Previous | Contents | Index |
<MATH>(a<subscript>(2)<superscript>(n-1)) |
This example produces the following output: a_2^n-1
In extended mathematical expressions, the <SUPERSCRIPT> and <SUBSCRIPT> tags produce differing results in conjunction with the <INTEGRAL>, <PROD>, and <SUM> tags and their complementary tags--<INTEGRAL_LIMITS> and <INTEGRAL_NOLIMITS>, <PROD_LIMITS> and <PROD_NOLIMITS>, and <SUM_LIMITS> and <SUM_NOLIMITS>.
The <INTEGRAL>, <PROD>, and <SUM> tags place their subscripts and superscripts with regard to whether the tags are used in math text mode (used as an argument to the <MATH> tag) or in math display mode (used between the <MATH>(DISPLAY) and <ENDMATH> tags).
In math text mode, the <INTEGRAL>, <PROD>, and <SUM> tags all place the superscript and subscript to the right. Code these tags as follows:
<MATH>(<integral><subscript>(n=1)<superscript>( <pi><over>(2) ) <sp> ) <MATH>( <prod><subscript>(n=1)<superscript>( <pi><over>(2) ) <sp> ) <math>( <sum><subscript>(n=1)<superscript>( <pi><over>(2) ) ) |
This example produces the following output: Sn=1^ <pi symbol> 2 <prod symbol>n=1^ <pi symbol> 2 <sum symbol>n=1^ <pi symbol> 2
In math display mode, the <PROD> and <SUM> tags place the superscript and subscript above and below their respective signs; however, the <INTEGRAL> tag places superscripts and subscripts to the right. Code these tags as follows:
<MATH>(display) <integral><subscript>(n=1)<superscript>( <pi><over>(2) ) <sp> <prod><subscript>(n=1)<superscript>( <pi><over>(2) ) <sp> <sum><subscript>(n=1)<superscript>( <pi><over>(2) ) <ENDMATH> |
This example produces the following output:
Sn=1^ <pi
symbol> 2 <prod symbol>n=1^ <pi symbol> 2
<sum symbol>n=1^ <pi symbol> 2
The <INTEGRAL_NOLIMITS>, <PROD_NOLIMITS>, and <SUM_NOLIMITS> tags always place the subscripts and superscripts to the right of the signs, regardless of the math mode. Code these tags as follows:
<MATH>(display) <integral_nolimits><subscript>(n=1)<superscript>( <pi><over>(2) ) <sp> <prod_nolimits><subscript>(n=1)<superscript>( <pi><over>(2) ) <sp> <sum_nolimits><subscript>(n=1)<superscript>( <pi><over>(2) ) <ENDMATH> |
This example produces the following output:
S<nolimits
symbol>n=1^ <pi symbol> 2 <prod
symbol><nolimits symbol>n=1^ <pi symbol> 2
<sum symbol><nolimits symbol>n=1^ <pi
symbol> 2
The <INTEGRAL_LIMITS>, <PROD_LIMITS>, and <SUM_LIMITS> tags always place the subscripts and superscripts above and below the signs, regardless of the math mode. Code these tags as follows:
<MATH>(display) <integral_limits><subscript>(n=1)<superscript>( <pi><over>(2) ) <sp> <prod_limits><subscript>(n=1)<superscript>( <pi><over>(2) ) <sp> <sum_limits><subscript>(n=1)<superscript>( <pi><over>(2) ) <ENDMATH> |
This example produces the following output:
S<limits
symbol>n=1^ <pi symbol> 2 <prod
symbol><limits symbol>n=1^ <pi symbol> 2
<sum symbol><limits symbol>n=1^ <pi symbol> 2
In addition to the operations and special functions listed in Table 1-1, you can specify mathematical functions using any of the tags listed in Table 1-2. These tags all let you specify the tag with or without an argument. If you specify an argument, place it in parentheses following the function name. For example:
<MATH>(<SIN>(d)) |
This produces: <sin(d) symbol> .
Tag | Function |
---|---|
<ARCCOS> | <arccos symbol> |
<ARCSIN> | <arcsin symbol> |
<ARCTAN> | <arctan symbol> |
<ARG> | <arg symbol> |
<COS> | <cos symbol> |
<COSH> | <cosh symbol> |
<COT> | <cot symbol> |
<COTH> | <coth symbol> |
<CSC> | <csc symbol> |
<DEG> | <deg symbol> |
<DET> | <det symbol> |
<DIM> | <dim symbol> |
<EXP> | <exp symbol> |
<GCD> | <gcd symbol> |
<HOM> | <hom symbol> |
<INF> | <inf symbol> |
<KER> | <ker symbol> |
<LG> | <lg symbol> |
<LIM> | <lim symbol> |
<LIMINF> | <liminf symbol> |
<LIMSUP> | <limsup symbol> |
<LN> | <ln symbol> |
<LOG> | <log symbol> |
<MAX> | <max symbol> |
<MIN> | <min symbol> |
<MOD> | mod |
<PMOD> | <pmod symbol>n ¹ |
<PR> | <Pr symbol> |
<SEC> | <sec symbol> |
<SIN> | <sin symbol> |
<SINH> | <sinh symbol> |
<SUP> | <sup symbol> |
<TAN> | <tan symbol> |
<TANH> | <tanh symbol> |
An example of using some of the tags from the previous table follows:
<LIST>(UNNUMBERED) <le><math>( <sin>2<math_char>(theta) <equals>2<sin><math_char>(theta)<cos><math_char>(theta) ) <le><math>( O(n <log>n <log><log>n) ) <le><math>( <pr>(X >x)= <exp>(-x/<math_char>(mu)) ) <le><math>( <max><subscript>(1<math_char>(geq)n<math_char>(geq)m) <log><subscript>(2)P<subscript>(n) ) <le><math>( <lim><subscript>(x<to>0)<group>( <sin>x<over>(x)) <equals>1 ) <endmath> <ENDLIST> |
These examples produce the following output:
To align math expressions on the right and left side of an alignment point (usually an equal sign) so that the expressions are balanced, use the following tags:
For example:
<math> <EQALIGN> <eline>(H(f)\= <GROUP>(<LBAR><GROUP>(<FRACTION>(E(x)\E(0)))<RBAR> <SUBSCRIPT>(E(0)=e<SUPERSCRIPT>(j<MATH_CHAR>(OMEGA)t)))) <Eline>(\=<GROUP>(e<SUPERSCRIPT>(-<MATH_CHAR>(GAMMA)x))) <endeqalign> <ENDMATH> |
This example produces the following output:
<eqalign symbol>
H(f)&= <left| symbol>E(x)
E(0)<right| symbol>
_E(0)=e^j<omega symbol>t <cr symbol>
&=e^-<gamma symbol>x <cr symbol>
To produce delimited expressions in mathematics, you must use one of the following pairs of tags:
The text formatter automatically assumes that text within these pairs is to be grouped, and it sizes the delimiters automatically.
For example:
<MATH>(display) <group>( C<subscript>(dg) ) = <fraction>(<math_char>(partial)Q<subscript>(d)\ <math_char>(partial)V<subscript>(g)) = -C<subscript>(oxt) [0.5 + <lparen>f<subscript>(0) DVG - <group>(2f<subscript>(0) V<subscript>(com)<over>(f<subscript>(1)) ) <rparen> <group>(1 <over>(f<subscript>(1)<superscript>(2))) ] <ENDMATH> |
This example produces the following output:
C_dg = <partial
symbol>Q_d
<partial symbol>V_g = -C_oxt <left[0.5
symbol> + <left symbol>0 DVG - 2f_0 V_com
f_1
<right symbol> 1
f_1^2 <right] symbol>
You can construct matrixes and case constructs using the formats provided with <MATRIX> and <CASES> tags.
The <MATRIX> tag has the following format:
The keywords BRACES, BRACKETS, and VERTICAL_RULE override the default matrix delimiter, parentheses.
When you construct a matrix, you must specify each row in the matrix using the <MATRIX_ROW> tag. You can specify a maximum of nine columns for the row. Terminate the matrix with the <ENDMATRIX> tag. For example:
<matrix>(brackets) <matrix_row>(A) <matrix_row>(B) <matrix_row>(C) <matrix_row>(D) <endmatrix> |
This simple, one-column matrix produces the following output:
<left[ symbol><matrix symbol> A<cr symbol> B<cr
symbol> C<cr symbol> D<cr symbol> <right] symbol>
A more complex example shows how to code a multicolumn matrix:
<math>(display) <det><matrix>(vertical_rule) <matrix_row>(c<subscript>(0)\c<subscript>(1)\ c<subscript>(2)\<dots>\c<subscript>(n)) <matrix_row>(c<subscript>(1)\c<subscript>(2)\ c<subscript>(3)\<dots>\c<subscript>(n+1)) <matrix_row>(c<subscript>(2)\c<subscript>(3)\ c<subscript>(4)\<dots>\c<subscript>(n+2)) <matrix_row>(<vdots>\<vdots>\<vdots>\<vdots>) <matrix_row>(c<subscript>(n)\c<subscript>(n+1)\ c<subscript>(n+2)\<dots>\c<subscript>(2n)) <endmatrix> > 0. <endmath> |
This produces the following output:
<det symbol> <left|
symbol><matrix symbol> c_0&c_1& c_2&...&c_n<cr symbol>
c_1&c_2& c_3&...&c_n+1<cr symbol> c_2&c_3& c_4&...&c_n+2<cr
symbol> <vdots symbol><vdots symbol><vdots
symbol><vdots symbol><cr symbol> c_n&c_n+1&
c_n+2&...&c_2n<cr symbol> <right| symbol> > 0.
The following example shows how to code a multicolumn matrix with fractions:
<math>(display) <matrix>(brackets) <matrix_row>(4<over>(4<minus>6)\2<over>(6<minus>4)) <matrix_row>(3<over>(6<minus>4)\1<over>(4<minus>6)) <endmatrix> = <matrix>(brackets) <matrix_row>(4<over>(<minus>2)\2<over>(2)) <matrix_row>(3<over>(2)\1<over>(<minus>2)) <endmatrix> = <matrix>(brackets) <matrix_row>(<minus>2\<sp>1) <matrix_row>(1.5\<minus>.5) <endmatrix> <endmath> |
This produces the following output:
<left[ symbol><matrix
symbol> 4
4-6&2
6-4<cr symbol>
3
6-4&1
4-6<cr symbol> <right] symbol> =
<left[ symbol><matrix symbol> 4
-2&2
2<cr symbol> 3
2&1
-2<cr
symbol> <right] symbol> = <left[ symbol><matrix
symbol> -2& 1<cr symbol> 1.5&-.5<cr symbol> <right]
symbol>
The <CASES> tag is similar to the <MATRIX> tag, but it produces only a large left-hand brace; there is no closing delimiter. The following example shows how to use the <CASES> tag and its related tags:
<MATH>(display) <cases> <case_row>(1/3\if\0> x\;) <case_row>(2/3\if\3< x\;) <case_row>(0\elsewhere.) <endcases> <ENDMATH> |
This example produces the following output:
{=<lbrace
symbol><cases symbol> 1/3&if
0> x; <cr symbol>
2/3&if 3< x ; <cr symbol> 0&elsewhere. <cr symbol>
The following example illustrates a simple mathematical expression used in the context of a sentence.
#1 |
---|
The area of a circle is calculated using the formula <MATH>(a<equals><pi>r<superscript>(2)). |
This example produces the following output:
The circumference of a circle is calculated using the formula c=<pi symbol>2 .
The following example shows how to use the <MATH>(DISPLAY) tag. Note that the parenthetical expression following the first <MINUS> tag must have a space in front of it; otherwise, the expression will be interpreted as an argument to the <MINUS> tag.
#2 |
---|
<MATH>(DISPLAY) vsize <equals> psize <minus>(<minus>topglue) <minus> topdepth <minus> footerglue <ENDMATH> |
This example produces the following output:
vsize = psize - (-topglue) - topdepth - footerglue
The following example shows how to use the <MATH> tag in a list.
#3 |
---|
<LIST>(NUMBERED) <le><MATH>(1<over>(2)) <le><MATH>(n+1<over>(3)) <le><MATH>(<choose>(N+1\3)) <le><MATH>(<sum><subscript>(n=1)<superscript>(3)Z<subscript>(n)<superscript>(2)) <ENDLIST> |
This example produces the following output:
- 1
2- n+1
3- N+13
- <sum symbol>n=1^³Z_n^²
The following example illustrates how to use the <GROUP> tag to indicate the order of operation.
#4 |
---|
<MATH>(DISPLAY) <GROUP>( a<over>(x<plus>y<superscript>(3)) ) <EQUALS> <SQRT>(<times><pi>) <ENDMATH> |
This example produces the following output:
a
x+y^3 = <sqrt symbol>*<pi symbol>
Note what the output would be if you did not use the <GROUP> tag:
a
x+y^3 = <sqrt symbol>*<pi symbol>
In the following example, the characters representing the mathematical operations are used directly.
#5 |
---|
<MATH>(total = A + B - C * D / E) |
This example produces the following output:
total = A + B - C * D / E .
Note that this is equivalent to the following:
<MATH>(total <EQUALS> A <PLUS> B <MINUS> C <TIMES> D <DIVIDED_BY> E)The following example shows how to use the <MATH> tag to generate true minus signs in your SDML files.
#6 |
---|
<MATH>(--)This begins a comment line. |
This example produces the following output:
- -- This begins a comment line.
The following example shows how to use the <REFERENCE> tag to refer to an equation.
#7 |
---|
<MATH>(DISPLAY\math_equation) math = numbers + letters <ENDMATH> <p>As <REFERENCE>(math_equation) shows, the relationship between letters and math must include numbers. |
This example produces the following output:
math = numbers + letters <eqno symbol>(1-1)
As (1-1) shows, the relationship between letters and math must include numbers.
Previous | Next | Contents | Index |