above example represents 1993, December 1st, at 45 seconds past 2.05 p.m.
The value also specifies fractions of a second, to three decimal places.

Compagq’'s DSA currently requires you to specify fractions of a second, even if you
only specify 000. If you define an attribute that uses this syntax, you need to
make sure that your users are aware of this requirement.

The default schema contains only two attributes that use this syntax, and they
are both operational attributes used only by the DSA.

A-58 Default Schema Definitions

Default Schema Definitions
A.4 Syntaxes

The equality matching rule supported for this syntax is:
general i zedTi neEqual i t yMat ch

The ordering matching rule supported for this syntax is:
general i zedTi neCr deri nghvat ch

A.4.10 iA5StringSyntax

This syntax allows the representation of strings using international alphabet 5
characters. This character set includes characters that are not in the printable
string character set, such as the @ character.

The equality matching rules for this syntax are:
casel gnorel A5StringhMat ch
caseExact | A5St ri nghat ch

The ordering matching rules for this syntax are:
casel gnorel A5St ri nghat ch
caseExact | A5St ri nghat ch

The substring matching rules for this syntax are:
casel gnor el A5Subst ri nghat ch
caseExact | A5Subst ri nghat ch

There is no approximate matching rule for this syntax.
The i A5StringSynt ax is provided to support some attributes defined in
COSINE.SC.

A.4.11 integerListSyntax
This syntax allows the representation of integer lists. For example, "1, 2, 3, 4, 5".

This syntax is not supported by any matching rule. This means that the only

matching function that the DSA can provide is an equality match of the octets

used to encode a value for storage. Other matching functions are not supported.
A.4.12 integerSyntax

This allows the attribute value to have the syntax of an integer value, for
example, 283.

The equality matching rule for this syntax is:
i nt eger Mat ch

The ordering matching rule for this syntax is:
i nteger Mat ch

A.4.13 mhs-or-address-syntax

This allows an attribute value to have the syntax of an X.400 originator/recipient
address, for example:

"C=US; A=Adnin; P=Abacus; O=Abacus; G=David; S=Townsend; QUl=Legal"

The equality matching rule for this syntax is nmhs- or - addr ess- mat ch. There are
no other matching rules for this syntax.

Default Schema Definitions A-59

Default Schema Definitions
A.4 Syntaxes

A.4.14 mhs-or-name-syntax

This allows an attribute to have the value of a X.400 OR name. This may be
either an X.400 OR address (see mhs- or - addr ess- synt ax) or an X.500 directory
name (see di stingui shedNameSynt ax).

The equality matching rule supported for this syntax is:
dec- nt s- or - name- mat ch
A.4.15 numericStringSyntax

This allows the attribute value to have the syntax of a string of numeric
characters, for example, "85 14 7 40 243".

The equality matching rule supported for this syntax is:
numericStringMat ch

The ordering matching rule supported for this syntax is:
nunericStringMatch

The substring matching rule supported for this syntax is:
nuneri cSubst ri nghat ch
A.4.16 objectldentifierSyntax

This allows the attribute value to have the syntax of an object identifier. An
object identifier is an ordered sequence of integers in braces. For example, {2 5 6
2} is the object identifier for the country object class.

The equality matching rule supported for this syntax is:
obj ectldentifierMtch

The ordering matching rule supported for this syntax is:
obj ectldentifierMatch
A.4.17 octetStringSyntax

This allows the attribute value to have the syntax of a string of octets. An
example of a value of this syntax is 'A1B2C3'H.

The equality matching rule supported for this syntax is:
octet StringMatch

The ordering matching rule supported for this syntax is:
octet StringMatch
A.4.18 postalAddressSyntax

This syntax allows the representation of a postal address of up to six lines. Each
line of the address can contain up to 30 characters of the printable string or T.61
string character sets. The DXIM external representation of the address uses the
comma character to separate lines. For example;

"The Wcket, 14 Ace Avenue, Lower Dingle, nr Tatton, Hanmpshire, England"

The equality matching rule supported for this syntax is:
casel gnorelLi st Mat ch

The ordering matching rule supported for this syntax is:
casel gnorelLi st Mat ch

The substring matching rule supported for this syntax is:
casel gnoreLi st Subst ri nghat ch

A—-60 Default Schema Definitions

Default Schema Definitions
A.4 Syntaxes

A.4.19 presentationAddressSyntax

This syntax allows the representation of a presentation address. See Section 5.2.3
for details of the format of presentation addresses used by Compaq’s Directory
Service.

The equality matching rule supported for this syntax is:
present ati onAddr esshMat ch

No other types of matching are supported.

A.4.20 printableStringSyntax

This allows the attribute value to have the syntax of a string of characters from
the printable string character set.

The equality matching rules supported for this syntax are:
casel gnoreStringhat ch
caseExact Stringhat ch

The ordering matching rules supported for this syntax are:
casel gnoreStringMat ch
caseExact StringMatch

The substring matching rules supported for this syntax are:
casel gnoreSubstringhat ch
caseExact Subst ri nghat ch

The approximate matching rules supported for this syntax are:
al | Wor dAppr oxi mat eMat ch

initialLetterApproxi mateMatch

i ni tial Wor dAppr oxi mat eMat ch

| ast Wor dSoundexMat ch

A.4.21 protocolinformationSyntax

This syntax allows the representation of protocol information to be used by OSI
applications.

The external representation of this syntax is not user-friendly. The only matching
rule supported for this syntax is exact Encodi nghMat ch. Substring, ordering, and
approximate matching is not possible.

A.4.22 stringListSyntax

This syntax allows you to represent a list of up to six strings. The DXIM external
representation of a string list uses the comma character to separate the list items.
For example, "One, Two, Three, Four, Five, Six".

The equality matching rule supported for this syntax is:
casel gnor eLi st Mat ch

The ordering matching rule supported for this syntax is:
casel gnor eLi st Mat ch

The substring matching rule supported for this syntax is:
casel gnoreLi st Subst ri nghvat ch

Default Schema Definitions A-61

Default Schema Definitions
A.4 Syntaxes

A.4.23 stringSyntax

This syntax allows you to represent a string using the printable character set or
the T.61 character set. The T.61 character set includes characters such as é and

C.

The equality matching rules supported for this syntax are:
casel gnoreStringMat ch
caseExact Stri nghat ch

The ordering matching rules supported for this syntax are:
casel gnoreStringMat ch
caseExact StringhMat ch

The substring matching rules supported for this syntax are:
casel gnoreSubst ri nghat ch
caseExact Subst ri nghat ch

The approximate matching rules supported for this syntax are:
al | Wor dAppr oxi mat eMat ch

initialLetterApproxi mateMatch

i nitial Wor dAppr oxi mat eMat ch

| ast Wor dSoundexMat ch

A.4.24 telephoneNumberSyntax

This allows the attribute value to have the syntax of a string of numeric
characters from the printable string character set.

The equality matching rule for this syntax is:
t el ephoneNunber Mat ch

The ordering matching rule for this syntax is:
t el ephoneNunber Mat ch

The substring matching rule for this syntax is:
t el ephoneNunber Subst ri nghat ch

A.4.25 teletexTerminalldentifierSyntax

This syntax allows the representation of a teletex terminal identifier. The syntax
is a string that complies with ITU-T Recommendation F.200, followed by an
optional set of characters that complies with ITU-T Recommendation T.62.

The equality matching rule for this syntax is:
exact Encodi nghat ch
A.4.26 telexNumberSyntax

This syntax allows the representation of a telex number. A telex number
comprises three printable strings: the telex number, a country code, and an
answerback code. For example, "1234 ABACUS US".

The equality matching rule for this syntax is:
casel gnoreli st Mat ch

The ordering matching rule for this syntax is:
casel gnorelLi st Mat ch

The substring matching rule for this syntax is:
casel gnoreLi st Subst ri nghat ch

A—-62 Default Schema Definitions

Default Schema Definitions
A.4 Syntaxes

A.4.27 undefinedSyntax

This syntax allows the representation of values that do not conform to any syntax
known to the DSA, as long as they are encoded in valid ASN.1. This syntax
might be suitable for applications that have specific syntax requirements which
are not met by any of the other default syntaxes. In that case, you can use this
syntax. However, the simplified matching provided by the DSA means that the
application must take responsibility for ensuring that values meet their syntactic
requirements. The application must also be consistent in its production of ASN.1
encoding, otherwise values are unlikely to match octet for octet.

An example of the external representation of a value of this syntax is '130142'v.
The letter v signifies that the value is shown verbatim.

A.4.28 userPasswordSyntax
This syntax allows the representation of user passwords.

The equality matching rule for this syntax is:
octet StringMatch

No other types of matching are supported for this syntax.

A.4.29 uTCTimeSyntax

This allows the attribute value to have the syntax of a numeric value representing
a time. An example of a value of this syntax is:

9103112139227
That value represents 1991, March 3rd, at 22 seconds past 9.39 p.m.

The syntax has a two digit year. It assumes that years less than 50 are after
2000 and years greater or equal to 50 are after 1950 and less than 2000.

The equality matching rule for this syntax is:
uTCTi meMat ch

The ordering matching rule for this syntax is:
uTCTi neMat ch

A.5 Matching Rules
This section documents the matching rules supported by Compaqg DSAs.

When you are defining new attribute types for your Directory Service, you must
select a syntax for that attribute type. The DSA supports one or more matching
rules for each syntax. When you define a new attribute, you must select one or
more matching rules that are applicable to the chosen syntax for one or more
types of matching.

For example, if you define an attribute that has st ri ngSynt ax, you must choose
matching rules from the following list of applicable rules, categorized by the type
of matching they are suitable for:

Equality Matching
casel gnoreStringhat ch
caseExact Stringhat ch

Ordering Matching
casel gnoreStringMat ch
caseExact Stringhat ch

Default Schema Definitions A—63

Default Schema Definitions
A.5 Matching Rules

Substring Matching
casel gnor eSubst ri nghat ch
caseExact Subst ri nghat ch

Approximate Matching

al | Wor dAppr oxi mat eMat ch

| ast Wr dSoundexMat ch
initialLetterApproxi mateMtch
i ni tial Wor dAppr oxi mat eMat ch

For example, the default schema contains the definition of the conmonNane
attribute, as follows:

conmonName ATTRI BUTE
W TH ATTRI BUTE- SYNTAX stringSyntax (SIZE(1..64))
EQUALI TY MATCHI NG RULE casel gnoreStringMat ch
ORDERI NG MATCHI NG RULE casel gnor eStringMat ch
SUBSTRI NG MATCHI NG RULE casel gnor eSubst ri nghat ch
APPROXI MATE MATCHI NG RULE i ni ti al Wor dAppr oxi mat eMat ch
STORE NORMALI ZED
;= {attributeType 3}

Note that some matching rules are suitable for more than one type of matching.
The casel gnoreSt ri nghat ch is specified for both equality matching and ordering
matching.

Each matching rule is listed under each of the types of matching for which it can
be used. For example, casel gnoreStringhat ch is listed as an equality matching
rule and as an ordering matching rule.

A.5.1 Equality Matching Rules

A.5.1.1 aciltemMatch

This matching rule can apply to:
aci Synt ax.

For two values to be considered to match, they must have the same identification
string. Case-insensitive matching is applied to the identification strings to
determine whether they match. Other elements of the values cannot be matched.

Note that this means that values that look different to a user may be considered

identical by the DSA. For example, any two AClitems that have the identification
string "Directory Manager's Access Controls" are considered to match regardless

of what controls are specified within them.

Note that the DXIM command line interface does not support searches for specific
identification strings. For example, you cannot use the following DXIM command:

dxi m> search /c=us/o=abacus -
_dxi m> where prescriptiveaci="Directory Mnager's
_dxine attribute prescriptiveaci

DXIM does allow you to find all prescriptiveACI attributes, regardless of
identification string, as follows:

dxi m> search /c=us/ o=abacus where prescriptiveaci=*
_dximp attribute prescriptiveaci

A—-64 Default Schema Definitions

Default Schema Definitions
A.5 Matching Rules

You can use the COMPARE command to check for the presence of a particular
identification string, and you can specify an identification string in SHOW and
DELETE commands. Thus, if an attribute contains more than one value, you can
specify which value you want to show or delete by reference to its identification
string.

See Appendix B for a full description of the identification string and all other
elements of the syntax of an AClitem.

A.5.1.2 booleanMatch

This matching rule can apply to:
bool eanSynt ax.

For two values to match they must be either both TRUE, or both FALSE.

A.5.1.3 caseExactlA5StringMatch

This matching rule applies to:
i A5St ri ngSynt ax

For two values to match, corresponding characters must be identical, including
being of the same case, for example, "T" does not equal "t".

Consecutive space characters in either value are treated as a single space
character. If the values are of different lengths, ignoring any difference caused by
consecutive space characters, then the values do not match.

A.5.1.4 caseExactStringMatch

This matching rule can apply to:
stringSynt ax

printabl eStringSynt ax

count ryNameSynt ax.

For two values to match, corresponding characters must be identical, including
being of the same case, for example "T" does not equal "t".

Consecutive space characters in either value are treated as a single space
character. If the values are of different lengths, ignoring any difference caused by
consecutive space characters, then the values do not match.

A.5.1.5 caselgnhoreListMatch

This matching rule can apply to:
stringLi st Synt ax
post al Addr essSynt ax.

For two values to match, they must contain the same number of strings, and
corresponding strings must match according to the caselgnoreStringMatch.

A.5.1.6 caselgnorelA5StringMatch

This matching rule applies to:
i A5St ri ngSynt ax

For two values to match, corresponding characters must be identical, except that
case may vary.

Consecutive space characters in either value are treated as a single space
character. If the values are of different lengths, ignoring any difference caused by
consecutive space characters, then the values do not match.

Default Schema Definitions A-65

Default Schema Definitions
A.5 Matching Rules

A.5.1.7 caselgnoreStringMatch
This matching rule can apply to:
stringSynt ax
printabl eStringSynt ax
count r yNameSynt ax.

For two values to match, corresponding characters must be identical, except that
case may vary.

Consecutive space characters in either value are treated as a single space
character. If the values are of different lengths, ignoring any difference caused by
consecutive space characters, then the values do not match.

A.5.1.8 dec-mts-or-name-match

This matching rule can apply to:
nhs- or - nane- synt ax

If an OR name is in the format of an X.500 directory name, the matching rules
for di sti ngui shedNaneMat ch apply. If an OR name is in the format of an X.400
OR address, the matching rules for mhs- or - addr ess- mat ch apply.

A.5.1.9 deltaTimeMatch

This matching rule can apply to:
del t aTi meSynt ax

For two values to match, they must represent the same time and the same day
of the week. If the seconds are not specified in either value being matched, the
seconds are assumed to be 00.

A.5.1.10 distinguishedNameMatch

This matching rule can apply to:
di sti ngui shedNaneSynt ax

For two values to be considered to match, the following must all be true:

e The number of Relative Distinguished Names (RDNSs) in the two
Distinguished Names (DN) must be the same.

= Corresponding RDNs must have the same number of attribute values.
= Corresponding RDNs must be composed of the same attribute types.

« Corresponding attribute values must match for equality according to the
relevant matching rule.

For example, the distinguished name / count r yName=US matches the distinguished
name / c=us because both names have one RDN, both RDNs have one attribute
value, the attributes are both count ryNane, and the values match according to
the case insensitive matching rule that applies to the count r yNameSynt ax

A.5.1.11 exactEncodingMatch

This matching rule can apply to the following syntaxes:
undef i nedSynt ax

facsi m | eTel ephoneNunber Synt ax

protocol I nf or mati onSynt ax

i nt eger Li st Synt ax

bi t St ringSynt ax

tel etexTerm nal | dentifier Syntax

A—-66 Default Schema Definitions

Default Schema Definitions
A.5 Matching Rules

For two values to match, their ASN.1 encoding must be identical, octet for octet.
The exact Encodi nghat ch matching rule provides a minimal ability to match for
syntaxes for which a specialised matching rule has not been implemented.

A.5.1.12 generalizedTimeEqualityMatch
This matching rule can apply to:
general i zedTi meSynt ax

For two values to match, they must represent exactly the same time, including
the fractions of a second.

A.5.1.13 integerMatch
This matching rule can apply to:
i nt eger Synt ax
For two values to match, they must represent the same integer.

A.5.1.14 mhs-or-address-match
This matching rule can apply to:
mhs- or - addr ess- synt ax

For two values to match, the corresponding terms must be identical except for
case. The terms can be specified in any order. For example, the following values
match:

"C=US; A=Adnin; P=Abacus; O=Abacus; G=David; S=Townsend; QUl=Legal"

"C=US; A=Admi n; P=Abacus; O=Abacus; OUl=Legal ; G=David; S=Townsend"

If you are using this attribute to support an X.400 messaging application, refer

to that application’s documentation for details of the ORaddress formats it
supports.

A.5.1.15 numericStringMatch
This matching rule can apply to:
numeri cStringSynt ax

For two values to match, the corresponding numeric characters in the strings
must match exactly.

Space characters in either value are ignored. For example, "1 2 3" matches
ll123“.

A.5.1.16 objectldentifierMatch
This matching rule can apply to:
obj ectldentifierSyntax

For two values to match, corresponding elements must match exactly.
Consecutive space characters are treated as a single space.

A.5.1.17 octetStringMatch

This matching rule can apply to:
oct et StringSynt ax
user Passwor dSynt ax

For two values to match, the strings must be of the same length, and
corresponding octets must be identical.

Default Schema Definitions A-67

Default Schema Definitions
A.5 Matching Rules

A.5.1.18 presentationAddressMatch

This matching rule can apply to:
present ati onAddr essSynt ax

For two presentation addresses to match, each selector must be identical, and
the network addresses specified must be a subset of the network addresses stored
in the Directory. For example, the following presentation addresses match if the
second address is the one stored in the Directory.

" DSA"/ " DSA"/ " DSA"/ NS+4900| 4911
"DSA"/ " DSA"/ " DSA"/ NS+4900| 4911]| 4922

The two network addresses specified in the first presentation address are a subset
of the ones in the second presentation address.

A.5.1.19 telephoneNumberMatch

This matching rule can apply to:
t el ephoneNunber Synt ax

For two values to to match, the corresponding characters in each value must be
identical

Space characters and dash characters "-" are ignored For example, "44 123-456"
matches "44123456".

A.5.1.20 uTCTimeMatch

This matching rule can apply to:
uTCTi meSynt ax

For two values to match, the values must represent the same time. If either value
omits to specify seconds, then the number of seconds is assumed to be zero.

A.5.2 Ordering Matching Rules

A.5.2.1 caseExactlA5StringMatch

This matching rule applies to:
i A5StringSynt ax

Values are ordered by comparison of corresponding characters. Lower case
characters are treated as higher than upper case characters, for example, smith
is ordered higher than Smith. The letter A is the lowest letter, and the letter Z
the highest.

A.5.2.2 caseExactStringMatch

This matching rule can apply to:
stringSynt ax

printabl eStringSynt ax

count r yNameSynt ax.

Values are ordered by comparison of corresponding characters. For example,
Smith is ordered lower than Trent because the first characters differ, and S
is lower than T. Lower case characters are treated as higher than upper case
characters. For example, smith is higher than Smith.

A.5.2.3 caselgnorelA5StringMatch

This matching rule applies to:

i A5St ringSynt ax Values are ordered by comparison of corresponding characters.
Upper case and lower case representations of the same character are considered
equal, for example, smith is considered equal to SMITH. The letter A is the lowest
letter, and the letter Z the highest.

A—-68 Default Schema Definitions

Default Schema Definitions
A.5 Matching Rules

A.5.2.4 caselgnoreListMatch

This matching rule can apply to:
stringLi st Synt ax
post al Addr essSynt ax

Values are ordered by comparison of corresponding list elements. For example,
"ABC DEF" is higher than "A B C DEF" because the first elements in the two
lists differ, and ABC is higher than A.

A.5.2.5 caselgnoreStringMatch

This matching rule can apply to:
stringSynt ax

printabl eStringSynt ax
count r yNameSynt ax

Values are ordered by comparison of corresponding characters, without regard for
the case of the characters. The character "c" is equal to "C".

A.5.2.6 distinguishedNameMatch
This matching rule can apply to:
di stingui shedNameSynt ax

Values are ordered by comparison of corresponding RDNSs. If corresponding RDNs
are formed using different attributes, then the attributes are ordered according
to their object identifiers. For example, "/commonName=Smith" is ordered lower
than "/surname=Smith" because the object identifier of the conmonNane attribute
is lower.

For RDNs formed using the same attribute, the values are ordered according to
the ordering matching rule that applies to the syntax of that attribute.

A.5.2.7 generalizedTimeOrderingMatch

This matching rule can apply to:
general i zedTi meSynt ax

Values are ordered according to the times that they represent.

A.5.2.8 integerMatch

This matching rule can apply to:
i nt eger Synt ax

Values are ordered according to the integers they represent.

A.5.2.9 numericStringMatch

This matching rule can apply to:
nunericStringSynt ax

Values are ordered by comparison of corresponding numeric characters. For
example, 9 is ordered higher than 10 because the first characters differ, and 9 is
higher than 1.

A.5.2.10 objectldentifierMatch

This matching rule can apply to:
obj ect I dentifierSyntax

Values are ordered by comparison of corresponding elements.

Default Schema Definitions A—69

Default Schema Definitions
A.5 Matching Rules

A.5.2.11 octetStringMatch
This matching rule can apply to:
oct et StringSynt ax

Values are ordered by comparison of corresponding octets, and corresponding bits
within octets. The first occurrence of a different bit determines the ordering of
the octet strings. A zero is ordered before a one.

A.5.2.12 telephoneNumberMatch

This matching rule can apply to:
t el ephoneNunber Synt ax

Values are ordered according by comparison of corresponding characters, ignoring
space characters and hyphen (-) characters.

A.5.2.13 uTCTimeMatch

This matching rule can apply to:
uTCTi meSynt ax

Values are ordered according to the times they represent.

A.5.3 Substring Matching Rules

Substring matching rules enable users to use wildcards when searching for
entries. More than one wildcard can be specified. For example, a DXIM command
line user can use the following search command:

dxi m> search /c=us/ o=abacus where surname=*snfth*

The positions of the three wildcard characters means that this search might
return entries with the following surname values: smith, nesmith, smithson,
smythe, smallworthy.

A DXIM windows user can specify wildcards in the input fields of the Find
window.

A.5.3.1 caseExactlA5SubstringMatch
This matching rule applies to:
i A5St ringSynt ax

The matching rule determines whether a string specified by the user matches any
substring of a value in the Directory. The match is case sensitive.

A.5.3.2 caseExactSubstringMatch

This matching rule can apply to:
stringSynt ax
printabl eStringSynt ax

The matching rule determines whether a string specified by the user matches any
substring of a value in the Directory. The match is case sensitive.

A.5.3.3 caselgnoreListSubstringMatch

This matching rule can apply to:
stringLi st Synt ax
post al Addr essSynt ax

The matching rule determines whether a string or list or strings specified by the
user matches any substring or substrings of a value stored in the Directory.

A-70 Default Schema Definitions

Default Schema Definitions
A.5 Matching Rules

For example, a DXIM command line user can use the following command:
dxi m> search /c=us/ o=abacus where postal Address="*Smith, *London*"

The above request matches successfully against any post al Addr ess attribute
that contains a list item ending in the substring Sm t h, immediately followed by
a list item containing the substring London. The substring matching uses the
Section A.5.1.7.

For example, the command might return an entry that has the following
post al Addr ess value:

post al Address="John Smith, 47 London Street, Oxford, Oxfordshire"

Note that the rule does not match a substring across list items. For example, the
same request would not return the following post al Addr ess value:

post al Address="Jim Smith, 3rd Pylon, Don Street"

The above value contains the substring London, but the substring is split across
list items, and does not match.

A.5.3.4 caselghorelA5SubstringMatch
This matching rule applies to i A5St ri ngSynt ax.

The matching rule determines whether a string specified by the user matches
any substring of a value stored in the Directory. Upper case and lower case
representations of the same character are considered to match, for example, a
search for *smith might return WORDSMITH.

A.5.3.5 caselgnoreSubstringMatch
This matching rule applies to stringSyntax, printabl eStringSyntax, and
count r yNameSynt ax.

The matching rule determines whether a string specified by the user matches any
substring of a value stored in the Directory.

The use of a wildcard character indicates that a substring match is required.
More than one wildcard character may be specified.

For example, a DXIM command line user can use the following command:
dxi m> search /c=us/o=abacus where surname=ad*son*

The above request matches successfully against any sur nane attribute that ends
with the substring beginning with the letters "ad" and containing the letters
"son". Matches might include Adson, Adamson, and Addissons.

A.5.3.6 numericSubstringMatch

This matching rule can apply to:
nunericStringSynt ax

The matching rule determines whether a numeric string specified by the user
matches any substring of a value in the Directory.

A.5.3.7 telephoneNumberSubstringMatch
This matching rule can apply to:
t el ephoneNunber Synt ax

The matching rule determines whether a string specified by the user matches
any substring of a value in the Directory, ignoring any spaces or hyphen (-)
characters.

Default Schema Definitions A-71

Default Schema Definitions
A.5 Matching Rules

A.5.4 Approximate Matching Rules

Compaqg DSAs support a number of approximate matching rules. These rules
enable users to search for entries that match a specified string phonetically. The
rules are based on Soundex.

For example, a DXIM command line user can use the following search command:
dxi m> search /c=us/ o=abacus where surnane~=jonson

The above request would match entries with surnames such as Jonson, Johnson,
Jonnson, and Jansen.

The DXIM windows interface does not currently support approximate matching.

The default schema define only two attributes that support approximate
matching: conmonNane and sur nane.

The only syntaxes that support approximate matching are stri ngSynt ax and
printabl eStringSyntax. If you define an attribute that uses either of those
syntaxes, then you may want to specify that the attribute uses one of the
approximate matching rules.

A.5.4.1 allWordApproximateMatch

This matching rule can apply to:
stringSynt ax
printabl eStringSynt ax

The matching rule applies case-insensitive approximate matching for strings
that contain several words. For example, a DXIM user could use the following
command, where exanpl eAttribut e is an attribute that supports this matching
rule:

dxi m> search /c=us/ o=abacus where exanpl eAttribute~="Alan Peter More"

The match takes each word in the specified string, and matches against any
exanpl eAttribut e attribute in the directory that has three strings that are
phonetically equivalent to those strings. For example, the command might return
the following matches:

exanpl eAttribute="El |l en Peta Mre"
exanpl eAttribute="Alan Peter Mre"
exanpl eAttribute="Alen Peter Mir"

The rule considers spaces to be divisions between words, and considers the order
and number of the words to be significant. For example, the above search would
not match "John Allen Peter Moore", or "Peter Alan Moore".

A.5.4.2 initialLetterApproximateMatch
This matching rule can apply to:
stringSynt ax
printabl eStringSynt ax

This matching rule applies a case-insensitive comparison to the first letter of a
value, and a phonetic comparison to the last word of a value. The matching rule
considers space characters to be divisions between words. A value is considered
to match if the first letter is the same, and the last word matches phonetically.

For example, a DXIM command line user could use the following command to
make an approximate match using the exanpl eAttri but e:

dxi m> search /c=us/ o=abacus where exanpl eAttribute~="Alan M chael More"

A-72 Default Schema Definitions

Default Schema Definitions
A.5 Matching Rules

The request would match any exanpl eAttri but e values that begin with the
letter A, and which phonetically match Moore. Phonetic matches of Moore might
include More, Moor, and Muir.

The string Michael, and the remaining letters of Alan are ignored by the
matching rule. Only the first letter and the last word are compared with values
in the Directory.

Note that none of the attributes defined in the default schema use this matching
rule.

A.5.4.3 initialWordApproximateMatch
This matching rule can apply to:
stringSynt ax
printabl eStringSynt ax

This rule provides phonetic matching for first and last terms of a name. Other
terms are ignored. For example:

dxi m> search /c=us/ o=abacus where conmonNane~="Al an Mbore"

| C=US/ O=Abacus/ OU=Sal es/ CN=Al an Mbor e
| C=US/ O=Abacus/ OU=Account s/ CN=Al an Francis More
| C=US/ O=Abacus/ OU=Ret ai | / CN=Al | en Mii r

The second listed entry matches despite the fact that it has a middle name that
the user did not specify. The matching rule only checks the first and last terms of
the value. The last listed entry matches phonetically.

The comonNane, gi venName and sur name attributes use this approximate
matching rule.

A.5.4.4 lastWordSoundexMatch
This matching rule can apply to:
stringSynt ax
printabl eStringSynt ax

The rule applies a phonetic comparison to the last word of a value in the
Directory. The rule considers space characters to be the divisions between words.
For example, a DXIM command line user can use the following command:

dxi m> search /c=us/ o=abacus where exanpl eAttribute~="Alan M chael More"

The request would match any exanpl eAttri but e values that have a last word
that phonetically matches Moore. For example, any values ending in the word
Moore, More, Moor, and Muir are returned. The strings Alan and Michael are
ignored by the matching rule.

None of the attributes in the default schema use this matching rule.

Default Schema Definitions A-73

B

The PrescriptiveAClI Attribute

The prescriptiveACl attribute contains information that specifies restrictions on
user access to directory information. This attribute has a complex syntax, which
requires the use of keywords. Other vendors’ utilities might use a different set of
keywords to the ones supported by DXIM.

Each PrescriptiveAC attribute can contain several statements of access control,
each of which is called an access control information item (AClitem). Each
AClitem contains details of the controls that apply to specific directory users’
access to specific directory information.

Each AClitem can be specified in one of two ways: user-first or item-first. The
choice as to which to use depends simply on which format is the most convenient
for the particular control you want to specify. For example, if you want to specify
an individual user’s access rights to a variety of information, then user-first is the
simplest way to declare the controls.

If you want to display the value of a prescriptiveAC attribute, use the following
command:

dxi m> show / c=us/ o=abacus/ cn="Access Control" attribute prescriptiveAC

Note that in this version of the Enterprise Directory you cannot specify a
particular identification string as part of a search filter in a SEARCH command.
The only type of searching supported is a wildcard search for all prescri ptiveAC
attributes, for example:

dxi m> search /c=us/o=abacus where prescriptiveAC =* -
_dxin> attributes prescriptiveAC

Refer to Section B.1 for details of the user-first AClitem format, and to
Section B.2 for details of the item-first AClitem format.

Refer to Section B.3 for an explanation of the different directory information
items that you can specify access controls for. Refer to Section B.4 for an
explanation of the different classes of directory user that you can specify access
controls for. Refer to Section B.5 for an explanation of the various types of access
control you can grant or deny.

B.1 User-First AClitems
The format of a user-first AClitem is as follows:

<identification>

PRECEDENCE <i nt eger >

USERS <user _list>

PERM SSI ONS <grants_deni al s> TO <item |ist> [PRECEDENCE <integer>]
[<grants_denial s> TO <item|ist> [PRECEDENCE <integer>]] ...

AUTHENTI CATI ON (NONE | SIMPLE | STRONG

where:

The PrescriptiveACI Attribute B-1

The PrescriptiveACI Attribute
B.1 User-First AClitems

<identification>is a user friendly string that identifies this AClitem. For
example, "Manager’ s Access Rights".

<i nteger > is an integer. If the DSA finds that more than one argument appears
to affect a given user request, the argument with the highest precedence integer
is the one that the DSA applies.

<user _| i st > specifies the directory users to which this AClitem applies. Refer to
User_list for further details.

<grant s_deni al s> specifies what rights are permitted and/or denied.

<item|ist> specifies the directory information items to which the
<grants_deni al s> apply.

You can repeat the <grants_deni al s> TO<item | i st > [PRECEDENCE <i nt eger >]
argument. Each permission statement can be assigned a different precedence. A
high integer indicates high precedence.

User_list

The <user _| i st> argument specifies the directory users to which this access
control applies, as follows:

<user> [AND <user>] ...
The accepted parameters for the <user > argument are:

ALL

OMER

NAMES <nane_|ist>
GROUPS <name_|ist>

BEG NNI NG <subtree | ist>

For example:

USERS NAMES / c=us/ o=abacus/ cn=Joan
AND BEG NNI NG / c=us/ o=abacus/ ou=sal es
AND OMER

Refer to Section B.4 for details of these user classes.

Grants_Denials

The <grant s_deni al s> parameter specifies one or more permissions that are
granted or denied.

The format of <grant s_deni al s> is as follows:
(GRANT | DENY) <permission> [, <permission>] ...
AND (GRANT | DENY) <permission> [, <permission>] ...
]

where <per ni ssi on> is one of the following:

B—2 The PrescriptiveACI Attribute

The PrescriptiveACI Attribute
B.1 User-First AClitems

ALL ACCESS
ADD

BROWSE
COVPARE
CREATE
DELETE

DI SCLOSE
EXPORT

| MPCRT

MODI FY
READ
REMOVE
RENAVE
RETURN NAME
SEARCH

Example:

GRANT READ, CREATE, DI SCLOSE, RENAME -
AND -

DENY EXPORT, |MPORT, DELETE -
TO<itemlist>

In all cases, the default state of access control is that all forms of access are
denied to all users for all information. In the absence of a grant, permission is
assumed to be denied. Also, denials override grants of the same precedence.

Refer to Section B.5 for details of the meaning of each permission.

Item_List

Specify a list of directory information items to which the permissions apply, as
follows:

TO<itenr [AND <itenp]...
where <i t en® is one of:

ENTRY

ALL TYPES

TYPES <type_list>

ALL ATTRI BUTES

ATTRI BUTES <type_list>

Refer to Section B.3 for details of these items.

B.2 Item-First AClitems
The format of an item-first AClitem is as follows:

<identification>

PRECEDENCE <i nt eger >

| TEMS <item|ist>

PERM SSIONS <grants_deni al s> TO <user _|ist> [PRECEDENCE <i nt eger>]
[<grants_denial s> TO <user _| i st> [PRECEDENCE <integer>]]...

AUTHENTI CATI ON (NONE | SIMPLE | STRONG

where:

<identification>is a user-friendly string that identifies this AClitem. For
example, "Manager' s Access Rights".

<i nteger> is an integer. If the DSA finds that more than one argument appears
to affect a given user request, the argument with the highest precedence integer
is the one that the DSA applies.

The PrescriptiveACI Attribute B-3

The PrescriptiveACI Attribute
B.2 Item-First AClitems

<item|ist>is the list of directory information items to which this access control
item applies. For example, the list can state that this item applies to certain
attributes. Refer to Section B.3 for further details.

<grant s_deni al s> states one or more types of access that are granted or denied.
<user _| i st > specifies one of more users to whom the <grants_deni al s> apply.

The <grants_deni al s> TO<user _| i st > PRECEDENCE <i nt eger > argument can be
repeated. Each permission statement can be assigned a different precedence.

ltem_list

Use the <item |ist> argument to specify a list of items to which this access
control applies, as follows:

<itemr [AND <itenp] ...
The permitted components of an <item | i st > are:

ENTRY

ALL TYPES

TYPES <type_list>

ALL ATTRI BUTES

ATTRI BUTES <type_list>

Refer to Section B.3 for details of the item classes that you can specify.

Grants_Denials
The format of <grant s_deni al s> is as follows:

GRANT | DENY <permission> [, <permission>] ...

[
AND GRANT | DENY <pernission> [, <pernission>] ...
] ...

where <per ni ssi on> is one of the following:

ALL ACCESS
ADD

CREATE

DI SCLOSE
READ
REMOVE
DELETE
BROWSE
EXPORT

| MPORT

MODI FY
RENAVE
RETURN NAME
COVPARE
SEARCH

Example:

GRANT READ CREATE DI SCLOSE RENAME -
AND -
DENY EXPORT | MPORT DELETE

Refer to Section B.5 for details of the meaning of each permission.

B—4 The PrescriptiveACI Attribute

The PrescriptiveACI Attribute
B.2 Item-First AClitems

User List
Specify a list of users to which the <grant s_deni al s> apply, as follows:

<user> [AND <user>] ...
where each <user > is one of the following:

ALL

OMER

NAMES <nane_| i st>

GROUPS <nane_| i st>

BEG NNI NG <subtree |ist>

Refer to Section B.4 for details of these user classes.

Example
PrescriptiveACl = "Restriction on Access to Password" -

PRECEDENCE 100 -

| TEMS -
ATTRI BUTES user Password -

PERM SSI ONS -
DENY ALL ACCESS -
TO ALL -

AUTHENTI CATI ON NONE

B.3 Item Classes

Use the following keywords to specify the directory information items to which an
access control applies:

ENTRY

ALL TYPES

TYPES <type list>

ALL ATTRI BUTES

ATTRI BUTES <type_list>

A single AClitem can list more than one of these keywords, and some of the
keywords require arguments. Refer to the subtopics for further details of each
class of directory information item.

Entry

This parameter means that the access control applies to entries, although further
access rights are required to access attribute information within an entry. Access
to an entry is a prerequisite for access to attribute information.

All Types

This parameter means that the access control applies to all attribute types, but
not to values of the attributes. This allows you to detect the presence of an
attribute type in an entry, without being able to read or modify any values. ALL
TYPES excludes operational attributes. To specify operational attributes, use the
TYPES parameter (see Types) .

Note that an explicit DENY READ TO ATTRIBUTE statement overrides, for
the specified attributes, a GRANT READ TO ALL TYPES statement of equal
precedence. If you want to conceal values of some attributes, but permit the
presence of all attributes to be detected, then you need to give the GRANT
READ TO ALL TYPES statement a higher precedence than the DENY READ TO
ATTRIBUTE. Refer to Types for further details.

The PrescriptiveACI Attribute B-5

The PrescriptiveACI Attribute
B.3 Item Classes

Types

This parameter enables you to specify which attribute types the access control
applies to. You can specify operational attributes as well as user attributes. Note
that the TYPES parameter gives no access rights to the values of attributes, only
to the attribute type. This is useful for attributes such as user Passwor d, where
you might want users to be able to detect the presence of an attribute, but not to
see or modify its values.

Syntax:
TYPES <type list>
Example:
TYPES tel ephoneNunber, title, commonNanme

Note that an explicit DENY READ TO ATTRIBUTE statement overrides a
GRANT READ TO TYPES statement of equal precedence. If you want to
conceal the values of an attribute, but permit the presence of the attribute to
be detected, then you need to give the GRANT READ TO TYPES statement a
higher precedence than the DENY READ TO ATTRIBUTE.

For an example of this, refer to the default access control template file. In both
the "Directory Managers" and "Own Entry" AClitems, there is a GRANT READ
TO TYPE statement for the user Passwor d attribute. That statement has a
precedence that is slightly higher than the precedence of the rest of the relevant
AClitem. This ensures that managers and entry owners can detect the presence
of the attribute without being able to see its value.

All Attributes

This parameter means that the access control applies to all attribute information,
including values. However, ALL ATTRI BUTES excludes operational attributes. To
specify operational attributes, use the ATTRI BUTES <t ype_| i st > parameter (see
Attributes) .

Attributes

This parameter enables you to specify which attributes the access control
applies to. You can specify operational attributes as well as user attributes.
This parameter includes values of the attributes, unlike the TYPES parameter.

Syntax:

ATTRI BUTES <type | ist>

Example:

ATTRI BUTES t el ephoneNunber, title, commonNane

Item Classes Example

The following example shows how you can use the various items together in an
access control item. The access controls apply to entries, and all user attributes.
The permissions indicate that the named user is to be allowed READ access to
these items.

B—6 The PrescriptiveACI Attribute

The PrescriptiveACI Attribute
B.3 Item Classes

"Exanpl e Access Val ue" -
PRECEDENCE 1 -
| TEMS -
ENTRY -
AND ALL ATTRI BUTES -
PERM SSI ONS -
GRANT READ ACCESS TO NAME [/ c=us/ o=abacus/ ou=sal es/ cn="Jon Jacks" -
AUTHENTI CATI ON SI MPLE

The above example is an item-first access control item.
The equivalent user-first access control item would be:

"Exanpl e Access Val ue" -
PRECEDENCE 1 -
USERS -
NAME / c=us/ o=abacus/ ou=sal es/ cn="Jon Jacks" -
PERM SSI ONS -
GRANT READ ACCESS TO -
ENTRY -
ALL ATTRI BUTES -
AUTHENTI CATI ON SI MPLE

Refer to Section B.1 for details of the syntax of a user-first access control item,
and to Section B.2 for details of the syntax of an item-first access control item.

B.4 User Classes

Use the following keywords to specify the directory users to which an access
control applies:

ALL

OMNER

NAMES <nane_| i st>
GROUPS <nane_|ist>

BEG NNI NG <subtree_ |ist>

You can specify any combination of these user classes in a single AClitem, and
some of the keywords require further arguments. Refer to the subtopics for
further details of the user classes.

All

This parameter means that the access control applies to all directory users. A
DSA considers all users it does not know, or for whom it has no more specific
access control information, as members of the ALL category.

Owner

This parameter means that the access control applies to the directory user who
has authenticated themselves using the name of the entry that they then try
to access. A possible use of this parameter would be to enable users to modify
the passwords of their own directory entry, whilst passwords are generally not
accessible to directory users.

Names

This parameter specifies particular users to whom the access control applies.
Specify each user using their distinguished name. If you specify a distinguished
name that contains the comma character, quote the distinguished name.

In order to take advantage of the access control, users must identify themselves to
the DSA (through their application) using their distinguished name. For example,
when you use DXIM to bind to a DSA, you can specify your name and password.
The DSA applies the access controls specified for your name, rather than treating
you as a member of the ALL category.

The PrescriptiveACI Attribute B-7

The PrescriptiveACI Attribute
B.4 User Classes

Syntax:
NAMES <nane_| i st>
where <nane_|l i st > is a list of names separated by commas, as follows:

NAMES / c=us/ o=abacus/ ou=sal es/ cn="Jon Jacks", -
| c=us/ o=abacus/ ou=r esear ch/ cn="Jenny Geen", -
| c=us/ o=abacus/ ou=per sonnel / cn="Paol o G nelli" -

Groups

This parameter enables you to specify the name of a gr oupOf Uni queNames
entry. The groupOf Uni queNanmes entry contains an attribute that specifies the
distinguished names of all members of the group.

If the DSA finds that a user is a member of such a group, then the DSA applies
the access control specified for the group, rather than treating the user as a
member of the ALL category.

Note that the DSA only determines the membership of groups for which the
groupO Uni queNanes entry is held locally. If a DSA does not hold a copy of the
groupOf Uni queNarmres entry, it assumes that the user is not a member of that
group.

Syntax:
GROUPS <name_list>
where <nane_l i st > is a list of names separated by commas, for example:

GROUPS / c=us/ o=abacus/ ou=sal es/ cn="Managenent Teanf, -
| c=us/ o=abacus/ ou=r esear ch/ cn="Managenent Teant, -
| c=us/ o=abacus/ ou=per sonnel / cn="Managenent Tean! -

Beginning

This parameter enables you to specify the name of a directory subtree, and to
specify a portion of that subtree. The DSA applies the access control to any
directory users who identify themselves to the DSA using a distinguished name
that is within the subtree, or the specified portion of the subtree.

Syntax:

BEG NNI NG <subtree |ist>

where <subtree_|ist> is as follows:
<subtree>, <subtree>,

Each <subt ree> is as follows:
<nanme> [<limts>]

where:

<pane> is the name of the entry at the root of the subtree that contains the users
to be affected by this access control.

<limts>is an optional parameter that specifies what portion of the named
subtree is to be affected. The limits are specified as minimum and maximum
integers, using the M Nl MMM and MAXI MUM keywords. For example:

BEG NNI NG / c=us/ o=abacus m ni num 2 naxi mum 4

B—8 The PrescriptiveACI Attribute

The PrescriptiveACI Attribute
B.4 User Classes

The minimum integer indicates that the access control applies to entries that
are at least that many levels beneath the entry at the root of the subtree. The
maximum integer indicates that the access control applies to entries that are

no more than that far beneath the entry at the root of the specified subtree. By
default, the access control applies to all entries in the subtree, including the entry
at its root.

Example:

BEG NNI NG / c=us/ o=abacus
BEG NNI NG / c=us/ o=abacus, /c=us/o=acne
BEG NNI NG / c=us/ o=abacus nini mum 2 maxi mum 4, /c=us/o=acne

In the last example, the limits option is used to specify that the access control
affects entries at least two levels beneath the Abacus entry, and no more than
four levels beneath it. For example, the entry / c=us/ o=abacus/ ou=sal es is only
one level beneath the Abacus entry, and is therefore unaffected by the access
control.

User Classes Example

The following example shows how you can use the various user classes together
in the same USERS argument. The access controls apply to anyone who meets one
of the following requirements:

= s called Jon Jacks

= Is a member of the Board of Directors

= Has a distinguished name that is within the research subtree
= Is the owner of the entry that is currently being accessed.

"Exanpl e Access Val ue" -
PRECEDENCE 1 -
USERS -
OMER -
AND NAMES /c=us/o=abacus/cn="Jon Jacks" -
AND GROUPS / c=us/ o=abacus/cn="Board of Directors -
AND BEG NNI NG / c=us/ o=abacus/ ou=r esearch m ni mum 2 maxi num5 -
PERM SSI ONS -
GRANT ALL ACCESS TO
ENTRY -
ALL ATTRI BUTES -
AUTHENTI CATI ON SI MPLE

The above example is a user-first access control item.
The equivalent item-first access control item would be:

"Exanpl e Access Val ue" -
PRECEDENCE 1 -
| TEMS -
ENTRY -
AND ALL ATTRI BUTES -
PERM SSI ONS -
GRANT ALL ACCESS TO -
OMNNER -
NAMES /c=us/o=abacus/cn="Jon Jacks" -
GROUPS / c=us/ o=abacus/ cn="Board of Directors -
BEG NNI NG / c=us/ o=abacus/ ou=r esear ch -
AUTHENTI CATI ON SI MPLE

The PrescriptiveACI Attribute B-9

The PrescriptiveACI Attribute
B.5 Permissions

B.5 Permissions
X.500 allows you to control access to entries, and to particular attributes.

The range of permissions provided by the Enterprise Directory reflects the range
of its services. You can control the ability to search the directory, to compare
attribute values, to create or delete entries or attributes, to modify attributes,
and rename entries. You can also control what information is returned to the
user in the event that they are refused access to the information they ask for.
For example, if a user is not allowed to show an entry, the Enterprise Directory
might state that the entry does not exist, rather than returning an "“insufficient
privileges" message.

The complete list of permissions is as follows:

ALL ACCESS
ADD

BROWSE
COVPARE
CREATE
DELETE

DI SCLOSE
EXPORT

| MPORT

MODI FY
READ
REMOVE
RENAVE
RETURN NAME
SEARCH

Refer to the following subtopics for further details.

All Access
The ALL ACCESS permission is a shorthand way of specifying all permissions.

Refer to the individual permission topics for details of each permission.

Add
The ADD permission controls the creation of entries and attributes.

To create an entry, you need permission to add an entry, and you also need
permission to add the attributes and values of the entry. If you do not have
permission to add attributes, you will be unable to create an entry even though
you have permission for that aspect of the operation.

Typically, a directory manager would have permission to add entries, and to
add all user attributes. A directory manager might also have permission to add
operational attributes.

An end user would typically not have permission to add entries, but might have
permission to add some attributes to their own entry.

Note that in order to modify existing entries, you also need the MODI FY
permission. Without the MODI FY permission, you can only add and remove
attributes and values of entries as you create them.

A manager will typically have the ADD and MODI FY permissions for entries, as
well as the ADD permission for attributes and values. However, a user might have
permission to modify only their own entry, and permission to add and remove
attributes of their own entry, but no permission to add new entries or modify
other people’s entries.

B—10 The PrescriptiveACI Attribute

The PrescriptiveACI Attribute
B.5 Permissions

Browse

The BROABE permission allows you to use operations that can display more than
one directory entry.

For example, the BROABE permission is required for list operations, such as the
DXIM SHOW SUBORDINATES command. List operations also require the
RETURN NAME permission.

The BROABE permission is also required for search operations, such as the DXIM
SEARCH command, and the Show Subordinates option of the DXIM windows
interface. Search operations also require the RETURN NAVE, READ, and SEARCH
permissions. Refer to the relevant sections for further details.

Compare

The COMPARE permission enables you to detect the existence of an attribute value
in an entry. The READ permission to entries is also required for such operations.
The COVPARE permission is useless without READ to entry.

For example, consider the following DXIM command:
dxi m> conpare /c=US with description=hig

In order for that command to succeed, the manager requires permission to read
entries, and to compare the description attribute (or all attribute types).

For example, the following extract from an access control item provides the
required permissions:

GRANT -
READ TO ENTRY -
AND -
COVPARE TO ATTRI BUTE description

The statement " COVPARE TO ATTRI BUTE descri ption" includes all values of that
attribute.

Create

The CREATE permission is identical to the ADD permission. Refer to the ADD
permission for details.

Delete

The DELETE permission is identical to the REMOVE permission. Refer to the REMOVE
permission for details.

Disclose

The DI SCLOSE permission allows you to control whether the existence of directory
information is revealed in the event of an error. If the permission is not granted,

a user is told that the information does not exist, rather than being told that they
failed to access it.

For example, if a user attempts to read an attribute value for which they have
no access rights, the directory can tell the user that the attribute is not present.
For some directory information, the ability to detect its existence may in itself be
considered a security risk.

You can grant or deny the permission to DI SCLOSE for entries and attribute types.

Note that the disclosure only applies in the case of an error. The user might have
permission to read an attribute, but not have the right to modify it. In that case,
a user without the DI SCLCSE permission can be told that the attribute does not
exist when they use the MODIFY command, even though they can successfully
display it using SHOW commands.

The PrescriptiveACI Attribute B-11

The PrescriptiveACI Attribute
B.5 Permissions

Export

The EXPORT permission enables you to control whether an entry can be renamed
from one point in the DIT to another. The | MPORT permission is required at the
new location. The EXPORT permission permits all subordinates to the entry being
renamed collectively. This enables an entire subtree of the DIT to be moved.

Note that Compaq’s DSAs do not support the renaming of entire subtrees from
one point in the DIT to another.

See also the | MPORT permission.

Import

The | MPORT permission enables you to control whether an entry can be renamed
to a particular point in the DIT. The EXPORT permission is required at the old
location of the entry. The | MPORT permission enables all subordinates of an entry
to be renamed collectively. This enables an entire subtree of the DIT to be moved.

Note that Compaq’s DSAs do not support the renaming of entire subtrees from
one point in the tree to another.

See also the EXPORT permission.

Modify

The MODI FY permission enables you to control whether entries can be modified.
If the MODI FY permission is granted, you can modify entries, although you also
need the ADD or REMOVE permissions for the particular attributes that you intend
to modify. The MODI FY permission on its own is useless.

See also the ADD and REMOVE permissions.

Read

The READ permission enables you to control whether directory information can
be returned to the user as part of the results of directory requests. The READ
permission can be specified with regard to entries, attribute types, and attribute
values. The READ permission affects, for example, the DXIM COMPARE, SHOW,
and SEARCH commands.

The permission to read entries does not in itself permit you to read the attributes
and values of entries. You also need some combination of READ permission TO
TYPES, and/or TOATTRI BUTES in order to receive information from entries.

Typically, a manager would have permission to read all directory information,
except for certain exclusions stated using DENY statements. For example, the
following extract from an access control item illustrates how a manager might be
denied access to certain attribute types.
GRANT -
READ TO ENTRY ALL ATTRI BUTES -
DENY -
READ TO TYPE user Passwor d
Remove

The REMOVE permission enables you to control the deletion of entries, attribute
types, and attribute values.

To delete an entry, you need the REMOVE permission to entries. You can delete an
entry without necessarily having permission to remove the various attributes and
values within the entry.

B—12 The PrescriptiveACI Attribute

The PrescriptiveACI Attribute
B.5 Permissions

To remove attributes and values within an entry, you need the appropriate
combination of REMOVE permissions TO TYPES, and/or TO ATTRI BUTES. permissions.
Note that the removal of attributes and values also requires the MODI FY
permission to entries. REMOVE permission to entries is not a prerequisite of
removing attributes and values.

Rename
The RENAME permission enables you to control the renaming of entries.

The RENAME permission, if granted, enables you to change the last relative
distinguished name of an entry.

The RENAME permission allows you to add attributes to an entry and remove
attributes from an entry regardless of whether you have the MODI FY, ADD and
REMOVE permissions normally required for those operations. The permission to
rename an entry even overrides denials of permission to modify entries.

For example, the following DXIM command involves the addition of the
attribute value conmonNane=Jones, and the deletion of the attribute value
comonNane=Smi t h, but does not require any permission other than RENAME.

dxi m> renane /cn=Smith to /cn=Jones renove ol d

The command succeeds even if there are denials of permission to modify entries,
or add comonNarme or remove conmonNane.

Return Name

The RETURN NAME permission enables you to control whether the distinguished
names of entries are returned to users as a result of directory requests.

The permission affects read, search, and list operations, that is, DXIM SHOW,
SEARCH, and SHOW SUBORDINATES commands.

For requests in which the Enterprise Directory might return more than one entry
(SEARCH and SHOW SUBORDINATES commands), denying this permission
prevents the request from returning any information. This permission is
therefore required for the successful use of those operations.

For operations that can only return a single entry (SHOW commands), this
permission determines whether the distinguished name of the entry is returned
in the event that you specify an alias name in a request. If the permission is
denied, and you specify an alias name in a SHOW command, then you receive
no indication that the name you specified was an alias name. If the permission
is granted, then the distinguished name of the entry is displayed, regardless

of whether you specified an alias name. In either case, assuming that other
relevant permissions are granted, such as READ permission to entries, the entry is
displayed.

This permission can therefore conceal from users the distinguished names of
entries. This might be suitable for external users of your information, to whom
you do not want to reveal the true structure of your organizational DIT.

Search

The SEARCH permission enables you to control which attribute types can be used
in search filters, and whether values can be searched for.

The BROASE and RETURN NAME permissions are prerequisites for search operations.

You can specify the SEARCH permission with regard to attribute types or to
attribute values.

The PrescriptiveACI Attribute B-13

The PrescriptiveACI Attribute
B.5 Permissions

Granting the SEARCH permission to types enables you to include the permitted
types in a search filter, but in itself does not allow you to specify particular
values. You could only search for all entries that have, for example, a surname
attribute, regardless of its value.

Granting the SEARCH TO ATTRI BUTES permission enables you to include types and
values of the permitted attribute types.

See also the BROASE and RETURN NAME permissions.

B.6 Access Control Template File

This section contains the access control template file that Compaq provides as a
suggested default for implementing access control. Note that because there are
four AClitems, the PrescriptiveACI values are enclosed by parentheses.

On DEC OSF/1 systems, this file is called
/var/dxd/scripts/dxd_aci_template.dxim. On OpenVMS systems, the template file
is called

DXD$DIRECTORY:DXD$ACI_TEMPLATE.DXIM.

#Ht Default access control tenplate.
Hth

create entry -
attribute objectd ass=(accessControl Subentry, subentry)

set entry

attribute prescriptiveAC = -

- #

- # The following ACl specifies the distinguished nanes of users
- # who are to act as directory managers. These users can create,
- # delete and nodify entries anywhere in the subtree for which

- # the ACl applies.

- # They can al so read and nodify (where appropriate) certain

- # operational attributes.

- #

"Directory Managers" -

precedence 200 -

user names

per mi ssi ons
grant all access to
entry and

all attributes and -

attributes -
prescriptiveAd, -
dseType, -
dxdui d, -
governi ngSt ruct ureRul e,

subor di nat eDel et edTi mest anp, -
t rust edDSAnane

deny read to
attributes userPassword
grant read to
type userPassword precedence 201 -
aut hentication sinple,
- #
Users can check the passwords of other users. This pernission
- #is used for the security of the Enterpr|se Directory itself. DSAs
- # nust be able to check each other’'s passwords.

B—14 The PrescriptiveACI Attribute

The PrescriptiveACI Attribute
B.6 Access Control Template File

- #

"Aut henticated Users" -
precedence 160 -
users all -
per m ssi ons -
grant compare to attribute userPassword -
authentication sinple

- #

- # Users are allowed to browse and search the directory tree and
- # read all user attributes except those specifically excluded

- #

"Unaut hent i cated users”
precedence 150
users al
per ni ssi ons
grant read, browse, search return name, disclose, conpare -
to

entry and
all attributes and
attributes

creat eTi mest anp,
modi fyTi mest anp, -
governingStructureRul e -

deny all access to attributes -

user Password -
aut hentication none

- #

- # The following ACl specifies additional access rights a user
- # has to their own entry, provided they have authenticated to
- # the Enterprise Directory (using their password).

- # Specifically it specifies a set of attributes that a user

- #is allowed to add to or change in their own entry.

- #

"Own entry"
precedence 150
users owner
per m ssi ons
grant nodify to entry
grant all access to attrlbutes -
conmonNane,
description
present ati onAddr ess
protocol I nformation
support edAppl i cati onCont ext -
grant conpare, add, renove
to attribute userPassword -
grant read to type
user Password precedence 151
authentication sinple

)

The PrescriptiveACI Attribute B-15

Glossary

AClitem
See Access Control Information ltem

Access Control Information Item

An access control information item (AClitem) is stored in the directory, and
specifies which users can use which services on what directory information.
There can be many AClitems in the directory, controlling access to different parts
of the directory information tree.

AE Title

See Application Entity Title

Alias Entry
An entry that provides alias names for other entries in the Directory.

API
Application Programming Interface.

Application Entity

A software application, or a part of an application that provides a particular
function. An X.500 DSA is an example of an application entity.

Application Entity Title

An unambiguous name that uniquely identifies an application entity, such as a
DSA.

ASN.1

Abstract Syntax Notation One. The standardised language used to define
abstract syntaxes.

Attribute

In X.500, an attribute is a characteristic of an X.500 entry. It comprises an
attribute type and one or more attribute values. For example, surnane=Snith is
an attribute comprising the attribute type surnane and the attribute value Snith.

In Compag’'s enterprise management architecture, an attribute is a characteristic
of a management entity. For example, the DSA entity has several attributes that
enable you to manage the DSA software.

Glossary-1

Glossary—2

Bind Request

A request used to establish a connection between a DUA and a DSA, or between
two DSAs.

Browsing

A method of exploring the directory information tree using a windows interface.
The DXIM windows interface enables a user to click on entries to expose their
attributes, or to expose or conceal the entries beneath a selected entry.

Chaining

The operation whereby a user request is passed from one DSA to another. A DSA
only chains a request if it cannot satisfy the request completely itself. A DSA
uses knowledge information to determine which other DSA to pass the request to.
See also Multicasting and Knowledge Information.

Consumer DSA

A DSA that receives naming contexts from another DSA during replication. See
also Supplier DSA.

DAP

See Directory Access Protocol.

Dereferencing

The process whereby a DSA uses an alias entry to determine the name of a real
entry.

DIB
See Directory Information Base.

Compag’s X.500 Information Management utility

A directory application used for managing entries held in the Directory. The
Compaq X.500 Information Manager (DXIM) has a command line interface and a
windows interface. DXIM uses the standard Directory Access Protocol (DAP) to
communicate with Directory System Agents. See Directory Access Protocol and
Directory System Agent.

Directory

A standardized information system designed to meet the information
requirements of network applications.

Directory Access Protocol

The standardised application layer protocol used in communication between a
DUA and a DSA. This protocol is defined as part of the X.500 recommendations.
It uses the ROSE and ACSE common application service elements. See also
Lightweight Directory Access Protocol.

Directory Entry

An entry in the X.500 directory. The entry represents a specific object, and has
attributes that contain information about the object. For example, an entry could
represent an organization, and contain the organization’'s address, telephone
number, a description of its business interests.

Directory Information Base
The information contained within an X.500 directory.

Directory Information Shadowing Protocol

A standardised protocol used in communication between Directory System
Agents (DSAs) for replicating (shadowing) directory information. See Directory
Operational Binding Protocol and Shadowing.

Directory Information Tree
The hierarchical structure of the directory information base.

Directory Operational Binding Protocol

A standardised protocol used in communication between Directory System
Agents (DSAs) to establish and manage operational agreements. Specifically,
Compaq DSAs use this protocol to establish shadowing agreements. The actual
shadowing is implemented using the Directory Information Shadowing Protocol.
See Directory Information Shadowing Protocol and Shadowing and Shadowing
Agreements.

Directory System Agent

The part of the directory that is responsible for satisfying user requests. It either
does this itself, or by communicating with other DSAs. Each DSA may hold part
of the DIB.

Directory System Protocol

A standardised protocol used in communication between Directory System Agents
(DSAs) to satisfy user requests for directory information. It uses the ROSE

and ACSE common application service elements. See also the Directory Access
Protocol (DAP), the Directory Information Shadowing Protocol (DISP), and the
Directory Operational Binding Protocol (DOP).

Directory User Agent

The DUA represents a user (an application or person) to the Directory Service.
It provides the interface between the user and the DSA, using a standardized
directory access protocol. All users must access the Directory using a DUA.
DXIM is an example of an application that includes a DUA.

Distinguished Name

A name that uniquely identifies a directory entry. It is made up of a series
of Relative Distinguished Names. See also Relative Distinguished Name and
Distinguished Value.

Distinguished Value

An attribute value that is used in the Relative Distinguished Name of a directory
entry.

DISP
See Directory Information Shadowing Protocol.

DIT
See Directory Information Tree.

Glossary-3

Glossary—4

DOP
See Directory Operational Binding Protocol.

DSA
See Directory System Agent.

DSP
See Directory System Protocol.

DUA
See Directory User Agent.

DXIM
See Compag’'s X.500 Information Management utility.

Entry
See Directory Entry.

Entity

An individual, manageable component of a network or a distributed system. For
example, by subdividing a network into entities, it allows that network to be
easily managed and controlled. See also Subentity.

Filter
See Search Filter.

Knowledge Information

Information held by a DSA about the entries it holds and about the network
addresses of DSAs that hold other parts of the directory information base.

LDAP
See Lightweight Directory Access Protocol

Lightweight Directory Access Protocol

A simplified alternative to the X.500 Directory Access Protocol. The LDAP

V2 protocol is defined by RFC1487 and LDAP V3 is defined by RFC2251.
LDAP requires fewer resources than DAP, enabling directory applications to be
supported on smaller systems.

Master Copies

Entries that are not copied to this DSA from some other DSA. See also Shadow
Copies, Shadow DSA, and Master DSA.

Master DSA

A DSA that holds the master copy of one of more directory entries. See also
Shadow DSA.

Multicasting

The operation whereby a DSA distributes a request simultaneously to multiple
DSAs that might be able to help satisfy a user request. See also Chaining.

Naming Context

A part of the directory information tree. Dividing the DIT into naming contexts
enables it to be distributed amongst several DSAs. This ensures that the DIT is
scalable. A DSA can hold more than one naming context, and a naming context
can contain any number of directory entries.

Object
Something that is represented by a directory entry, such as a person, company,
printer, or software application.

Object Class

The class to which a directory entry belongs. For example, Compagq could be
represented by a directory entry of the object class or gani zati on. All directory
entries are classified. The set of attributes that a directory entry can contain is
determined by its classification.

Object Identifier

A sequence of numeric identifiers that uniquely identifies a standardized
definition. For example, all X.500 object classes are assigned a unique object
identifier.

OSAK

OSI Application Kernel. Part of Compaq's DECnet-Plus product that provides
OSI conformant transport and session services that act as a basis for developing
applications to interconnect across an OSI network or TCP/IP network using
RFC1006. Note that on OpenVMS systems it is necessary to install OSAK
separately, but on Tru64 UNIX systems OSAK is automatically part of
DECnet—plus.

Presentation Address
An address that uniquely identifies an application, such as a DSA.

Primary Shadowing

During replication, the process of taking shadow copies of master copies. See also
Shadowing, Secondary Shadowing and Shadowing Agreements.

RDN

See Relative Distinguished Name.

Reference

Information that identifies a DSA that holds part of the directory information
base.

Referral

Information provided to a user by a DSA that cannot satisfy a user request. The
referral identifies another DSA which might be able to satisfy the request. The
user can use the information to attempt to connect to the other DSA and repeat
their request.

Glossary-5

Glossary—6

Relative Distinguished Name

A name that identifies a particular directory entry. The RDN is unique relative
to that entry’s immediately superior entry. See also Distinguished Name and
Distinguished Value.

Replication

The process of copying directory information from one DSA to another. See
also Shadowing, Shadowing Agreements, Primary Shadowing, and Secondary
Shadowing.

Request Decomposition

An internal operation performed by a DSA whereby a request is divided into a
number of smaller requests such that each of these subrequests perform a part of
the original request.

RFC1006

A protocol encapsulation that allows OSI network PDUs to be transferred over a
TCP/IP network. RFC1006 functionality is provided by DECnet-Plus.

ROSE

Remote Operations Service Element. An OSI common application service element
that provides a standard service and protocol framework over which certain
interactive application services and protocols may be defined.

Search Filter

The part of a search request that defines what directory information a user wants
to search for.

Secondary Shadowing

During replication, the process of taking shadow copies of shadow copies. See
also Shadowing, Primary Shadowing, and Shadowing Agreement.

Service Controls

A group of parameters that can be applied to user requests to influence the
processing of an operation, and the results obtained. Typical service controls
specify a time limit and whether the DSA is permitted to contact other DSAs.

Shadow Copies

Directory entries that are held by a DSA as copies of entries held by some other
DSA. See also Shadow DSA, Master DSA and Master Copies.

Shadow DSA

A DSA that hold entries that it has copied from other DSAs. See also Shadow
Copies, Master Copies and Master DSA.

Shadowing

The process of copying or replicating directory information from one DSA to
another in accordance with a shadowing agreement. A DSA that provides copies
of directory information is called a supplier DSA, and a DSA that takes copies
is called a consumer DSA. X.500 shadowing must not be confused with concepts
such as disk shadowing. See Shadowing Agreements, Primary Shadowing, and
Secondary Shadowing.

Shadowing Agreement

A specification of a shadowing relationship between two DSAs. The agreement
specifies which DSA is the supplier DSA and which is the consumer DSA. It
also specifies such details as how frequently shadowing should occur. Shadowing
agreements are established and maintained using the standard Directory
Operational Binding Protocol. See Shadowing, Directory Operational Binding
Protocol, Supplier DSA and Consumer DSA.

Subentity

In Compag’s enterprise management architecture, an entity that is subordinate
to another entity. For example, the Naming Context entity is a subentity of the
DSA entity.

Subordinate Reference

Knowledge information held by a DSA. The information identifies directory
information that is subordinate to information held by this DSA. The information
also states the network address of the DSA or DSAs that hold the subordinate
directory information.

Superior Reference

Knowledge information held by a DSA. The information identifies the network
address of a DSA that holds directory information that is superior to directory
information held by this DSA.

Supplier DSA

The DSA which is the provider of naming contexts during replication. See also
Consumer DSA.

Trusted DSA

A DSA that is considered by a given DSA to be a member of the security domain.
Trust is a prerequisite for replication between Compaq DSAs. Trusted DSAs
also act consistently with regard to user authentication, such that a user who
authenticates to one DSA has effectively authenticated to all other DSAs that are
trusted by that DSA. A DSA honours the authentication level claimed for a user
by a trusted DSA. This saves a user from having to authenticate specifically to
each DSA that contributes to the satisfaction of their requests.

X.400
The series of recommendations that define an open Message Handling System.

X.500
The series of recommendations that define an open Directory Service.

Glossary—7

A

abstract services
See enterprise directories
access control, 1-12, 7-1
chained requests, 4-18
DSA trust requirement, 4-18
in distributed operations, 4-18
item classes, 7-6
overview, 7-1
permissions, 7-7
recommendations, 7-2
specifying what information an AClitem affects,

7-6
specifying what types of request an AClitem
affects, 7-7
specifying what users an AClitem affects, 7-6
template
description, 7-3
usage, 11-1

template file, 7-1
user classes, 7-6
accounting, 1-12
AClitems
See access control, 7-1
AE titles, 5-10
setting, 8-5
alias entries
definition of, 1-5
application defaults, 9-1
application entity titles, 5-10
applications
defaults file, 9-1
attribute
defining, 6-1
attributes, 1-2, 1-3
default definitions, A-25
defining, 6-12
indexing for matching, 6-15
mandatory attributes, 1-6
matching rules, 6-12
multi-valued, 6-13, 6-14
normalization, 6-12
optimizing for matching, 6-15
optional attributes, 1-6
ordering of values, 6-12, 6-14
single valued, 6-13, 6-14

Index

attributes (cont'd)
syntaxes, 1-3
matching rules, 1-3
types, 1-2,1-3
values, 1-2, 1-3
attribute size limit
DUA default, 9-6
auxiliary classes
defining, 6-9
DXIM windows support, 6-12

B

bulk entry management, 10-5

C

chaining, 1-11
classes, 1-6, 1-9
auxiliary, 6-1
default definitions, A-1
defining, 6-1
mandatory attributes, 1-9
name forms, 1-6, 1-9
optional attributes, 1-9
planning
aliases classes, 6-26
auxiliary classes, 6-9
structural classes, 6-19
planning classes to represent objects, 4-10
structural, 6-1
structure rules, 1-6, 1-7, 1-9
client
See Directory User Agent
configuration tutorial
multi-node, 3-1
single node, 2-1
consumer initiated replication, 8-20
context prefix

See superior reference
copy shall do

DUA default, 9-6
CREATE DSA, 85

Index-1

D

database
defragmentation, 8-23
decDSA entries
attributes, 5-17
role in chained operations, 4-18
role in replication, 4-18
role in security, 4-18
trust, 5-17
defaults files, 9-1
defining attribute types, 6-12
defragmenting the database files, 8-23
DELETE DSA, 8-22
directory entries, 1-1

See entries

directory information
access control, 1-12, 7-1
distribution of, 1-9, 5-1, 5-5
introduction, 1-1
management of, 1-12
replication of, 1-9, 5-2, 5-6
schema, 1-9
security, 1-12

directory information tree
planning, 4-1
positioning in a global context, 4-13

Directory Information Tree, 1-1
access control, 7-1

directory names
definition of, 1-3

directory schema

See schema
directory server

See Directory System Agent
directory software components, 1-8

management of, 1-12, 1-13
Directory System Agent

AE titles, 5-10

configuring, 8-1

creating, 8-5

creating Naming Contexts, 8-7

creating Subordinate References, 8-8

creating Superior References, 8-9

definition, 1-8

disabling, 8-21

DUA default, 9-8

enabling, 8-10

example configuration, 2-1, 3-1

LDAP Port, 5-11

management of, 1-13

managing LDAP, 8-7

master DSA, 5-2

password, 5-10

presentation addresses, 5-11

replicating information, 8-13

Index—2

Directory System Agent (cont'd)

representing as a directory entry, 4-18

security planning, 4-18, 5-6

setting AE titles, 8-5

setting passwords, 8-6

setting presentation addresses, 8-6

setting volatile modifications, 8-6

shadow DSA, 5-2

shadowing agreements, 8-16

shadowing information, 8-13

startup procedures, 8-22

trusted DSA name

alternative method, 7-10
recommended method, 5-17

trust planning, 4-18

updating naming contexts, 8-13
Directory User Agent

definition of, 1-8

management of, 1-13
DISABLE DSA, 8-21
distinguished name, 1-3

definition of, 1-4
distinguished value, 4-15
distributed information, 1-9
distributed services, 1-11
distribution, 5-1, 5-5
DIT

See Directory Information Tree, 1-1
domain root

DUA default, 9-5
DSA

See Directory System Agent
DUA

See Directory User Agent
DUA AttributeSizeLimit, 9-6
DUA.CopyShallDo, 9-6
DUA.DomainRoot, 9-5
DUA. InitialEntry, 9-6
DUA.KnownDSAs.paddr, 9-8
DUA.Priority, 9-5
DUA.Requestor, 9-7
DUA.ScopeOfReferral, 9-4
DUA.SizeLimit, 9-5
DUA.TimeLimit, 9-4
DXD$COMMON_STARTUPR.COM, 8-22
DXD$DSA_STARTUP.NCL, 8-22
DXIM, 1-12

See utilities

defaults file, 9-1

defining keywords, 6-17

example of entry creation, 3-10

running, 9-9

support of auxiliary classes, 6-12

window definitions, 6-25
DXIM script files, 10-2

E

L

ENABLE DSA, 8-10
enabling DSAs, 8-10
enterprise directories
access control, 1-12
accounting, 1-12
interrogation services, 1-8
introduction, 1-8
management of, 1-12
modification services, 1-8
Enterprise Directory
illustration, 1-8

Enterprise Management Architecture, 1-13, 5-9

entries, 1-1, 1-2
access control, 1-12
alias entries, 1-5
bulk management, 10-5
creating interactively, 10-4
creating with script files, 10-2
entries and shadow copies, 5-2
management of, 1-12
multiple selection, 10-5
names, 1-2, 1-3, 4-15
representing DSAs, 4-18

F

files
reading entries from files, 10-5
writing entries to files, 10-5
filters, 6-28
fields, 6-31

G

global prefix, 4-13

labels for schema definitions, 6-17

LDAP, 1-8
connection to DSA, 3-9

displaying name convention, 1-5

labels, 6-17
setting port, 8-7
use of, 1-12

Lightweight Directory Access Protocol, 1-8

Lookup Client, 3-3, 3-9
configuration utility, 9-9
defaults file, 9-1, 9-9
starting, 3-21, 9-11

M

MAILbus 400 MTA

defaults file, 9-1
management utilities

defaults files, 9-1

running, 9-9
managing multiple entries, 10-5
mandatory attributes, 1-6
master DSAs, 5-2, 5-5
matching rules

indexing attributes to optimize matching, 6-15

reference material, A-63
memory image files
defragmentation, 8-23
moving subtrees, 10-5
multiple entry management, 10-5
multi-valued attributes
defining, 6-13
ordering of values, 6-13, 6-14

N

indexing attributes, 6-15
initial entry
DUA default, 9-6

K

keywords
defining, 6-17
knowledge information, 1-9, 1-11
naming contexts, 5-9, 5-11
planning, 5-9
subordinate reference, 5-9, 5-14
superior reference, 5-9, 5-16
known DSAs
DUA default, 9-8

name forms, 1-6, 4-15
defining, 6-22

names, 1-2
based on geography, 4-2

based on organizational structure, 4-2

planning, 4-15
guidelines, 4-1

resolving name clashes, 4-16
naming attributes, 4-15
naming authority, 4-1
naming contexts, 5-3, 5-5, 5-6

access control, 7-1

configuring, 8-7

consumer information, 5-12

entity, 5-11

illustration of, 5-1

introduction, 1-9

naming, 5-4

planning, 5-1

Index-3

naming contexts (cont'd)
populating, 10-2
primary shadow information, 5-12, 8-13
replicating, 8-13
secondary shadow information, 5-12, 8-13
terminating shadowing, 8-21
updating, 8-13

normalization of attributes, 6-12

O

S

object classes
See classes
object identifiers
assigning, 6-7
objects, 1-1
OnChange replication, 8-20
optional attributes, 1-6

P

password, 5-10

passwords
setting DSA passwords, 8-6

presentation addresses, 5-11
setting, 8-6

primary shadowing
implementing, 8-13
planning, 5-12

priority
DUA default, 9-5

R

RDN
See relative distinguished name
reading information from files, 10-5
referral scope
DUA default, 9-4
relative distinguished name, 1-3
definition of, 1-4
renaming subtrees, 10-5
replication, 1-10
implementing primary and secondary shadows,
8-13
notes about managing agreements, 8-17
OnChange configuration, 8-16
planning, 5-2, 5-6
role in security, 4-19
role of decDSA entries, 4-18, 5-6
schedule configuration, 8-16
terminating, 8-21
requestor
DUA default, 9-7

Index—4

schema
alias classes, 6-26
attributes, 6-12
auxiliary classes, 6-8
case studies, 6-8
compiling, 6-2, 6-5
copying, 6-2
customizing, 1-9, 6-1
directory location, 6-2
display rules, 1-9
introduction, 1-9
labels, 6-17
mandatory attributes, 1-9
name forms, 1-9, 6-22
optional attributes, 1-9
planning customizations, 6-8
search filters, 6-28
structural classes, 6-8
structure rules, 1-9, 6-23
text files, 6-2
scope of referral
DUA default, 9-4
script files, 10-2
search filters, 6-28
fields, 6-31
secondary shadowing
implementing, 8-13
planning, 5-12
security, 1-12
planning, 4-18, 5-6
selecting entries, 10-5
server
See Directory System Agent
SET DSA LDAP PORT, 8-7
shadow copies, 5-2
shadow DSAs, 5-2, 5-6
primary shadowing, 5-6
secondary shadowing, 5-6
shadowing, 1-10
consumer initiated configuration, 8-20
forcing immediate updates, 8-20
identifying agreements, 8-17
identifying initiators, 8-18
implementing primary and secondary shadows,
8-13
notes about managing agreements, 8-17
OnChange configuration, 8-16, 8-20
planning primary and secondary shadows,
5-12
reinstating default behaviour, 8-20
schedule configuration, 8-16, 8-19
shadowing agreements, 8-15, 8-16
single valued attributes
defining, 6-13

size limit

DUA default, 9-5 T
structural classes - —
defining, 6-19 time limit
structure rules, 1-7 DUA default, 9-4
defining, 6-23 tree structure, 1-1
quick reference, A-23 trust
subentries planning, 4-18
differences from normal entries, 7-2 trusted DSA name
hiding from users, 7-2 alternative method, 7-10
shadowing agreements, 8-16 recommended method, 4-18, 5-17
Subordinate Reference tutorial, 2-1, 3-1
entity, 5-14
subordinate references U
configuring, 8-8
subtrees UPDATE DSA
moving’ 10-5 use in V2.0, 8-13
renaming, 10-5 upd_a'Fing shadow DSAs, 8-13
selecting, 10-5 utilities o
Superior Reference command line interface, 1-12
entity, 5-16 windows interface, 1-12
superior references
configuring, 8-9 V

syntaxes

reference material, A-56 volatile modifications

setting, 8-6

W

window definitions, 6-25
writing entries to files, 10-5

Index-5

